Hint for Problem 4.41c

This problem is a good example of why it is better to deal with the multivariate normal distribution using matrix notation. If you try to do this problem with either a one-variable or twovariable Jacobian approach, it's a huge mess. However, try defining

$$
Z_{1}=\frac{\left(\frac{X_{1}-\mu_{1}}{\sigma_{1}}-\rho\left(\frac{X_{2}-\mu_{2}}{\sigma_{2}}\right)\right)}{\sqrt{1-\rho^{2}}} \text { and } Z_{2}=\frac{X_{2}-\mu_{2}}{\sigma_{2}}
$$

Now a two-variable Jacobian exercise shows that Z_{1} and Z_{2} are independent standard normal. Writing

$$
X_{1}=\sigma_{1}\left(Z_{1} \sqrt{1-\rho^{2}}+\rho Z_{2}\right)+\mu_{1} \text { and } X_{2}=\sigma_{2} Z_{2}+\mu_{2},
$$

re-express $Y=a X_{1}+b X_{2}$ as $Y=\alpha Z_{1}+\beta Z_{2}+\mu$. You can get the density of Y directly using a Jacobian without too much pain, but it's easier to write the moment-generating function of Y.

