Large sample tools¹ STA2053 Fall 2022

¹See last slide for copyright information.

1 Foundations

5 Convergence of random vectors

Sample Space $\Omega, \omega \in \Omega$

- Ω is a set, the underlying sample space.
- \mathcal{F} is a class of subsets of Ω .
- There is a probability measure \mathcal{P} defined on the elements of \mathcal{F} .

Probability space $(\Omega, \mathcal{F}, \mathcal{P})$

Foundations

Random variables are functions from Ω into the set of real numbers

$Pr\{X \in B\} = Pr(\{\omega \in \Omega : X(\omega) \in B\})$

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Random Sample $X_1(\omega), \ldots, X_n(\omega)$

- $T = T(X_1, \ldots, X_n)$
- $T = T_n(\omega)$
- Let $n \to \infty$ to see what happens for large samples.

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Modes of Convergence

- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

Almost Sure Convergence

We say that T_n converges almost surely to T, and write $T_n \xrightarrow{a.s.} T$ if

$$Pr\{\omega : \lim_{n \to \infty} T_n(\omega) = T(\omega)\} = 1.$$

- Acts like an ordinary limit, except possibly on a set of probability zero.
- All the usual rules apply.
- Called convergence with probability one or sometimes strong convergence.
- In this course, convergence will usually be to a constant.

$$Pr\{\omega : \lim_{n \to \infty} T_n(\omega) = c\} = 1.$$

Strong Law of Large Numbers

Let X_1, \ldots, X_n be independent with common expected value μ .

$\overline{X}_n \stackrel{a.s.}{\to} E(X_i) = \mu$

The only condition required for this to hold is the existence of the expected value. Probability is long run relative frequency

Convergence of random vectors

LLN

- Statistical experiment: Probability of "success" is $\theta.$
- Carry out the experiment many times independently.
- Code the results $X_i = 1$ if success, $X_i = 0$ for failure, i = 1, 2, ...

Sample proportion of successes converges to the probability of success Recall $X_i = 0$ or 1.

$$E(X_i) = \sum_{x=0}^{1} x \Pr\{X_i = x\}$$

= 0 \cdot (1 - \theta) + 1 \cdot \theta
= \theta

Relative frequency is

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}_{n}$$

- Estimate almost any probability that's hard to figure out.
- Statistical power
- Weather model
- Performance of statistical methods
- Tests or confidence intervals for estimated probabilities.

Back to the Law of Large Numbers

Recall the Change of Variables formula: Let Y = g(X)

Convergence of random vectors

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx$$

Or, for discrete random variables

LLN

$$E(Y) = \sum_y y \, p_{\scriptscriptstyle Y}(y) = \sum_x g(x) \, p_{\scriptscriptstyle X}(x)$$

This is actually a big theorem, not a definition.

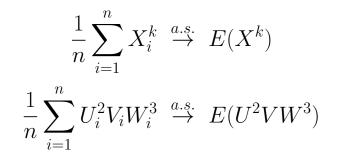
Applying the change of variables formula To approximate E[g(X)]

LLN

Simulate X_1, \ldots, X_n from the distribution of X. Calculate

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) = \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{a.s.}{\to} E(Y)$$
$$= E(g(X))$$

So for example



That is, sample moments converge almost surely to population moments.

Approximate an integral: $\int_{-\infty}^{\infty} h(x) dx$ Where h(x) is a nasty function.

LLN

Let f(x) be a density with f(x) > 0 wherever $h(x) \neq 0$.

$$\int_{-\infty}^{\infty} h(x) dx = \int_{-\infty}^{\infty} \frac{h(x)}{f(x)} f(x) dx$$
$$= E\left[\frac{h(X)}{f(X)}\right]$$
$$= E[g(X)],$$

Convergence of random vectors

So

- Sample X_1, \ldots, X_n from the distribution with density f(x)
- Calculate $Y_i = g(X_i) = \frac{h(X_i)}{f(X_i)}$ for $i = 1, \dots, n$
- Calculate $\overline{Y}_n \stackrel{a.s.}{\rightarrow} E[Y] = E[g(X)]$
- Confidence interval for $\mu = E[Y]$ is routine.

