STA2112f99 Assignment for Quiz 5

1. Prove Theorem 2.2.1 for a mixed random variable.
2. Prove $\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$ for a mixed random variable.
3. Let Y be a mixed random variable with discrete part X_{1} and continuous part X_{2}. Is this correct? $\operatorname{Var}(Y)=\alpha \operatorname{Var}\left(X_{1}\right)+(1-\alpha) \operatorname{Var}\left(X_{2}\right)$. If it is correct, prove it. If not, give a convenient formula in terms of the means and variances of the component variables. Simplify.
4. Prove that if $P(0 \leq Y \leq 1)=1$, then $\operatorname{Var}(Y) \leq \frac{1}{4}$.
5. Let $f_{X}(x)=\theta(1-\theta)^{x-1} I\{x=1,2, \ldots\}$. For what values of t does $E\left(e^{X t}\right)$ exist? Does $M_{X}(t)$ exist?
6. Let $f_{X}(x)=\frac{1}{x^{2}} I\{x>1\}$. For what values of t does $E\left(e^{X t}\right)$ exist? Does $M_{X}(t)$ exist?
7. Give an example of a non-negative random variable for which $E(X)<$ $P(X \geq 1)$, or else prove that no such random variable is possible.
8. Prove that if $E\left(Y^{2}\right)$ exists, then $E(Y)$ must exist.
9. Let $f_{X}(x)=\alpha x^{\alpha-1} I\{0<x<1\}$, where $\alpha>0$. Differentiate both sides of $\int f_{X}(x) d x=1$ to find a formula for $E[\log (X)]$. How do you justify the exchange of differentiation and integration?
10. Let X have a geometric distribution (see above). For what values of θ does the infinite sum for $E\left(\frac{\cos (X)}{X^{2}}\right)$ converge uniformly?
