# Ignoring Measurement Error: Convergence<sup>1</sup> STA2053 Fall 2022

<sup>&</sup>lt;sup>1</sup>See last slide for copyright information.

### Overview



#### 2 Measurement Error and Consistency

# Additive measurement error

A very simple model



### Additive measurement error

A very simple model



$$W = X + e$$

Where  $E(X) = \mu_x$ , E(e) = 0,  $Var(X) = \sigma_x^2$ ,  $Var(e) = \sigma_e^2$ , and Cov(X, e) = 0.

# Variance and Covariance W = X + e

# Variance and Covariance W = X + e

$$\begin{array}{rcl} Var(W) &=& Var(X) + Var(e) \\ &=& \sigma_x^2 + \sigma_e^2 \end{array}$$

$$Cov(X,W) = Cov(X,X+e)$$
  
=  $Cov(X,X) + Cov(X,e)$   
=  $\sigma_x^2 + 0$   
=  $\sigma_x^2$ 

# Definition of Reliability

Psychometric

Reliability is the squared correlation between the observed variable and the latent variable (true score).



$$\rho^2 = \left(\frac{Cov(X,W)}{SD(X)SD(W)}\right)^2$$

$$\begin{split} \rho^2 &= & \left(\frac{Cov(X,W)}{SD(X)SD(W)}\right)^2 \\ &= & \left(\frac{\sigma_x^2}{\sqrt{\sigma_x^2}\sqrt{\sigma_x^2 + \sigma_e^2}}\right)^2 \end{split}$$

$$\rho^{2} = \left(\frac{Cov(X,W)}{SD(X)SD(W)}\right)^{2}$$
$$= \left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}}\sqrt{\sigma_{x}^{2} + \sigma_{e}^{2}}}\right)^{2}$$
$$= \frac{\sigma_{x}^{4}}{\sigma_{x}^{2}(\sigma_{x}^{2} + \sigma_{e}^{2})}$$
$$= \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{e}^{2}}$$

$$\rho^{2} = \left(\frac{Cov(X,W)}{SD(X)SD(W)}\right)^{2}$$
$$= \left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}}\sqrt{\sigma_{x}^{2} + \sigma_{e}^{2}}}\right)^{2}$$
$$= \frac{\sigma_{x}^{4}}{\sigma_{x}^{2}(\sigma_{x}^{2} + \sigma_{e}^{2})}$$
$$= \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{e}^{2}}$$
$$= \frac{Var(X)}{Var(W)}.$$

Squared correlation between observed and true score

f

$$p^{2} = \left(\frac{Cov(X,W)}{SD(X)SD(W)}\right)^{2}$$
$$= \left(\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2}}\sqrt{\sigma_{x}^{2} + \sigma_{e}^{2}}}\right)^{2}$$
$$= \frac{\sigma_{x}^{4}}{\sigma_{x}^{2}(\sigma_{x}^{2} + \sigma_{e}^{2})}$$
$$= \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{e}^{2}}$$
$$= \frac{Var(X)}{Var(W)}.$$

Reliability is the proportion of the variance in the observed variable that comes from the latent variable of interest, and not from random error.

# How to estimate reliability from data

### How to estimate reliability from data

- Correlate usual measurement with "Gold Standard?"
- Not very realistic, except maybe for some bio-markers.

### How to estimate reliability from data

- Correlate usual measurement with "Gold Standard?"
- Not very realistic, except maybe for some bio-markers.
- One answer: Measure twice.

#### Measure twice

Called "equivalent measurements" because error variance is the same



#### Measure twice

Called "equivalent measurements" because error variance is the same



$$W_1 = X + e_1$$
$$W_2 = X + e_2,$$

where  $E(X) = \mu_x$ ,  $Var(X) = \sigma_x^2$ ,  $E(e_1) = E(e_2) = 0$ ,  $Var(e_1) = Var(e_2) = \sigma_e^2$ , and X,  $e_1$  and  $e_2$  are all independent.

