Random Vectors ${ }^{1}$ STA2053 Fall 2022

${ }^{1}$ See last slide for copyright information.

Overview

(1) Definitions and Basic Results
(2) Multivariate Normal
(3) Delta Method

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called random vectors.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix \mathbf{X} by $\left[X_{i, j}\right]$,

$$
E(\mathbf{X})=\left[E\left(X_{i, j}\right)\right]
$$

Immediately we have natural properties like

$$
\begin{aligned}
E(\mathbf{X}+\mathbf{Y}) & =E\left(\left[X_{i, j}\right]+\left[Y_{i, j}\right]\right) \\
& =\left[E\left(X_{i, j}+Y_{i, j}\right]\right. \\
& =\left[E\left(X_{i, j}\right)+E\left(Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)\right]+\left[E\left(Y_{i, j}\right)\right] \\
& =E(\mathbf{X})+E(\mathbf{Y}) .
\end{aligned}
$$

Moving a constant through the expected value sign

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$
\begin{aligned}
E(\mathbf{A X}) & =E\left(\left[\sum_{k=1}^{p} a_{i, k} X_{k, j}\right]\right) \\
& =\left[E\left(\sum_{k=1}^{p} a_{i, k} X_{k, j}\right)\right] \\
& =\left[\sum_{k=1}^{p} a_{i, k} E\left(X_{k, j}\right)\right] \\
& =\mathbf{A} E(\mathbf{X}) .
\end{aligned}
$$

Similar calculations yield $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$.

Variance-Covariance Matrices

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\boldsymbol{\mu}$. The variance-covariance matrix of \mathbf{x} (sometimes just called the covariance matrix), denoted by $\operatorname{cov}(\mathbf{x})$, is defined as

$$
\operatorname{cov}(\mathbf{x})=E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right\}
$$

$\operatorname{cov}(\mathrm{x})=E\left\{(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\top}\right\}$

$$
\begin{aligned}
\operatorname{cov}(\mathbf{x})= & E\left\{(\begin{array} { c }
{ X _ { 1 } - \mu _ { 1 } } \\
{ X _ { 2 } - \mu _ { 2 } } \\
{ X _ { 3 } - \mu _ { 3 } }
\end{array}) \left(\begin{array}{ccc}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \left.\left.X_{3}-\mu_{3}\right)\right\}
\end{array}\right.\right. \\
= & E\left\{\begin{array}{lll}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \left(X_{2}-\mu_{2}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{3}-\mu_{3}\right)^{2}
\end{array}\right) \\
= & \left(\begin{array}{lll}
E\left\{\left(X_{1}-\mu_{1}\right)^{2}\right\} & E\left\{\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{(X _ { 1 } - \mu _ { 1 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{2}-\mu_{2}\right)^{2}\right\} & E\left\{(X _ { 2 } - \mu _ { 2 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)^{2}\right\}
\end{array}\right. \\
= & \left(\begin{array}{lll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right) .
\end{aligned}
$$

So, the covariance matrix $\operatorname{cov}(\mathbf{x})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Matrix of covariances between two random vectors

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\boldsymbol{\mu}_{x}$ and let \mathbf{y} be a $q \times 1$ random vector with $E(\mathbf{y})=\boldsymbol{\mu}_{y}$. The $p \times q$ matrix of covariances between the elements of \mathbf{x} and the elements of \mathbf{y} is

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y})=E\left\{\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\} .
$$

Adding a constant has no effect

On variances and covariances

- $\operatorname{cov}(\mathbf{x}+\mathbf{a})=\operatorname{cov}(\mathbf{x})$
- $\operatorname{cov}(\mathbf{x}+\mathbf{a}, \mathbf{y}+\mathbf{b})=\operatorname{cov}(\mathbf{x}, \mathbf{y})$

These results are clear from the definitions:

- $\operatorname{cov}(\mathbf{x})=E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right\}$
- $\operatorname{cov}(\mathbf{x}, \mathbf{y})=E\left\{\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}$

