Limits Assignment 1

Solve these problems using only the definition of a limit and rules of elementary algebra (logs and stuff like that are okay, but no calculus).

1. Prove $\frac{3 n+1}{4 n+17} \rightarrow 3 / 4$.
2. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d be non-zero real numbers. Find $\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{an}+\mathrm{b}}{\mathrm{c} n+\mathrm{d}}$ and prove your answer in general, not for specific values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d .
3. Show $\frac{32}{\mathrm{n}^{\mathrm{p}}} \rightarrow 0$, where p is an arbitrary positive number. Do not do it for a particular numerical value of p . This is always the case, so I'll stop saying it now.
4. Prove that if $a_{n}=a$ for each $n, a_{n} \rightarrow a$.
5. Prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}^{\mathrm{n}}=0$ if $|\mathrm{x}|<1$.
6. Prove that if $\mathrm{a}_{\mathrm{n}} \rightarrow 4$, then $3 \mathrm{a}_{\mathrm{n}} \rightarrow 12$.
7. Prove $\frac{1}{2^{\sqrt{n}}} \rightarrow 0$.
8. Let $\mathrm{a}_{\mathrm{n}} \rightarrow \mathrm{A}$ and $\mathrm{b}_{\mathrm{n}} \rightarrow$ B. Show $\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}} \rightarrow \mathrm{AB}$. Hint: $\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}-\mathrm{AB}=\mathrm{a}_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}}-\mathrm{B}\right)+\mathrm{B}\left(\mathrm{a}_{\mathrm{n}}-\mathrm{A}\right)$
9. Prove $\frac{\sqrt{n}}{n+14} \rightarrow 0$.
10. A set of real numbers is said to be bounded if there exist real numbers A and B such that each number in the set is between A and B. Prove that if $a_{n} \rightarrow a \in \mathbb{R}$, the entire sequence $\left\{a_{n}\right\}$ is bounded.
11. Assume $a_{n} \rightarrow x$ and $x>y$. Show $\exists N_{1} \in \mathbb{R} \ni$ if $n>N_{1}, a_{n}>x-(x-y) / 3$.
12. Assume $a_{n}>x-(x-y) / 3$ and $a_{n}<y+(x-y) / 3$. Show that $x<y$.

Note that you must know the definition of a limit. It could be asked, and it could be worth a lot of points.