Convergence in Probability

We say that T_n converges in probability to T, and write $T_n \xrightarrow{P} T$ if for all $\epsilon > 0$,

$$\lim_{n \to \infty} P\{\omega : |T_n(\omega) - T(\omega)| < \epsilon\} = 1$$

For us, convergence will usually be to a constant:

$$\lim_{n \to \infty} P\{|T_n - c| < \epsilon\} = 1$$

Convergence in probability (say to c) means no matter how small the interval around c, for large enough n (that is, for all $n > N_1$) the probability of getting that close to c is as close to one as you like.

We will seldom use the definition in this class.

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Weak Law of Large Numbers

$$\overline{X}_n \xrightarrow{p} \mu$$

- Almost Sure Convergence implies Convergence in Probability
- Strong Law of Large Numbers implies Weak Law of Large Numbers

The statistic T_n is said to be *consistent* for θ if $T_n \xrightarrow{P} \theta$ for all θ in the parameter space.

$$\lim_{n \to \infty} P\{|T_n - \theta| < \epsilon\} = 1$$

The statistic T_n is said to be *strongly consistent* for θ if $T_n \stackrel{a.s.}{\rightarrow} \theta$.

Strong consistency implies ordinary consistency.

Foundations

Consistency

CLT

Convergence of random vectors

Delta Method

Consistency is great but it's not enough.

$T_n \stackrel{a.s.}{\to} \theta \Rightarrow U_n = T_n + \frac{100,000,000}{n} \stackrel{a.s.}{\to} \theta$

Foundations LLN **Consistency** CLT Convergence of random vectors Delta Method

Consistency of the Sample Variance

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2$$

By SLLN, $\overline{X}_n \stackrel{a.s.}{\to} \mu$ and $\frac{1}{n} \sum_{i=1}^n X_i^2 \stackrel{a.s.}{\to} E(X^2) = \sigma^2 + \mu^2$.

Because the function $g(x, y) = x - y^2$ is continuous,

$$\widehat{\sigma}_n^2 = g\left(\frac{1}{n}\sum_{i=1}^n X_i^2, \overline{X}_n\right) \xrightarrow{a.s.} g(\sigma^2 + \mu^2, \mu) = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

Convergence in Distribution Sometimes called *Weak Convergence*, or *Convergence in Law*

Denote the cumulative distribution functions of T_1, T_2, \ldots by $F_1(t), F_2(t), \ldots$ respectively, and denote the cumulative distribution function of T by F(t).

We say that T_n converges in distribution to T, and write $T_n \xrightarrow{d} T$ if for every point t at which F is continuous,

$$\lim_{n \to \infty} F_n(t) = F(t)$$

Again, we will seldom use this definition directly.

Univariate Central Limit Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . Then

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1)$$

Foundations LLN Consistency **CLT** Convergence of random vectors Delta Method

Connections among the Modes of Convergence

•
$$T_n \xrightarrow{a.s.} T \Rightarrow T_n \xrightarrow{p} T \Rightarrow T_n \xrightarrow{d} T.$$

• If a is a constant, $T_n \xrightarrow{d} a \Rightarrow T_n \xrightarrow{p} a$.

Sometimes we say the distribution of the sample mean is approximately normal, or asymptotically normal.

Convergence of random vectors

CLT

- This is justified by the Central Limit Theorem.
- But it does *not* mean that \overline{X}_n converges in distribution to a normal random variable.
- The Law of Large Numbers says that \overline{X}_n converges almost surely (and in probability) to a constant, μ .
- So \overline{X}_n converges to μ in distribution as well.

Why would we say that for large n, the sample mean is approximately $N(\mu, \frac{\sigma^2}{n})$?