Analogous to $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}$, while $\mathbf{A}=\left[a_{i, j}\right]$ is an $r \times p$ matrix of constants. Then

$$
\begin{aligned}
\operatorname{cov}(\mathbf{A x}) & =E\left\{(\mathbf{A} \mathbf{x}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A} \mathbf{x}-\mathbf{A} \boldsymbol{\mu})^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{A}(\mathbf{X}-\boldsymbol{\mu}))^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{A}^{\top}\right\} \\
& =\mathbf{A} E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right\} \mathbf{A}^{\top} \\
& =\mathbf{A} \operatorname{cov}(\mathbf{x}) \mathbf{A}^{\top} \\
& =\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}
\end{aligned}
$$

The Multivariate Normal Distribution

The $p \times 1$ random vector \mathbf{x} is said to have a multivariate normal distribution, and we write $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if \mathbf{x} has (joint) density

$$
f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right),
$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

Σ positive definite

In the multivariate normal definition

- Positive definite means that for any non-zero $p \times 1$ vector a, we have $\mathbf{a}^{\top} \boldsymbol{\Sigma} \mathbf{a}>0$.
- Since the one-dimensional random variable $Y=\sum_{i=1}^{p} a_{i} X_{i}$ may be written as $Y=\mathbf{a}^{\top} \mathbf{x}$ and $\operatorname{Var}(Y)=\operatorname{cov}\left(\mathbf{a}^{\top} \mathbf{x}\right)=\mathbf{a}^{\top} \mathbf{\Sigma} \mathbf{a}$, it is natural to require that $\boldsymbol{\Sigma}$ be positive definite.
- All it means is that every non-zero linear combination of \mathbf{x} values has a positive variance.
- And recall $\boldsymbol{\Sigma}$ positive definite is equivalent to $\boldsymbol{\Sigma}^{-1}$ positive definite.

Analogies

(Multivariate normal reduces to the univariate normal when $p=1$)

- Univariate Normal
- $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}$
- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$
- $\frac{(X-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(1)$
- Multivariate Normal
- $f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$
- $E(\mathbf{x})=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}$
- $(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim \chi^{2}(p)$

More properties of the multivariate normal

- If \mathbf{c} is a vector of constants, $\mathbf{x}+\mathbf{c} \sim N(\mathbf{c}+\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If \mathbf{A} is a matrix of constants, $\mathbf{A x} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than p) of \mathbf{x} are (multivariate) normal, but it is possible in theory to have a collection of univariate normals whose joint distribution is not multivariate normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.

An easy example

If you do it the easy way

Let $\mathbf{x}=\left(X_{1}, X_{2}, X_{3}\right)^{\top}$ be multivariate normal with

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
1 \\
0 \\
6
\end{array}\right) \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}+X_{3}$. Find the joint distribution of Y_{1} and Y_{2}.

In matrix terms

$$
Y_{1}=X_{1}+X_{2} \text { and } Y_{2}=X_{2}+X_{3} \text { means } \mathbf{y}=\mathbf{A x}
$$

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

$\mathbf{y}=\mathbf{A x} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$

You could do it by hand, but

```
> mu = cbind(c(1,0,6))
> Sigma \(=\) rbind ( c(2,1,0),
\(+\quad c(1,4,0)\),
c ( \(0,0,2\) ) )
> A = rbind ( c(1,1,0),
\(+\)
c(0,1,1) ); A
\(>\mathrm{A} \% * \mathrm{mu}\)
                                    \# E(Y)
        [,1]
    [1,] 1
    [2,] 6
    > A \%*\% Sigma \%*\% t(A) \# cov(Y)
        [,1] [,2]
    [1,] \(8 \quad 5\)
    \([2] \quad 5 \quad\),
```


Regression

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \text { with } \boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)
$$

So $\mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$.
$\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\mathbf{A y}$.
So $\widehat{\boldsymbol{\beta}}$ is multivariate normal.
Just calculate the mean and covariance matrix.

$$
\begin{aligned}
E(\widehat{\boldsymbol{\beta}}) & =E\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} E(\mathbf{y}) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

