Ignoring Measurement Error: Convergence ${ }^{1}$ STA2053 Fall 2022

${ }^{1}$ See last slide for copyright information.

Overview

1 Reliability

2 Measurement Error and Consistency

Additive measurement error

A very simple model

Additive measurement error

A very simple model

$$
W=X+e
$$

Where $E(X)=\mu_{x}, E(e)=0, \operatorname{Var}(X)=\sigma_{x}^{2}, \operatorname{Var}(e)=\sigma_{e}^{2}$, and $\operatorname{Cov}(X, e)=0$.

Variance and Covariance $W=X+e$

Variance and Covariance

$$
\begin{aligned}
\operatorname{Var}(W) & =\operatorname{Var}(X)+\operatorname{Var}(e) \\
& =\sigma_{x}^{2}+\sigma_{e}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, W) & =\operatorname{Cov}(X, X+e) \\
& =\operatorname{Cov}(X, X)+\operatorname{Cov}(X, e) \\
& =\sigma_{x}^{2}+0 \\
& =\sigma_{x}^{2}
\end{aligned}
$$

Definition of Reliability

Psychometric

Reliability is the squared correlation between the observed variable and the latent variable (true score).

Calculation of Reliability

Squared correlation between observed and true score

$$
\rho^{2}
$$

Calculation of Reliability

Squared correlation between observed and true score

$$
\rho^{2}=\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2}
$$

Calculation of Reliability

Squared correlation between observed and true score

$$
\begin{aligned}
\rho^{2} & =\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2} \\
& =\left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}\right)^{2}
\end{aligned}
$$

Calculation of Reliability

Squared correlation between observed and true score

$$
\begin{aligned}
\rho^{2} & =\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2} \\
& =\left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}\right)^{2} \\
& =\frac{\sigma_{x}^{4}}{\sigma_{x}^{2}\left(\sigma_{x}^{2}+\sigma_{e}^{2}\right)} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}
\end{aligned}
$$

Calculation of Reliability

Squared correlation between observed and true score

$$
\begin{aligned}
\rho^{2} & =\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2} \\
& =\left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}\right)^{2} \\
& =\frac{\sigma_{x}^{4}}{\sigma_{x}^{2}\left(\sigma_{x}^{2}+\sigma_{e}^{2}\right)} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\frac{\operatorname{Var}(X)}{\operatorname{Var}(W)}
\end{aligned}
$$

Calculation of Reliability

Squared correlation between observed and true score

$$
\begin{aligned}
\rho^{2} & =\left(\frac{\operatorname{Cov}(X, W)}{S D(X) S D(W)}\right)^{2} \\
& =\left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}\right)^{2} \\
& =\frac{\sigma_{x}^{4}}{\sigma_{x}^{2}\left(\sigma_{x}^{2}+\sigma_{e}^{2}\right)} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\frac{\operatorname{Var}(X)}{\operatorname{Var}(W)}
\end{aligned}
$$

Reliability is the proportion of the variance in the observed variable that comes from the latent variable of interest, and not from random error.

How to estimate reliability from data

How to estimate reliability from data

■ Correlate usual measurement with "Gold Standard?"

- Not very realistic, except maybe for some bio-markers.

How to estimate reliability from data

■ Correlate usual measurement with "Gold Standard?"

- Not very realistic, except maybe for some bio-markers.

■ One answer: Measure twice.

Measure twice

Called "equivalent measurements" because error variance is the same

Measure twice

Called "equivalent measurements" because error variance is the same

$$
\begin{aligned}
& W_{1}=X+e_{1} \\
& W_{2}=X+e_{2},
\end{aligned}
$$

where $E(X)=\mu_{x}, \operatorname{Var}(X)=\sigma_{x}^{2}, E\left(e_{1}\right)=E\left(e_{2}\right)=0$, $\operatorname{Var}\left(e_{1}\right)=\operatorname{Var}\left(e_{2}\right)=\sigma_{e}^{2}$, and X, e_{1} and e_{2} are all independent.

Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$
\operatorname{Corr}\left(W_{1}, W_{2}\right)=\frac{\operatorname{Cov}\left(W_{1}, W_{2}\right)}{\operatorname{SD}\left(W_{1}\right) S D\left(W_{2}\right)}
$$

Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$
\begin{aligned}
\operatorname{Corr}\left(W_{1}, W_{2}\right) & =\frac{\operatorname{Cov}\left(W_{1}, W_{2}\right)}{\operatorname{SD}\left(W_{1}\right) S D\left(W_{2}\right)} \\
& =\frac{\operatorname{Cov}\left(X+e_{1}, X+e_{2}\right)}{\sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}}
\end{aligned}
$$

Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$
\begin{aligned}
\operatorname{Corr}\left(W_{1}, W_{2}\right) & =\frac{\operatorname{Cov}\left(W_{1}, W_{2}\right)}{\operatorname{SD(W_{1})SD(W_{2})}} \\
& =\frac{\operatorname{Cov}\left(X+e_{1}, X+e_{2}\right)}{\sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}} \\
& =\frac{\operatorname{Cov}(X, X)+\operatorname{Cov}\left(X, e_{2}\right)+\operatorname{Cov}\left(e_{1}, X\right)+\operatorname{Cov}\left(e_{1}, e_{2}\right)}{\sigma_{x}^{2}+\sigma_{e}^{2}}
\end{aligned}
$$

Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$
\begin{aligned}
\operatorname{Corr}\left(W_{1}, W_{2}\right) & =\frac{\operatorname{Cov}\left(W_{1}, W_{2}\right)}{S D\left(W_{1}\right) S D\left(W_{2}\right)} \\
& =\frac{\operatorname{Cov}\left(X+e_{1}, X+e_{2}\right)}{\sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}} \sqrt{\sigma_{x}^{2}+\sigma_{e}^{2}}} \\
& =\frac{\operatorname{Cov}(X, X)+\operatorname{Cov}\left(X, e_{2}\right)+\operatorname{Cov}\left(e_{1}, X\right)+\operatorname{Cov}\left(e_{1}, e_{2}\right)}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}},
\end{aligned}
$$

which is the reliability.

Estimate the reliability: Measure twice for a sample of size n

With a well-chosen time gap

Calculate $r=\frac{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)\left(W_{i 2}-\bar{W}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(W_{i 2}-\bar{W}_{2}\right)^{2}}}$.

Estimate the reliability: Measure twice for a sample of

 size nWith a well-chosen time gap

Calculate $r=\frac{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)\left(W_{i 2}-\bar{W}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(W_{i 2}-\bar{W}_{2}\right)^{2}}}$.

■ Test-retest reliability

Estimate the reliability: Measure twice for a sample of

 size nWith a well-chosen time gap

Calculate $r=\frac{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)\left(W_{i 2}-\bar{W}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(W_{i 2}-\bar{W}_{2}\right)^{2}}}$.

- Test-retest reliability
- Alternate forms reliability

Estimate the reliability: Measure twice for a sample of

 size nWith a well-chosen time gap

Calculate $r=\frac{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)\left(W_{i 2}-\bar{W}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(W_{i 1}-\bar{W}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(W_{i 2}-\bar{W}_{2}\right)^{2}}}$.

- Test-retest reliability
- Alternate forms reliability
- Split-half reliability

Measurement error in the response variable only

Measurement error in the response variable only

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i}
\end{aligned}
$$

Measurement error in the response variable only

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i}
\end{aligned}
$$

Naive model: $V_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

Is $\widehat{\beta}_{1}$ consistent?

Ignoring measurement error in Y

First calculate $\operatorname{Cov}\left(X_{i}, V_{i}\right)$. Under the true model.

Is $\widehat{\beta}_{1}$ consistent?

Ignoring measurement error in Y

First calculate $\operatorname{Cov}\left(X_{i}, V_{i}\right)$. Under the true model.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i},
\end{aligned}
$$

Is $\widehat{\beta}_{1}$ consistent?

Ignoring measurement error in Y

First calculate $\operatorname{Cov}\left(X_{i}, V_{i}\right)$. Under the true model.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i},
\end{aligned}
$$

$$
\operatorname{Cov}\left(X_{i}, V_{i}\right)=\operatorname{Cov}\left(X_{i}, \beta_{1} X_{i}+\epsilon_{i}\right)
$$

Is $\widehat{\beta}_{1}$ consistent?