# Reliability equals the correlation between two equivalent measurements This is a population correlation

$$Corr(W_1, W_2) = \frac{Cov(W_1, W_2)}{SD(W_1)SD(W_2)}$$

# Reliability equals the correlation between two equivalent measurements This is a population correlation

$$Corr(W_1, W_2) = \frac{Cov(W_1, W_2)}{SD(W_1)SD(W_2)}$$
$$= \frac{Cov(X + e_1, X + e_2)}{\sqrt{\sigma_x^2 + \sigma_e^2}\sqrt{\sigma_x^2 + \sigma_e^2}}$$

# Reliability equals the correlation between two equivalent measurements

This is a population correlation

$$Corr(W_1, W_2) = \frac{Cov(W_1, W_2)}{SD(W_1)SD(W_2)}$$
$$= \frac{Cov(X + e_1, X + e_2)}{\sqrt{\sigma_x^2 + \sigma_e^2}\sqrt{\sigma_x^2 + \sigma_e^2}}$$
$$= \frac{Cov(X, X) + Cov(X, e_2) + Cov(e_1, X) + Cov(e_1, e_2)}{\sigma_x^2 + \sigma_e^2}$$

# Reliability equals the correlation between two equivalent measurements This is a population correlation

$$Corr(W_{1}, W_{2}) = \frac{Cov(W_{1}, W_{2})}{SD(W_{1})SD(W_{2})}$$
  
=  $\frac{Cov(X + e_{1}, X + e_{2})}{\sqrt{\sigma_{x}^{2} + \sigma_{e}^{2}}\sqrt{\sigma_{x}^{2} + \sigma_{e}^{2}}}$   
=  $\frac{Cov(X, X) + Cov(X, e_{2}) + Cov(e_{1}, X) + Cov(e_{1}, e_{2})}{\sigma_{x}^{2} + \sigma_{e}^{2}}$   
=  $\frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{e}^{2}},$ 

which is the reliability.

Calculate 
$$r = \frac{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1) (W_{i2} - \overline{W}_2)}{\sqrt{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1)^2} \sqrt{\sum_{i=1}^{n} (W_{i2} - \overline{W}_2)^2}}.$$

Calculate 
$$r = \frac{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1) (W_{i2} - \overline{W}_2)}{\sqrt{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1)^2} \sqrt{\sum_{i=1}^{n} (W_{i2} - \overline{W}_2)^2}}.$$

Test-retest reliability

Calculate 
$$r = \frac{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1) (W_{i2} - \overline{W}_2)}{\sqrt{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1)^2} \sqrt{\sum_{i=1}^{n} (W_{i2} - \overline{W}_2)^2}}.$$

- Test-retest reliability
- Alternate forms reliability

Calculate 
$$r = \frac{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1) (W_{i2} - \overline{W}_2)}{\sqrt{\sum_{i=1}^{n} (W_{i1} - \overline{W}_1)^2} \sqrt{\sum_{i=1}^{n} (W_{i2} - \overline{W}_2)^2}}.$$

- Test-retest reliability
- Alternate forms reliability
- Split-half reliability

# Measurement error in the response variable only



# Measurement error in the response variable only



True model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$V_i = \nu + Y_i + e_i$$

#### Measurement error in the response variable only



True model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$V_i = \nu + Y_i + e_i$$

Naive model:  $V_i = \beta_0 + \beta_1 X_i + \epsilon_i$ 



# Is $\widehat{\beta}_1$ consistent? Ignoring measurement error in Y

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$V_i = \nu + Y_i + e_i,$$

# Is $\widehat{\beta}_1$ consistent? Ignoring measurement error in Y

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$V_i = \nu + Y_i + e_i,$$

$$Cov(X_i, V_i) = Cov(X_i, \beta_1 X_i + \epsilon_i)$$

# Is $\widehat{\beta}_1$ consistent? Ignoring measurement error in Y

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$V_i = \nu + Y_i + e_i,$$

$$Cov(X_i, V_i) = Cov(X_i, \beta_1 X_i + \epsilon_i)$$
  
=  $\beta_1 \sigma_x^2$ 

Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$  Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$ 

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(V_i - \overline{V})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$ 

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(V_{i} - \overline{V})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
$$= \frac{\widehat{\sigma}_{x,v}}{\widehat{\sigma}_{x}^{2}}$$
Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$ 

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(V_{i} - \overline{V})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
$$= \frac{\widehat{\sigma}_{x,v}}{\widehat{\sigma}_{x}^{2}}$$
$$\xrightarrow{a.s.} \frac{Cov(X_{i}, V_{i})}{Var(X_{i})}$$

Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$ 

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(V_{i} - \overline{V})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\widehat{\sigma}_{x,v}}{\widehat{\sigma}_{x}^{2}}$$

$$\xrightarrow{a.s.} \frac{Cov(X_{i}, V_{i})}{Var(X_{i})}$$

$$= \frac{\beta_{1}\sigma_{x}^{2}}{\sigma_{x}^{2}}$$

Target of  $\widehat{\beta}_1$  as  $n \to \infty$ Have  $Cov(X_i, V_i) = \beta_1 \sigma_x^2$  and  $Var(X_i) = \sigma_x^2$ 