Convergence of random vectors

CLT

Have
$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1).$$

$$Pr\{\overline{X}_n \le x\} = Pr\left\{\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\} \approx \Phi\left(\frac{\sqrt{n}(x - \mu)}{\sigma}\right)$$

Suppose Y is exactly $N(\mu, \frac{\sigma^2}{n})$:

$$Pr\{Y \le x\} = Pr\left\{\frac{\sqrt{n}(Y-\mu)}{\sigma} \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} = \Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)$$

Convergence of random vectors I

- 0 Definitions (All quantities in boldface are vectors in \mathbb{R}^m unless otherwise stated)
 - * $\mathbf{T}_n \xrightarrow{a.s.} \mathbf{T}$ means $P\{\omega : \lim_{n \to \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\} = 1.$ * $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ means $\forall \epsilon > 0, \lim_{n \to \infty} P\{||\mathbf{T}_n - \mathbf{T}|| < \epsilon\} = 1.$ * $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}$, $\lim_{n \to \infty} F_{\mathbf{T}_n}(\mathbf{t}) = F_{\mathbf{T}}(\mathbf{t}).$

$$2 \mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{P}{\to} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{d}{\to} \mathbf{T}.$$

- **3** If **a** is a vector of constants, $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{a} \Rightarrow \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{a}$.
- Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_n \xrightarrow{a.s.} E(\mathbf{X})$.
- Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean $\mathbf{0}$ and covariance matrix $\boldsymbol{\Sigma}$.

Convergence of random vectors II

- **6** Slutsky Theorems for Convergence in Distribution:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \le m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \stackrel{d}{\to} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{d} \mathbf{T}$.
 - **3** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{c}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{d}{\rightarrow} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{c} \end{array}\right)$$

Convergence of random vectors III

- Slutsky Theorems for Convergence in Probability:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \le m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{P} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{T}$.
 - **3** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{P}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{Y} \end{array}\right)$$

Convergence of random vectors IV

Solution Method (Theorem of Cramér, Ferguson p. 45): Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be such that the elements of $\dot{g}(\mathbf{x}) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If \mathbf{T}_n is a sequence of *d*-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{g}(\boldsymbol{\theta})\mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \mathbf{Y} \sim N(\mathbf{0}, \dot{g}(\boldsymbol{\theta})\boldsymbol{\Sigma}\dot{g}(\boldsymbol{\theta})')$. Foundations LLN Consistency CLT Convergence of random vectors Delta Method

An application of the Slutsky Theorems

• Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$$

• By CLT,
$$Y_n = \sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\rightarrow} Y \sim N(0, \sigma^2)$$

• Let $\hat{\sigma}_n$ be any consistent estimator of σ .

• Then by 6.3,
$$\mathbf{T}_n = \begin{pmatrix} Y_n \\ \widehat{\sigma}_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} Y \\ \sigma \end{pmatrix} = \mathbf{T}$$

• The function f(x, y) = x/y is continuous except if y = 0 so by 6.1,

$$f(\mathbf{T}_n) = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\widehat{\sigma}_n} \stackrel{d}{\to} f(\mathbf{T}) = \frac{Y}{\sigma} \sim N(0, 1)$$

Another application: Asymptotic normality of the sample variance

- Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$, and $\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$.
- Want to show $\sqrt{n} \left(\hat{\sigma}_n^2 \sigma^2 \right)$ converges to a normal.
- Substitute μ for \overline{X}_n ? Look at $\frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$?
- If so, it's easy.
 - Let $Y_i = (X_i \mu)^2$
 - $E(Y_i) = \sigma^2$
 - $Var(Y_i) = E(Y_i^2) (E(Y_i))^2 = E(X_i \mu)^4 \sigma^4 = \sigma_y^2$.
 - $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$
 - By CLT, $\sqrt{n} \left(\overline{Y}_n \sigma^2 \right) \xrightarrow{d} Y \sim N(0, \sigma_y^2).$