Ignoring measurement error in Y

First calculate $\operatorname{Cov}\left(X_{i}, V_{i}\right)$. Under the true model.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e_{i},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, V_{i}\right) & =\operatorname{Cov}\left(X_{i}, \beta_{1} X_{i}+\epsilon_{i}\right) \\
& =\beta_{1} \sigma_{x}^{2}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$
Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$
Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x, v}}{\widehat{\sigma}_{x}^{2}}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$
Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x, v}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow{\text { a.s. }} \frac{\operatorname{Cov}\left(X_{i}, V_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$
Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x, v}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow{\text { a.s. }} \frac{\operatorname{Cov}\left(X_{i}, V_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

Have $\operatorname{Cov}\left(X_{i}, V_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(V_{i}-\bar{V}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x, v}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow[\rightarrow]{\text { a.s. }} \frac{\operatorname{Cov}\left(X_{i}, V_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}} \\
& =\beta_{1}
\end{aligned}
$$

Consistent.

Why did it work?

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e
\end{aligned}
$$

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i}
\end{aligned}
$$

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right)
\end{aligned}
$$

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

- This is a re-parameterization.

■ Most definitely not one-to-one.

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

- This is a re-parameterization.

■ Most definitely not one-to-one.
■ $\left(\nu, \beta_{0}\right)$ is absorbed into β_{0}^{\prime}.

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

- This is a re-parameterization.

■ Most definitely not one-to-one.
■ $\left(\nu, \beta_{0}\right)$ is absorbed into β_{0}^{\prime}.

- $\left(\epsilon_{i}, e_{i}\right)$ is absorbed into ϵ_{i}^{\prime}.

Why did it work?

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
V_{i} & =\nu+Y_{i}+e \\
& =\nu+\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)+e_{i} \\
& =\left(\nu+\beta_{0}\right)+\beta_{1} X_{i}+\left(\epsilon_{i}+e_{i}\right) \\
& =\beta_{0}^{\prime}+\beta_{1} X_{i}+\epsilon_{i}^{\prime}
\end{aligned}
$$

- This is a re-parameterization.
- Most definitely not one-to-one.

■ $\left(\nu, \beta_{0}\right)$ is absorbed into β_{0}^{\prime}.

- $\left(\epsilon_{i}, e_{i}\right)$ is absorbed into ϵ_{i}^{\prime}.

■ Can't know everything, but all we care about is β_{1} anyway.

Don't Worry

■ If a response variable appears to have no measurement error, assume it does have measurement error but the problem has been re-parameterized.

Don't Worry

■ If a response variable appears to have no measurement error, assume it does have measurement error but the problem has been re-parameterized.
■ Measurement error in Y is part of ϵ.

Measurement error in a single explanatory variable

Measurement error in a single explanatory variable

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
W_{i} & =X_{i}+e_{i},
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i}+\epsilon_{i}$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$
$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$

Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$ $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$

Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$

Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{w, y}}{\widehat{\sigma}_{w}^{2}}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

 $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{w, y}}{\widehat{\sigma}_{w}^{2}} \\
& \xrightarrow{\text { a.s. }} \frac{\operatorname{Cov}(W, Y)}{\operatorname{Var}(W)}=\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}
\end{aligned}
$$

Target of $\widehat{\beta}_{1}$ as $n \rightarrow \infty$

 $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ and $W_{i}=X_{i}+e_{i}$Have $\operatorname{Cov}\left(W_{i}, Y_{i}\right)=\beta_{1} \sigma_{x}^{2}$ and $\operatorname{Var}\left(W_{i}\right)=\sigma_{x}^{2}+\sigma_{e}^{2}$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{w, y}}{\widehat{\sigma}_{w}^{2}} \\
& \xrightarrow{\text { a.s. }} \frac{\operatorname{Cov}(W, Y)}{\operatorname{Var}(W)}=\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}} \\
& =\beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\beta}_{1} \stackrel{a \cdot s .}{\longrightarrow} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

$$
\begin{aligned}
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.

■ Because the reliability is less than one, it's asymptotically biased toward zero.

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.

■ Because the reliability is less than one, it's asymptotically biased toward zero.

■ The worse the measurement of X_{i}, the more the asymptotic bias.

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.

■ Because the reliability is less than one, it's asymptotically biased toward zero.

