
Mixed Distributions

Our text discusses random variables that are either discrete or continuous.

We will go further, and consider mixed random variables that have a distrete

part and a continuous part. To justify this, consider observing a lightbulb
until it fails. What if there is a positive probability that the failure time is

zero (the bulb never goes on)?

Let X1 be a discrete random variable, and let X2 be (absolutely) continu-
ous. You may think of a mixed random variable Y as arising from a two-step

statistical experiment, like this. First, toss a coin with probability of a Head
equal to �. If the coin shows Heads, Y = X1; if it is Tails, Y = X2. Denoting
by C the outcome of the coin toss, we can write the distribution function of
Y as

FY (y) = P (Y � y) = P (Y � yjC = h)P (C = h) + P (Y � yjC = t)P (C = t)

= �P (X1 � y) + (1� �)P (X2 � y)

= �FX1
(y) + (1 � �)FX2

(y)

Let g(�) be a function for which all the relevant expectations exist. By
the double expectation formula (which is actually part of the de�nition of
conditional probability in more advanced courses), we have

E[g(Y )] = E[E[g(Y )jC]] = [E[g(Y )jC = h]P (C = h) + [E[g(Y )jC = t]P (C = t)

= �E[g(X1)] + (1� �)E[g(X2)]

= �
X
x

g(x) fX1
(x) + (1 � �)

Z
1

�1

g(x) fX2
(x) dx

This formula completely determines the distribution of Y , since the func-

tion g could be an indicator for any set of interest. We can even use it to
de�ne some notation that might otherwise be confusing. Let us write

E[g(Y )] =
Z
g(y) dFY (y) =

Z
g(y) dPY (y)

= �
X
x

g(x) fX1
(x) + (1� �)

Z
1

�1

g(x) fX2
(x) dx

You will prove in homework that this \integral" enjoys all the usual prop-
erties of sums and integrals. If you later learn that it is a special case of a

Lebesgue integral, no di�culty will arise. In the meantime, you will have a

concrete meaning for a notation that is frequently used without much expla-
nation.