Foundations LLN Consistency CLT Convergence of random vectors

Show
$$\sqrt{n} \left(\widehat{\sigma}_n^2 - \sigma^2 \right) - \sqrt{n} \left(\overline{Y}_n - \sigma^2 \right) \xrightarrow{p} 0$$

See 6.2

$$\begin{aligned} \widehat{\sigma}_{n}^{2} &= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu + \mu - \overline{X}_{n})^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left[(X_{i} - \mu)^{2} + 2(X_{i} - \mu)(\mu - \overline{X}_{n}) + (\mu - \overline{X}_{n})^{2} \right] \end{aligned}$$

$$= \dots$$
$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - (\overline{X}_n - \mu)^2$$
$$= \overline{Y}_n - (\overline{X}_n - \mu)^2$$

$$\sqrt{n} \left(\overline{Y}_n - \sigma^2\right) - \sqrt{n} \left(\widehat{\sigma}_n^2 - \sigma^2\right) = \sqrt{n} \left(\overline{Y}_n - \widehat{\sigma}_n^2\right)$$
$$= \sqrt{n} \left(\overline{Y}_n - \left(\overline{Y}_n - \left(\overline{X}_n - \mu\right)^2\right)\right)$$
$$= \sqrt{n} \left(\overline{X}_n - \mu\right)^2$$
$$= \sqrt{n} (\overline{X}_n - \mu) \cdot (\overline{X}_n - \mu)$$

- First term goes in distribution to $X \sim N(0, \sigma^2)$ by CLT.
- Second term goes to zero in probability by LLN.

•
$$\begin{pmatrix} \sqrt{n}(\overline{X}_n - \mu) \\ \overline{X}_n - \mu \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ 0 \end{pmatrix}$$
 by 6.3.

- By continuous mapping 6.1, $\sqrt{n}(\overline{X}_n \mu) \cdot (\overline{X}_n \mu) \xrightarrow{d} X \cdot 0 = 0$
- Convergence in distribution to a constant implies convergence in probability (Rule 3), so the difference converges in probability to zero, and the result follows by 6.2 ■

• Because the difference between $\sqrt{n} \left(\hat{\sigma}_n^2 - \sigma^2\right)$ and $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - \sigma^2\right)$ goes to zero in probability, they converge in distribution to the same target.

Univariate delta method

In the multivariate Delta Method 8, the matrix $\dot{g}(\boldsymbol{\theta})$ is a Jacobian. The univariate version of the delta method says that

If $\sqrt{n}(T_n - \theta) \xrightarrow{d} T$ and g''(x) is continuous in a neighbourhood of θ , then

$$\sqrt{n} \left(g(T_n) - g(\theta) \right) \stackrel{d}{\to} g'(\theta) T.$$

When using the Central Limit Theorem, especially if there is a $\theta \neq \mu$ in the model, it's safer to write

$$\sqrt{n}\left(g(\overline{X}_n) - g(\mu)\right) \stackrel{d}{\to} g'(\mu) T.$$

and then substitute for μ in terms of θ .

Delta Method Example

$$\begin{split} &X_1, \dots, X_n \stackrel{i.i.d.}{\sim} \operatorname{Poisson}(\lambda) \\ &E(X_i) = Var(X_i) = \lambda \\ &\frac{\sqrt{n}(\overline{X}_n - \lambda)}{\sqrt{\overline{X}_n}} \stackrel{d}{\to} Z_1 \sim N(0, 1) \\ &\operatorname{Confidence\ interval}\left(\overline{X}_n - z_{\alpha/2}\sqrt{\overline{X}_n \over n} \ , \ \overline{X}_n + z_{\alpha/2}\sqrt{\overline{X}_n \over n}\right) \end{split}$$

Maybe we can do better.