■ The worse the measurement of X_{i}, the more the asymptotic bias.
■ Sometimes called "attenuation" (weakening).

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.

■ The worse the measurement of X_{i}, the more the asymptotic bias.

- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.

■ The worse the measurement of X_{i}, the more the asymptotic bias.

- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."
- When $H_{0}: \beta_{1}=0$ is true, no problem.

$$
\begin{aligned}
& \widehat{\beta}_{1} \xrightarrow{\text { a.s. }} \beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{e}^{2}}\right) \\
& W_{i}=X_{i}+e_{i}
\end{aligned}
$$

- $\widehat{\beta}_{1}$ converges to β times the reliability of W_{i}.
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.

■ The worse the measurement of X_{i}, the more the asymptotic bias.

- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."
- When $H_{0}: \beta_{1}=0$ is true, no problem.

■ False sense of security?

Measurement error in two explanatory variables

Want to assess the relationship of X_{2} to Y controlling for X_{1} by testing $H_{0}: \beta_{2}=0$.

Statement of the model

Independently for $i=1, \ldots, n$

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

where

$$
\begin{aligned}
& E\left(X_{i, 1}\right)=\mu_{1}, E\left(X_{i, 2}\right)=\mu_{2}, E\left(\epsilon_{i}\right)=E\left(e_{i, 1}\right)=E\left(e_{i, 2}\right)=0, \\
& \operatorname{Var}\left(\epsilon_{i}\right)=\psi, \operatorname{Var}\left(e_{i, 1}\right)=\omega_{1}, \operatorname{Var}\left(e_{i, 2}\right)=\omega_{2},
\end{aligned}
$$

The errors $\epsilon_{i}, e_{i, 1}$ and $e_{i, 2}$ are all independent,
$X_{i, 1}$ and $X_{i, 2}$ are independent of $\epsilon_{i}, e_{i, 1}$ and $e_{i, 2}$, and

$$
\operatorname{cov}\binom{X_{i, 1}}{X_{i, 1}}=\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{12} & \phi_{22}
\end{array}\right) .
$$

Note

- Reliability of W_{1} is $\frac{\phi_{11}}{\phi_{11}+\omega_{1}}$.

■ Reliability of W_{2} is $\frac{\phi_{22}}{\phi_{22}+\omega_{2}}$.

True Model versus Naive Model

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

True Model versus Naive Model

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i, 1}+\beta_{2} W_{i, 2}+\epsilon_{i}$

True Model versus Naive Model

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i, 1}+\beta_{2} W_{i, 2}+\epsilon_{i}$

- Fit the naive model.
- See what happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$ when the true model holds.

True Model versus Naive Model

True model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\epsilon_{i} \\
W_{i, 1} & =X_{i, 1}+e_{i, 1} \\
W_{i, 2} & =X_{i, 2}+e_{i, 2}
\end{aligned}
$$

Naive model: $Y_{i}=\beta_{0}+\beta_{1} W_{i, 1}+\beta_{2} W_{i, 2}+\epsilon_{i}$

- Fit the naive model.
- See what happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$ when the true model holds.

■ Start by calculating $\operatorname{cov}\left(\mathbf{d}_{i}\right)$.

Covariance matrix of the observable data

$$
\boldsymbol{\Sigma}=\operatorname{cov}\left(\begin{array}{c}
W_{i, 1} \\
W_{i, 2} \\
Y_{i}
\end{array}\right)
$$

Covariance matrix of the observable data

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\operatorname{cov}\left(\begin{array}{c}
W_{i, 1} \\
W_{i, 2} \\
Y_{i}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
\omega_{1}+\phi_{11} & \phi_{12} & \beta_{1} \phi_{11}+\beta_{2} \phi_{12} \\
\phi_{12} & \omega_{2}+\phi_{22} & \beta_{1} \phi_{12}+\beta_{2} \phi_{22} \\
\beta_{1} \phi_{11}+\beta_{2} \phi_{12} & \beta_{1} \phi_{12}+\beta_{2} \phi_{22} & \beta_{1}^{2} \phi_{11}+2 \beta_{1} \beta_{2} \phi_{12}+\beta_{2}^{2} \phi_{22}+\psi
\end{array}\right)
\end{aligned}
$$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?
Interested in $H_{0}: \beta_{2}=0$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?