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(V_{i} - \overline{V})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\widehat{\sigma}_{x,v}}{\widehat{\sigma}_{x}^{2}}$$

$$\stackrel{a.s.}{\rightarrow} \frac{Cov(X_{i}, V_{i})}{Var(X_{i})}$$

$$= \frac{\beta_{1}\sigma_{x}^{2}}{\sigma_{x}^{2}}$$

$$= \beta_{1}$$

Consistent.

$$\begin{array}{rcl} Y_i &=& \beta_0 + \beta_1 X_i + \epsilon_i \\ V_i &=& \nu + Y_i + e \end{array}$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$

I

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$
  

$$= \beta'_0 + \beta_1 X_i + \epsilon'_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$
  

$$= \beta'_0 + \beta_1 X_i + \epsilon'_i$$

- This is a re-parameterization.
- Most definitely *not* one-to-one.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$
  

$$= \beta'_0 + \beta_1 X_i + \epsilon'_i$$

- This is a re-parameterization.
- Most definitely *not* one-to-one.
- $(\nu, \beta_0)$  is absorbed into  $\beta'_0$ .

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$
  

$$= \beta'_0 + \beta_1 X_i + \epsilon'_i$$

- This is a re-parameterization.
- Most definitely *not* one-to-one.
- $(\nu, \beta_0)$  is absorbed into  $\beta'_0$ .
- $(\epsilon_i, e_i)$  is absorbed into  $\epsilon'_i$ .

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  

$$V_i = \nu + Y_i + e$$
  

$$= \nu + (\beta_0 + \beta_1 X_i + \epsilon_i) + e_i$$
  

$$= (\nu + \beta_0) + \beta_1 X_i + (\epsilon_i + e_i)$$
  

$$= \beta'_0 + \beta_1 X_i + \epsilon'_i$$

- This is a re-parameterization.
- Most definitely *not* one-to-one.
- $(\nu, \beta_0)$  is absorbed into  $\beta'_0$ .
- $(\epsilon_i, e_i)$  is absorbed into  $\epsilon'_i$ .
- Can't know everything, but all we care about is  $\beta_1$  anyway.

### Don't Worry

 If a response variable appears to have no measurement error, assume it does have measurement error but the problem has been re-parameterized.

### Don't Worry

- If a response variable appears to have no measurement error, assume it does have measurement error but the problem has been re-parameterized.
- Measurement error in Y is part of  $\epsilon$ .

#### Measurement error in a single explanatory variable



#### Measurement error in a single explanatory variable



True model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
  
$$W_i = X_i + e_i,$$

Naive model:  $Y_i = \beta_0 + \beta_1 W_i + \epsilon_i$ 

Have 
$$Cov(W_i, Y_i) = \beta_1 \sigma_x^2$$
 and  $Var(W_i) = \sigma_x^2 + \sigma_e^2$ 

Have 
$$Cov(W_i, Y_i) = \beta_1 \sigma_x^2$$
 and  $Var(W_i) = \sigma_x^2 + \sigma_e^2$   
 $\widehat{\beta}_1 = \frac{\sum_{i=1}^n (W_i - \overline{W})(Y_i - \overline{Y})}{\sum_{i=1}^n (W_i - \overline{W})^2}$ 

Have 
$$Cov(W_i, Y_i) = \beta_1 \sigma_x^2$$
 and  $Var(W_i) = \sigma_x^2 + \sigma_e^2$   
 $\widehat{\beta}_1 = \frac{\sum_{i=1}^n (W_i - \overline{W})(Y_i - \overline{Y})}{\sum_{i=1}^n (W_i - \overline{W})^2}$   
 $= \frac{\widehat{\sigma}_{w,y}}{\widehat{\sigma}_w^2}$ 

Have 
$$Cov(W_i, Y_i) = \beta_1 \sigma_x^2$$
 and  $Var(W_i) = \sigma_x^2 + \sigma_e^2$   
 $\widehat{\beta}_1 = \frac{\sum_{i=1}^n (W_i - \overline{W})(Y_i - \overline{Y})}{\sum_{i=1}^n (W_i - \overline{W})^2}$   
 $= \frac{\widehat{\sigma}_{w,y}}{\widehat{\sigma}_w^2}$   
 $\stackrel{a.s.}{\to} \frac{Cov(W, Y)}{Var(W)} = \frac{\beta_1 \sigma_x^2}{\sigma_x^2 + \sigma_e^2}$ 

