STA2112f99 Assignment for Quiz 6

- 1. Prove that if $P(0 \le Y \le 1) = 1$, then $Var(Y) \le \frac{1}{4}$.
- 2. I believe that if $P(0 \le Y \le 1) = 1$ with $E(Y) = \mu$, then $Var(Y) \le \mu(1-\mu)$. Can you prove it?
- 3. Differentiate both sides of $\sum_{x=0}^{\infty} \frac{e^{-\lambda \lambda^x}}{x!}$ and see if you can get something interesting. Justify the exchange of summation and differentiation.
- 4. Let $f_X(x) = \frac{1}{x^2} I\{x > 1\}$. For what values of t does $E(e^{Xt})$ converge uniformly?
- 5. Let Y be Poisson(λ). Show $f(x + 1) = \frac{\lambda}{x+1}f(x)$
- 6. Take a look at the clever way our text gets the mean of a lognormal distribution using moment generating functions. Use the same approach to find the variance.
- 7. Do problems 3.4, 3.9, 3.17, 3.21