Interested in $H_{0}: \beta_{2}=0$

$$
\widehat{\beta}_{2}=\frac{\widehat{\sigma}_{11} \widehat{\sigma}_{23}-\widehat{\sigma}_{12} \widehat{\sigma}_{13}}{\widehat{\sigma}_{11} \widehat{\sigma}_{22}-\widehat{\sigma}_{12}^{2}}
$$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?

Interested in $H_{0}: \beta_{2}=0$

$$
\begin{aligned}
\widehat{\beta}_{2} & =\frac{\widehat{\sigma}_{11} \widehat{\sigma}_{23}-\widehat{\sigma}_{12} \widehat{\sigma}_{13}}{\widehat{\sigma}_{11} \widehat{\sigma}_{22}-\widehat{\sigma}_{12}^{2}} \\
& \xrightarrow{\text { a.s. }} \\
& \frac{\sigma_{11} \sigma_{23}-\sigma_{12} \sigma_{13}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
\end{aligned}
$$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?

Interested in $H_{0}: \beta_{2}=0$

$$
\begin{aligned}
\widehat{\beta}_{2} & =\frac{\widehat{\sigma}_{11} \widehat{\sigma}_{23}-\widehat{\sigma}_{12} \widehat{\sigma}_{13}}{\widehat{\sigma}_{11} \widehat{\sigma}_{22}-\widehat{\sigma}_{12}^{2}} \\
& \stackrel{\text { a.s. }}{\rightarrow} \\
& \frac{\sigma_{11} \sigma_{23}-\sigma_{12} \sigma_{13}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} \\
& =\frac{\beta_{1} \omega_{1} \phi_{12}+\beta_{2}\left(\omega_{1} \phi_{22}+\phi_{11} \phi_{22}-\phi_{12}^{2}\right)}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
\end{aligned}
$$

What happens to $\widehat{\beta}_{2}$ as $n \rightarrow \infty$?

Interested in $H_{0}: \beta_{2}=0$

$$
\begin{aligned}
\widehat{\beta}_{2} & =\frac{\widehat{\sigma}_{11} \widehat{\sigma}_{23}-\widehat{\sigma}_{12} \widehat{\sigma}_{13}}{\widehat{\sigma}_{11} \widehat{\sigma}_{22}-\widehat{\sigma}_{12}^{2}} \\
& \stackrel{\text { a.s. }}{\rightarrow} \frac{\sigma_{11} \sigma_{23}-\sigma_{12} \sigma_{13}}{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} \\
& =\frac{\beta_{1} \omega_{1} \phi_{12}+\beta_{2}\left(\omega_{1} \phi_{22}+\phi_{11} \phi_{22}-\phi_{12}^{2}\right)}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}} \\
& \neq \beta_{2}
\end{aligned}
$$

Inconsistent.

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { ass. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { ass. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless
■ There is no relationship between X_{1} and Y, or

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

- There is no relationship between X_{1} and Y, or

■ There is no measurement error in W_{1}, or

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

- There is no relationship between X_{1} and Y, or
- There is no measurement error in W_{1}, or
- There is no correlation between X_{1} and X_{2}.

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

- There is no relationship between X_{1} and Y, or
- There is no measurement error in W_{1}, or
- There is no correlation between X_{1} and X_{2}.

Also, t statistic goes to plus or minus ∞ and the p-value $\xrightarrow{\text { a.s. } 0 .} 0$.

When $H_{0}: \beta_{2}=0$ is true

$$
\widehat{\beta}_{2} \xrightarrow{\text { a.s. }} \frac{\beta_{1} \omega_{1} \phi_{12}}{\left(\phi_{1,1}+\omega_{1}\right)\left(\phi_{2,2}+\omega_{2}\right)-\phi_{12}^{2}}
$$

So $\widehat{\beta}_{2}$ goes to the wrong target unless

- There is no relationship between X_{1} and Y, or
- There is no measurement error in W_{1}, or
- There is no correlation between X_{1} and X_{2}.

Also, t statistic goes to plus or minus ∞ and the p-value $\xrightarrow{\text { a.s. } 0 .} 0$. Remember, H_{0} is true.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/2053f22

