STA2112f99 Assignment for Quiz 6

1. Prove that if $P(0 \leq Y \leq 1)=1$, then $\operatorname{Var}(Y) \leq \frac{1}{4}$.
2. I believe that if $P(0 \leq Y \leq 1)=1$ with $E(Y)=\mu$, then $\operatorname{Var}(Y) \leq$ $\mu(1-\mu)$. Can you prove it?
3. Differentiate both sides of $\sum_{x=0}^{\infty} \frac{e^{-\lambda \lambda^{x}}}{x!}$ and see if you can get something interesting. Justify the exchange of summation and differentiation.
4. Let $f_{X}(x)=\frac{1}{x^{2}} I\{x>1\}$. For what values of t does $E\left(e^{X t}\right)$ converge uniformly?
5. Let Y be Poisson (λ). Show $f(x+1)=\frac{\lambda}{x+1} f(x)$
6. Take a look at the clever way our text gets the mean of a lognormal distribution using moment generating functions. Use the same approach to find the variance.
7. Do problems 3.4, 3.9, 3.17, 3.21
