
Definitions and Basic Results Multivariate Normal Delta Method

Random Vectors1

STA2053 Fall 2022

1See last slide for copyright information.
1 / 35



Definitions and Basic Results Multivariate Normal Delta Method

Overview

1 Definitions and Basic Results

2 Multivariate Normal

3 Delta Method

2 / 35



Definitions and Basic Results Multivariate Normal Delta Method

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p× 1)
may be called random vectors.
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Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p× c random matrix X by [Xi,j ],

E(X) = [E(Xi,j)].
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Immediately we have natural properties like

E(X + Y) = E([Xi,j ] + [Yi,j ])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).
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Moving a constant through the expected value sign

Let A = [ai,j ] be an r × p matrix of constants, while X is still a
p× c random matrix. Then

E(AX) = E

([
p∑

k=1

ai,kXk,j

])

=

[
E

(
p∑

k=1

ai,kXk,j

)]

=

[
p∑

k=1

ai,kE(Xk,j)

]
= AE(X).

Similar calculations yield E(AXB) = AE(X)B.
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Variance-Covariance Matrices

Let x be a p× 1 random vector with E(x) = µ. The
variance-covariance matrix of x (sometimes just called the
covariance matrix), denoted by cov(x), is defined as

cov(x) = E
{

(x− µ)(x− µ)>
}
.
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cov(x) = E
{

(x− µ)(x− µ)>
}

cov(x) = E


 X1 − µ1

X2 − µ2

X3 − µ3

( X1 − µ1 X2 − µ2 X3 − µ3
)

= E


 (X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2


=

 E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}



=

 V ar(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) V ar(X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) V ar(X3)

 .

So, the covariance matrix cov(x) is a p× p symmetric matrix with variances on

the main diagonal and covariances on the off-diagonals.
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Matrix of covariances between two random vectors

Let x be a p× 1 random vector with E(x) = µx and let y be a
q × 1 random vector with E(y) = µy. The p× q matrix of
covariances between the elements of x and the elements of y is

cov(x,y) = E
{

(x− µx)(y − µy)
>
}
.
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Adding a constant has no effect
On variances and covariances

cov(x + a) = cov(x)

cov(x + a,y + b) = cov(x,y)

These results are clear from the definitions:

cov(x) = E
{

(x− µ)(x− µ)>
}

cov(x,y) = E
{

(x− µx)(y − µy)
>}
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Analogous to V ar(aX) = a2 V ar(X)

Let x be a p× 1 random vector with E(x) = µ and cov(x) = Σ,
while A = [ai,j ] is an r × p matrix of constants. Then

cov(Ax) = E
{

(Ax−Aµ)(Ax−Aµ)>
}

= E
{

A(X− µ) (A(X− µ))>
}

= E
{

A(X− µ)(x− µ)>A>
}

= AE
{

(x− µ)(x− µ)>
}

A>

= Acov(x)A>

= AΣA>

11 / 35



Definitions and Basic Results Multivariate Normal Delta Method

The Multivariate Normal Distribution

The p× 1 random vector x is said to have a multivariate normal
distribution, and we write x ∼ Np(µ,Σ), if x has (joint) density

f(x) =
1

|Σ|
1
2 (2π)

p
2

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where µ is p× 1 and Σ is p× p symmetric and positive definite.
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Σ positive definite
In the multivariate normal definition

Positive definite means that for any non-zero p× 1 vector
a, we have a>Σa > 0.

Since the one-dimensional random variable Y =
∑p

i=1 aiXi

may be written as Y = a>x and
V ar(Y ) = cov(a>x) = a>Σa, it is natural to require that
Σ be positive definite.

All it means is that every non-zero linear combination of x
values has a positive variance.

And recall Σ positive definite is equivalent to Σ−1 positive
definite.
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Analogies
(Multivariate normal reduces to the univariate normal when p = 1)

Univariate Normal

f(x) = 1
σ
√
2π

exp
{
− 1

2
(x−µ)2
σ2

}
E(X) = µ, V ar(X) = σ2

(X−µ)2
σ2 ∼ χ2(1)

Multivariate Normal

f(x) = 1

|Σ|
1
2 (2π)

p
2

exp
{
− 1

2 (x− µ)>Σ−1(x− µ)
}

E(x) = µ, cov(x) = Σ
(x− µ)>Σ−1(x− µ) ∼ χ2(p)
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More properties of the multivariate normal

If c is a vector of constants, x + c ∼ N(c + µ,Σ)

If A is a matrix of constants, Ax ∼ N(Aµ,AΣA>)

Linear combinations of multivariate normals are
multivariate normal.

