Indicator functions: This notation is not in the text!

Let A be a set of real numbers. Then the indicator function for A is defined by

$$
I_{A}(x)=I\{x \in A\}=\left\{\begin{array}{l}
1 \text { for } x \in A \\
0 \text { for } x \notin A
\end{array}\right.
$$

Ex.

$$
\begin{array}{ll}
\mathrm{I}\{\mathrm{x} \geq 0\}=\mathrm{I}_{[0, \infty)}(\mathrm{x}) & \mathrm{I}\{\mathrm{x}=1,2,3\}=\mathrm{I}_{\{1,2,3\}}(\mathrm{x}) \\
\mathrm{I}\{\mathrm{a}<\mathrm{x} \leq \mathrm{b}\}=\mathrm{I}_{(\mathrm{a}, \mathrm{~b}]}(\mathrm{x}) & \mathrm{I}\{\mathrm{x}=0,1, \ldots\}=\mathrm{I}_{\{0,1, \ldots\}}(\mathrm{x})
\end{array}
$$

Two important properties of indicator functions are $\mathrm{I}_{\mathrm{A}}(\mathrm{x}) \mathrm{I}_{\mathrm{B}}(\mathrm{x})=\mathrm{I}_{\mathrm{A} \cap \mathrm{B}}(\mathrm{x})$ and if $g(x)$ is a real valued function,

$$
g(x) I_{A}(x)=\left\{\begin{array}{l}
g(x) \text { for } x \in A \\
0 \quad \text { for } x \notin A
\end{array}\right.
$$

Def. The support of a discrete random variable is the set of x values for which $P(X=x)>0$.

In this class, probability density functions and probability mass functions will always be defined for all real x , and will include indicators for their support.

For example, where the book might write

$$
f(x)=\left\{\begin{array}{l}
\frac{x}{6} \text { for } x=1,2,3 \\
0 \text { otherwise }
\end{array}\right.
$$

we will write $f(x)=\frac{X}{6} \quad I\{x=1,2,3\}$.

The exponential density could be written $f(x)=\theta e^{-\theta x} I\{x>0\}$