Have 
$$Cov(W_i, Y_i) = \beta_1 \sigma_x^2$$
 and  $Var(W_i) = \sigma_x^2 + \sigma_e^2$   
 $\widehat{\beta}_1 = \frac{\sum_{i=1}^n (W_i - \overline{W})(Y_i - \overline{Y})}{\sum_{i=1}^n (W_i - \overline{W})^2}$   
 $= \frac{\widehat{\sigma}_{w,y}}{\widehat{\sigma}_w^2}$   
 $\stackrel{a.s.}{\rightarrow} \frac{Cov(W, Y)}{Var(W)} = \frac{\beta_1 \sigma_x^2}{\sigma_x^2 + \sigma_e^2}$   
 $= \beta_1 \left(\frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2}\right)$ 

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

•  $\hat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

•  $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .

■ It's inconsistent.

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of  $X_i$ , the more the asymptotic bias.

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of  $X_i$ , the more the asymptotic bias.
- Sometimes called "attenuation" (weakening).

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of  $X_i$ , the more the asymptotic bias.
- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of  $X_i$ , the more the asymptotic bias.
- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."
- When  $H_0: \beta_1 = 0$  is true, no problem.

$$\widehat{\beta}_1 \xrightarrow{a.s.} \beta_1 \left( \frac{\sigma_x^2}{\sigma_x^2 + \sigma_e^2} \right)$$

- $\widehat{\beta}_1$  converges to  $\beta$  times the reliability of  $W_i$ .
- It's inconsistent.
- Because the reliability is less than one, it's asymptotically biased toward zero.
- The worse the measurement of  $X_i$ , the more the asymptotic bias.
- Sometimes called "attenuation" (weakening).
- If a good estimate of reliability is available from another source, one can "correct for attenuation."
- When  $H_0: \beta_1 = 0$  is true, no problem.
- False sense of security?

#### Measurement error in two explanatory variables



Want to assess the relationship of  $X_2$  to Y controlling for  $X_1$  by testing  $H_0: \beta_2 = 0$ .

## Statement of the model

Independently for  $i = 1, \ldots, n$ 

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \epsilon_{i}$$
  

$$W_{i,1} = X_{i,1} + e_{i,1}$$
  

$$W_{i,2} = X_{i,2} + e_{i,2},$$

where

$$E(X_{i,1}) = \mu_1, E(X_{i,2}) = \mu_2, E(\epsilon_i) = E(e_{i,1}) = E(e_{i,2}) = 0,$$
  

$$Var(\epsilon_i) = \psi, Var(e_{i,1}) = \omega_1, Var(e_{i,2}) = \omega_2,$$
  
The errors  $\epsilon_i, e_{i,1}$  and  $e_{i,2}$  are all independent,  

$$X_{i,1} \text{ and } X_{i,2} \text{ are independent of } \epsilon_i, e_{i,1} \text{ and } e_{i,2}, \text{ and}$$
  

$$cov \begin{pmatrix} X_{i,1} \\ X_{i,1} \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{pmatrix}.$$

Note

Reliability of W<sub>1</sub> is \$\frac{\phi\_{11}}{\phi\_{11}+\pi\_1}\$.
Reliability of W<sub>2</sub> is \$\frac{\phi\_{22}}{\phi\_{22}+\pi\_2}\$.

### True Model versus Naive Model

True model:

#### True Model versus Naive Model

True model:

Naive model:  $Y_i = \beta_0 + \beta_1 W_{i,1} + \beta_2 W_{i,2} + \epsilon_i$ 

#### True Model versus Naive Model

True model:

Naive model:  $Y_i = \beta_0 + \beta_1 W_{i,1} + \beta_2 W_{i,2} + \epsilon_i$ 

- Fit the naive model.
- See what happens to  $\hat{\beta}_2$  as  $n \to \infty$  when the true model holds.
## True Model versus Naive Model

True model:

Naive model:  $Y_i = \beta_0 + \beta_1 W_{i,1} + \beta_2 W_{i,2} + \epsilon_i$ 

- Fit the naive model.
- See what happens to  $\hat{\beta}_2$  as  $n \to \infty$  when the true model holds.
- Start by calculating  $cov(\mathbf{d}_i)$ .