All the marginals (dimension less than p) of x are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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An easy example
If you do it the easy way

Let x = (X1, X2, X3)> be multivariate normal with

µ =

 1
0
6

 and Σ =

 2 1 0
1 4 0
0 0 2

 .

Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint
distribution of Y1 and Y2.
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In matrix terms

Y1 = X1 +X2 and Y2 = X2 +X3 means y = Ax

(
Y1

Y2

)
=

(
1 1 0
0 1 1

) X1

X2

X3



y = Ax ∼ N(Aµ,AΣA>)
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You could do it by hand, but

> mu = cbind(c(1,0,6))

> Sigma = rbind( c(2,1,0),

+ c(1,4,0),

+ c(0,0,2) )

> A = rbind( c(1,1,0),

+ c(0,1,1) ); A

> A %*% mu # E(Y)

[,1]

[1,] 1

[2,] 6

> A %*% Sigma %*% t(A) # cov(Y)

[,1] [,2]

[1,] 8 5

[2,] 5 6
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Regression

y = Xβ + ε, with ε ∼ Nn(0, σ2In).

So y ∼ Nn(Xβ, σ2In).

β̂ = (X>X)−1X>y = Ay.

So β̂ is multivariate normal.

Just calculate the mean and covariance matrix.

E(β̂) = E
(

(X>X)−1X>y
)

= (X>X)−1X>E(y)

= (X>X)−1X>Xβ

= β

19 / 35



Definitions and Basic Results Multivariate Normal Delta Method

Covariance matrix of β̂
Using cov(Aw) = Acov(w)A>

cov(β̂) = cov
(

(X>X)−1X>y
)

= (X>X)−1X>cov(y)
(

(X>X)−1X>
)>

= (X>X)−1X>σ2InX(X>X)−1>

= σ2(X>X)−1X>X(X>X)−1

= σ2(X>X)−1

So β̂ ∼ Np

(
β, σ2(X>X)−1

)
.
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Example: showing (x− µ)>Σ−1(x− µ) ∼ χ2(p)
Where x ∼ N(µ,Σ)

y = x− µ ∼ N (0, Σ)

z = Σ−
1
2 y ∼ N

(
0,Σ−

1
2 ΣΣ−

1
2

)
= N

(
0,Σ−

1
2 Σ

1
2 Σ

1
2 Σ−

1
2

)
= N (0, I)

So z is a vector of p independent standard normals, and

(x− µ)>Σ−1(x− µ) = y>Σ−1y

=
(
Σ−

1
2 y
)>

Σ−
1
2 y

= z>z

=

p∑
j=1

Z2
j ∼ χ2(p) �
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Multivariate normal likelihood
For reference

L(µ,Σ) =
n∏

i=1

1

|Σ| 12 (2π)
p
2

exp

{
−1

2
(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)> is the sample

variance-covariance matrix.
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The Multivarite Delta Method
An application

The univariate delta method says that if
√
n (Tn − θ)

d→ T , then
√
n (g(Tn)− g(θ))

d→ g′(θ)T . For example, CLT yields
√
n
(
Xn − µ

) d→ X ∼ N(0, σ2), so
√
n
(
g(Xn)− g(µ)

) d→ g′(µ)X ∼ N(0, g′(µ)2 σ2).

In the multivariate delta method, tn and t are d-dimensional random
vectors.

The function g : Rd → Rk is a vector of functions:

g(x1, . . . , xd) =

 g1(x1, . . . , xd)
...

gk(x1, . . . , xd)


g′(θ) is replaced by a matrix of partial derivatives (a Jacobian):

ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

like

(
∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

)
.
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The Delta Method
Univariate and multivariate

The univariate delta method says that if
√
n (Tn − θ)

d→ T , then
√
n (g(Tn)− g(θ))

d→ g′(θ)T .

The multivariate delta method says that if
√
n(tn − θ)

d→ t,

then
√
n(g(tn)− g(θ))

d→ ġ(θ)t,

where ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

In particular, if t ∼ N(0,Σ), then

√
n(g(tn)− g(θ))

d→ y ∼ N(0, ġ(θ) Σ ġ(θ)>).
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Testing a non-linear hypothesis

Consider the regression model yi = β0 + β1xi,1 + β2xi,2 + εi.

There is a standard F -test for H0 : Lβ = h.

So testing whether β1 = 0 and β2 = 0 is easy.

But what about testing whether β1 = 0 or β2 = 0 (or
both)?

If H0 : β1β2 = 0 is rejected, it means that both regression
coefficients are non-zero.

Can’t test non-linear null hypotheses like this with
standard tools.