Covariance matrix of $\widehat{\boldsymbol{\beta}}$

Using $\operatorname{cov}(\mathbf{A w})=\mathbf{A} \operatorname{cov}(\mathbf{w}) \mathbf{A}^{\top}$

$$
\begin{aligned}
\operatorname{cov}(\widehat{\boldsymbol{\beta}}) & =\operatorname{cov}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \operatorname{cov}(\mathbf{y})\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right)^{\top} \\
& =\left(\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{-1} \mathbf{X}^{\top} \sigma^{2} \mathbf{I}_{n} \mathbf{X} \mathbf{(X}^{\top} \mathbf{X}\right)^{-1 \top} \\
& \left.=\sigma^{2} \mathbf{(X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

So $\widehat{\boldsymbol{\beta}} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$.

Example: showing $(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim \chi^{2}(p)$ Where $\mathrm{x} \sim N(\mu, \Sigma)$

$$
\begin{aligned}
\mathbf{y}=\mathbf{x}-\boldsymbol{\mu} & \sim N(\mathbf{0}, \boldsymbol{\Sigma}) \\
\mathbf{z}=\boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{y} & \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\
& =N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\
& =N(\mathbf{0}, \mathbf{I})
\end{aligned}
$$

So \mathbf{z} is a vector of p independent standard normals, and

$$
\begin{aligned}
(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) & =\mathbf{y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{y} \\
& =\left(\boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{y}\right)^{\top} \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{y} \\
& =\mathbf{z}^{\top} \mathbf{z} \\
& =\sum_{j=1}^{p} Z_{j}^{2} \sim \chi^{2}(p)
\end{aligned}
$$

Multivariate normal likelihood

For reference

$$
\begin{aligned}
L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\prod_{i=1}^{n} \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right\} \\
& =|\boldsymbol{\Sigma}|^{-n / 2}(2 \pi)^{-n p / 2} \exp -\frac{n}{2}\left\{\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)+(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})\right\}
\end{aligned}
$$

where $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}$ is the sample variance-covariance matrix.

The Multivarite Delta Method

An application

The univariate delta method says that if $\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} T$, then
$\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow{d} g^{\prime}(\theta) T$. For example, CLT yields
$\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} X \sim N\left(0, \sigma^{2}\right)$, so
$\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g(\mu)\right) \xrightarrow{d} g^{\prime}(\mu) X \sim N\left(0, g^{\prime}(\mu)^{2} \sigma^{2}\right)$.
In the multivariate delta method, \mathbf{t}_{n} and \mathbf{t} are d-dimensional random vectors.

The function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is a vector of functions:

$$
g\left(x_{1}, \ldots, x_{d}\right)=\left(\begin{array}{c}
g_{1}\left(x_{1}, \ldots, x_{d}\right) \\
\vdots \\
g_{k}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right)
$$

$g^{\prime}(\theta)$ is replaced by a matrix of partial derivatives (a Jacobian):

$$
\dot{\mathrm{g}}\left(x_{1}, \ldots, x_{d}\right)=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{k \times d} \text { like }\left(\begin{array}{lll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \frac{\partial g_{1}}{\partial x_{3}} \\
\frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \frac{\partial g_{2}}{\partial x_{3}}
\end{array}\right) .
$$

The Delta Method

The univariate delta method says that if $\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} T$, then $\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow{d} g^{\prime}(\theta) T$.

The multivariate delta method says that if $\sqrt{n}\left(\mathbf{t}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{t}$, then $\sqrt{n}\left(g\left(\mathbf{t}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} \dot{\mathrm{~g}}(\boldsymbol{\theta}) \mathbf{t}$,
where $\dot{\mathrm{g}}\left(x_{1}, \ldots, x_{d}\right)=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{k \times d}$
In particular, if $\mathbf{t} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then

$$
\sqrt{n}\left(g\left(\mathbf{t}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} \mathbf{y} \sim N\left(\mathbf{0}, \dot{\mathrm{~g}}(\boldsymbol{\theta}) \boldsymbol{\Sigma} \dot{\mathrm{g}}(\boldsymbol{\theta})^{\top}\right)
$$

Testing a non-linear hypothesis

Consider the regression model $y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\epsilon_{i}$.
There is a standard F-test for $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{h}$.
So testing whether $\beta_{1}=0$ and $\beta_{2}=0$ is easy.
But what about testing whether $\beta_{1}=0$ or $\beta_{2}=0$ (or both)?
If $H_{0}: \beta_{1} \beta_{2}=0$ is rejected, it means that both regression coefficients are non-zero.