## Covariance matrix of the observable data

$$\Sigma = cov \begin{pmatrix} W_{i,1} \\ W_{i,2} \\ Y_i \end{pmatrix}$$

## Covariance matrix of the observable data

$$\begin{split} \boldsymbol{\Sigma} &= cov \begin{pmatrix} W_{i,1} \\ W_{i,2} \\ Y_i \end{pmatrix} \\ &= \begin{pmatrix} \omega_1 + \phi_{11} & \phi_{12} & \beta_1 \phi_{11} + \beta_2 \phi_{12} \\ \phi_{12} & \omega_2 + \phi_{22} & \beta_1 \phi_{12} + \beta_2 \phi_{22} \\ \beta_1 \phi_{11} + \beta_2 \phi_{12} & \beta_1 \phi_{12} + \beta_2 \phi_{22} & \beta_1^2 \phi_{11} + 2\beta_1 \beta_2 \phi_{12} + \beta_2^2 \phi_{22} + \psi \end{pmatrix} \end{split}$$

$$\widehat{\beta}_2 = \frac{\widehat{\sigma}_{11}\widehat{\sigma}_{23} - \widehat{\sigma}_{12}\widehat{\sigma}_{13}}{\widehat{\sigma}_{11}\widehat{\sigma}_{22} - \widehat{\sigma}_{12}^2}$$

$$\widehat{\beta}_2 = \frac{\widehat{\sigma}_{11}\widehat{\sigma}_{23} - \widehat{\sigma}_{12}\widehat{\sigma}_{13}}{\widehat{\sigma}_{11}\widehat{\sigma}_{22} - \widehat{\sigma}_{12}^2} \xrightarrow{a.s.} \frac{\sigma_{11}\sigma_{23} - \sigma_{12}\sigma_{13}}{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

$$\begin{aligned} \widehat{\beta}_{2} &= \frac{\widehat{\sigma}_{11}\widehat{\sigma}_{23} - \widehat{\sigma}_{12}\widehat{\sigma}_{13}}{\widehat{\sigma}_{11}\widehat{\sigma}_{22} - \widehat{\sigma}_{12}^{2}} \\ \xrightarrow{a.s.} & \frac{\sigma_{11}\sigma_{23} - \sigma_{12}\sigma_{13}}{\sigma_{11}\sigma_{22} - \sigma_{12}^{2}} \\ &= \frac{\beta_{1}\omega_{1}\phi_{12} + \beta_{2}(\omega_{1}\phi_{22} + \phi_{11}\phi_{22} - \phi_{12}^{2})}{(\phi_{1,1} + \omega_{1})(\phi_{2,2} + \omega_{2}) - \phi_{12}^{2}} \end{aligned}$$

$$\begin{aligned} \widehat{\beta}_{2} &= \frac{\widehat{\sigma}_{11}\widehat{\sigma}_{23} - \widehat{\sigma}_{12}\widehat{\sigma}_{13}}{\widehat{\sigma}_{11}\widehat{\sigma}_{22} - \widehat{\sigma}_{12}^{2}} \\ \stackrel{a.s.}{\to} \frac{\sigma_{11}\sigma_{23} - \sigma_{12}\sigma_{13}}{\sigma_{11}\sigma_{22} - \sigma_{12}^{2}} \\ &= \frac{\beta_{1}\omega_{1}\phi_{12} + \beta_{2}(\omega_{1}\phi_{22} + \phi_{11}\phi_{22} - \phi_{12}^{2})}{(\phi_{1,1} + \omega_{1})(\phi_{2,2} + \omega_{2}) - \phi_{12}^{2}} \\ &\neq \beta_{2} \end{aligned}$$

Inconsistent.

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

• There is no relationship between  $X_1$  and Y, or

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

- There is no relationship between  $X_1$  and Y, or
- There is no measurement error in  $W_1$ , or

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

- There is no relationship between  $X_1$  and Y, or
- There is no measurement error in  $W_1$ , or
- There is no correlation between  $X_1$  and  $X_2$ .

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

- There is no relationship between  $X_1$  and Y, or
- There is no measurement error in  $W_1$ , or
- There is no correlation between  $X_1$  and  $X_2$ .

Also, t statistic goes to plus or minus  $\infty$  and the p-value  $\stackrel{a.s.}{\rightarrow} 0$ .

$$\widehat{\beta}_2 \xrightarrow{a.s.} \frac{\beta_1 \omega_1 \phi_{12}}{(\phi_{1,1} + \omega_1)(\phi_{2,2} + \omega_2) - \phi_{12}^2}$$

So  $\widehat{\beta}_2$  goes to the wrong target unless

- There is no relationship between  $X_1$  and Y, or
- There is no measurement error in  $W_1$ , or
- There is no correlation between  $X_1$  and  $X_2$ .

Also, t statistic goes to plus or minus  $\infty$  and the p-value  $\xrightarrow{a.s.} 0$ . Remember,  $H_0$  is true.

## Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/2053f22