But if the sample size is large we can use the delta method.
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The asymptotic distribution of β̂1β̂2

The multivariate delta method says that if
√
n(tn − θ)

d→ t, then
√
n(g(tn)− g(θ))

d→ ġ(θ)t,

Know β̂ = (X>X)−1X>y ∼ Np
(
β, σ2(X>X)−1

)
.

So
√
n(β̂n − β)

d→ t ∼ N(0,Σ), where Σ = limn→∞ σ2
(
1
nX>X

)−1
.

Let g(β) = β1β2. Have

=
√
n(g(β̂n)− g(β))

=
√
n(β̂1β̂2 − β1β2)

d→ ġ(β)t

= T ∼ N(0, ġ(β)Σġ(β)>)

We will say β̂1β̂2 is asymptotically N
(
β1β2,

1
n ġ(β) Σ ġ(β)>

)
.

Need ġ(β).
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ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

g(β0, β1, β2) = β1β2 so d = 3 and k = 1.

ġ(β0, β1, β2) = (
∂g

∂β0
,
∂g

∂β1
,
∂g

∂β2
)

= (0, β2, β1)

So β̂1β̂2
·∼ N

β1β2,
1
n(0, β2, β1)Σ

 0
β2

β1

.
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Need the standard error

We have β̂1β̂2
·∼ N

β1β2,
1
n(0, β2, β1)Σ

 0
β2

β1

.

Denote the asymptotic variance by

1
n(0, β2, β1)Σ

 0
β2

β1

 = v.

If we knew v we could compute Z = β̂1β̂2−β1β2√
v

And use it in tests and confidence intervals.

Need to estimate v consistently.
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Standard error
Estimated standard deviation of β̂1β̂2

v =
1

n
(0, β2, β1)Σ

 0
β2

β1


where Σ = limn→∞ σ

2
(

1
nX>X

)−1
.

Estimate β1 and β2 with β̂1 and β̂2

Estimate σ2 with MSE = e>e/(n− p).
Approximate 1

nΣ with

1

n
MSE

(
1

n
X>X

)−1

= MSE

(
n

1

n
X>X

)−1

= MSE
(
X>X

)−1
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v̂ approximates v

v =
1

n
(0, β2, β1)Σ

 0

β2

β1



v̂ = MSE (0, β̂2, β̂1)
(
X>X

)−1

 0

β̂2

β̂1


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Test statistic for H0 : β1β2 = 0

Z =
β̂1β̂2 − 0√

v̂
where

v̂ = (0, β̂2, β̂1)MSE
(
X>X

)−1

 0

β̂2

β̂1



Note MSE
(
X>X

)−1
is produced by R’s vcov function.
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Simulated Data

rm(list=ls()); options(scipen=999)

source(’https://www.utstat.toronto.edu/brunner/Rfunctions/rmvn.txt’)

set.seed(9999)

n = 200; sigma=1; beta0=4; beta1=0.2; beta2 = 0.1; phi12 = 0.5

Phi = rbind(c(1,phi12),

c(phi12,1))

# Simulate

epsilon = rnorm(n)

X = rmvn(n,c(1,2),Phi)

x1 = X[,1]; x2 = X[,2]

y = beta0 + beta1*x1 + beta2*x2 + epsilon
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Fit the Model

> mod = lm(y ~ x1 + x2); summary(mod)

Call:

lm(formula = y ~ x1 + x2)

Residuals:

Min 1Q Median 3Q Max

-2.4491 -0.5762 -0.1361 0.6414 2.8680

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.04777 0.15188 26.651 <0.0000000000000002 ***

x1 0.20145 0.08527 2.362 0.0191 *

x2 0.09102 0.08482 1.073 0.2846

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.9879 on 197 degrees of freedom

Multiple R-squared: 0.06584,Adjusted R-squared: 0.05636

F-statistic: 6.942 on 2 and 197 DF, p-value: 0.00122
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Z = β̂1β̂2−0√
v̂

v̂ = (0, β̂2, β̂1)MSE
(
X>X

)−1

 0

β̂2

β̂1


betahat = coefficients(mod); betahat

(Intercept) x1 x2

4.04776866 0.20145026 0.09101697

> gdot = rbind(c(0,betahat[3],betahat[2])); gdot

x2 x1

[1,] 0 0.09101697 0.2014503

> Red = vcov(mod); Red

(Intercept) x1 x2

(Intercept) 0.023068331 0.001025739 -0.010024480

x1 0.001025739 0.007271354 -0.004035879

x2 -0.010024480 -0.004035879 0.007194646

> vhat = as.numeric( gdot %*% Red %*% t(gdot) )

> z = betahat[2]*betahat[3]/sqrt(vhat); z

x1

1.283067
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/2053f22
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