Can't test non-linear null hypotheses like this with standard tools.

But if the sample size is large we can use the delta method.

The asymptotic distribution of $\widehat{\beta}_{1} \widehat{\beta}_{2}$

The multivariate delta method says that if $\sqrt{n}\left(\mathbf{t}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{t}$, then $\sqrt{n}\left(g\left(\mathbf{t}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} \dot{\mathrm{~g}}(\boldsymbol{\theta}) \mathbf{t}$,

Know $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$.
So $\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{d} \mathbf{t} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}=\lim _{n \rightarrow \infty} \sigma^{2}\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1}$.
Let $g(\boldsymbol{\beta})=\beta_{1} \beta_{2}$. Have

$$
\begin{aligned}
& =\sqrt{n}\left(g\left(\widehat{\boldsymbol{\beta}}_{n}\right)-g(\boldsymbol{\beta})\right) \\
& =\sqrt{n}\left(\widehat{\beta}_{1} \widehat{\beta}_{2}-\beta_{1} \beta_{2}\right) \\
& \xrightarrow{d} \dot{\mathrm{~g}}(\boldsymbol{\beta}) \mathbf{t} \\
& =T \sim N\left(0, \dot{\mathrm{~g}}(\boldsymbol{\beta}) \boldsymbol{\Sigma} \dot{\mathrm{g}}(\boldsymbol{\beta})^{\top}\right)
\end{aligned}
$$

We will say $\widehat{\beta}_{1} \widehat{\beta}_{2}$ is asymptotically $N\left(\beta_{1} \beta_{2}, \frac{1}{n} \dot{\mathrm{~g}}(\boldsymbol{\beta}) \boldsymbol{\Sigma} \dot{\mathrm{g}}(\boldsymbol{\beta})^{\top}\right)$.
Need $\dot{\mathrm{g}}(\boldsymbol{\beta})$.

$$
\dot{\mathrm{g}}\left(x_{1}, \ldots, x_{d}\right)=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{k \times d}
$$

$g\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=\beta_{1} \beta_{2}$ so $d=3$ and $k=1$.

$$
\begin{aligned}
\dot{\mathrm{g}}\left(\beta_{0}, \beta_{1}, \beta_{2}\right) & =\left(\frac{\partial g}{\partial \beta_{0}}, \frac{\partial g}{\partial \beta_{1}}, \frac{\partial g}{\partial \beta_{2}}\right) \\
& =\left(0, \beta_{2}, \beta_{1}\right)
\end{aligned}
$$

So $\widehat{\beta}_{1} \widehat{\beta}_{2} \dot{\sim} N\left(\beta_{1} \beta_{2}, \frac{1}{n}\left(0, \beta_{2}, \beta_{1}\right) \boldsymbol{\Sigma}\left(\begin{array}{c}0 \\ \beta_{2} \\ \beta_{1}\end{array}\right)\right)$.

Need the standard error

We have $\widehat{\beta}_{1} \widehat{\beta}_{2} \dot{\sim} N\left(\beta_{1} \beta_{2}, \frac{1}{n}\left(0, \beta_{2}, \beta_{1}\right) \boldsymbol{\Sigma}\left(\begin{array}{c}0 \\ \beta_{2} \\ \beta_{1}\end{array}\right)\right)$.

Denote the asymptotic variance by
$\frac{1}{n}\left(0, \beta_{2}, \beta_{1}\right) \boldsymbol{\Sigma}\left(\begin{array}{c}0 \\ \beta_{2} \\ \beta_{1}\end{array}\right)=v$.
If we knew v we could compute $Z=\frac{\widehat{\beta}_{1} \widehat{\beta}_{2}-\beta_{1} \beta_{2}}{\sqrt{v}}$
And use it in tests and confidence intervals.
Need to estimate v consistently.

Standard error

$$
v=\frac{1}{n}\left(0, \beta_{2}, \beta_{1}\right) \boldsymbol{\Sigma}\left(\begin{array}{c}
0 \\
\beta_{2} \\
\beta_{1}
\end{array}\right)
$$

where $\boldsymbol{\Sigma}=\lim _{n \rightarrow \infty} \sigma^{2}\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1}$.
Estimate β_{1} and β_{2} with $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$
Estimate σ^{2} with $M S E=\mathbf{e}^{\top} \mathbf{e} /(n-p)$.
Approximate $\frac{1}{n} \boldsymbol{\Sigma}$ with

$$
\begin{aligned}
\frac{1}{n} \operatorname{MSE}\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1} & =\operatorname{MSE}\left(n \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =M S E\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

\widehat{v} approximates v

$$
\begin{aligned}
& v=\frac{1}{n}\left(0, \beta_{2}, \beta_{1}\right) \boldsymbol{\Sigma}\left(\begin{array}{c}
0 \\
\beta_{2} \\
\beta_{1}
\end{array}\right) \\
& \widehat{v}=\operatorname{MSE}\left(0, \widehat{\beta_{2}}, \widehat{\beta_{1}}\right)\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\begin{array}{c}
0 \\
\widehat{\beta_{2}} \\
\widehat{\beta_{1}}
\end{array}\right)
\end{aligned}
$$

Test statistic for $H_{0}: \beta_{1} \beta_{2}=0$

$$
Z=\frac{\widehat{\beta}_{1} \widehat{\beta}_{2}-0}{\sqrt{\widehat{v}}}
$$

where

$$
\widehat{v}=\left(0, \widehat{\beta_{2}}, \widehat{\beta_{1}}\right) M S E\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\begin{array}{c}
0 \\
\widehat{\beta_{2}} \\
\widehat{\beta_{1}}
\end{array}\right)
$$

Note $\operatorname{MSE}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$ is produced by R's vcov function.

Simulated Data

```
rm(list=ls()); options(scipen=999)
source('https://www.utstat.toronto.edu/brunner/Rfunctions/rmvn.txt')
set.seed(9999)
n = 200; sigma=1; beta0=4; beta1=0.2; beta2 = 0.1; phi12 = 0.5
Phi = rbind(c(1,phi12),
    c(phi12,1))
# Simulate
epsilon = rnorm(n)
X = rmvn(n,c(1,2),Phi)
x1 = X[,1]; x2 = X[,2]
y = beta0 + beta1*x1 + beta2*x2 + epsilon
```


Fit the Model

```
> mod = lm(y ~ x1 + x2); summary(mod)
```

Call:
lm(formula $=\mathrm{y}$ ~ $\mathrm{x} 1+\mathrm{x}$)

Residuals:

Min	1Q	Median	3Q	Max
-2.4491	-0.5762	-0.1361	0.6414	2.8680

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	4.04777	0.15188	$26.651<0.0000000000000002 * * *$	
x1	0.20145	0.08527	2.362	0.0191^{*}
x2	0.09102	0.08482	1.073	0.2846

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$

Residual standard error: 0.9879 on 197 degrees of freedom Multiple R-squared: 0.06584,Adjusted R-squared: 0.05636 F-statistic: 6.942 on 2 and 197 DF, p-value: 0.00122

$$
\begin{aligned}
& Z=\frac{\widehat{\beta}_{1} \widehat{\beta}_{2}-0}{\sqrt{\widehat{v}}} \\
& \widehat{v}=\left(0, \widehat{\beta_{2}}, \widehat{\beta_{1}}\right) \quad\binom{0}{\frac{\widehat{\beta_{2}}}{\widehat{\beta_{1}}}}
\end{aligned}
$$

1.283067

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/2053f22