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Delta Method says $\sqrt{n} \left(g(T_n) - g(\theta) \right) \xrightarrow{d} g'(\theta) T$

$$\begin{split} &\sqrt{n}(\overline{X}_n-\lambda) \stackrel{d}{\to} X \sim N(0,\lambda). \\ &\sqrt{n}\left(g(\overline{X}_n)-g(\lambda)\right) \stackrel{d}{\to} g'(\lambda) \, X \sim N(0,g'(\lambda)^2\lambda) \end{split}$$

• Choose g to make the variance not depend on λ .

• How about
$$g(\lambda) = 2\sqrt{\lambda}$$

 $g'(\lambda) = 2\frac{1}{2}\lambda^{-1/2} = \frac{1}{\sqrt{\lambda}}.$

• Variance of the target is $g'(\lambda)^2 \lambda = 1$. So,

$$\sqrt{n}\left(2\sqrt{\overline{X}_n} - 2\sqrt{\lambda}\right) \stackrel{d}{\to} Z_2 \sim N(0,1).$$

$$\sqrt{n}\left(2\sqrt{\overline{X}_n} - 2\sqrt{\lambda}\right) \xrightarrow{d} Z_2 \sim N(0,1)$$

$$0.95 \approx P\left\{-z_{\alpha/2} < \sqrt{n}\left(2\sqrt{\overline{X}_n} - 2\sqrt{\lambda}\right) < z_{\alpha/2}\right\}$$
$$= P\left\{-\frac{z_{\alpha/2}}{2\sqrt{n}} < \sqrt{\overline{X}_n} - \sqrt{\lambda} < \frac{z_{\alpha/2}}{2\sqrt{n}}\right\}$$
$$= P\left\{\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}} < \sqrt{\lambda} < \sqrt{\overline{X}_n} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right\}$$
$$= P\left\{\left(\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2 < \lambda < \left(\sqrt{\overline{X}_n} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2\right\}.$$

Compare $P\left\{\overline{X}_n - z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}} < \lambda < \overline{X}_n + z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}}\right\}$

The delta method comes from Taylor's Theorem

Taylor's Theorem: Let the *n*th derivative $f^{(n)}$ be continuous in [a, b] and differentiable in (a, b), with x and x_0 in (a, b). Then there exists a point ξ between x and x_0 such that

Convergence of random vectors

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + \frac{f^{(n+1)}(\xi)(x - x_0)^{n+1}}{(n+1)!}$$

where $R_n = \frac{f^{(n+1)}(\xi)(x-x_0)^{n+1}}{(n+1)!}$ is called the *remainder term*. If $R_n \to 0$ as $n \to \infty$, the resulting infinite series is called the *Taylor Series* for f(x).

Foundations

Taylor's Theorem with two terms plus remainder Very common in applications

Let g(x) be a function for which g''(x) is continuous in an open interval containing $x = \theta$. Then

$$g(x) = g(\theta) + g'(\theta)(x - \theta) + \frac{g''(\theta^*)(x - \theta)^2}{2!}$$

where θ^* is between x and θ .

 Foundations
 LLN
 Consistency
 CLT
 Convergence of random vectors
 Delta Method

 Delta
 method
 Using $g(x) = g(\theta) + g'(\theta)(x - \theta) + \frac{1}{2}g''(\theta^*)(x - \theta)^2$ Image: CLT
 Convergence of random vectors
 Delta Method

Let
$$\sqrt{n}(T_n - \theta) \xrightarrow{d} T$$
 so that $T_n \xrightarrow{p} \theta$.

$$\begin{split} \sqrt{n} \left(g(T_n) - g(\theta) \right) &= \sqrt{n} \left(g(\theta) + g'(\theta)(T_n - \theta) + \frac{1}{2} g''(\theta_n^*)(T_n - \theta)^2 - g(\theta) \right) \\ &= \sqrt{n} \left(g'(\theta)(T_n - \theta) + \frac{1}{2} g''(\theta_n^*)(T_n - \theta)^2 \right) \\ &= g'(\theta) \sqrt{n} (T_n - \theta) \\ &\quad + \frac{1}{2} g''(\theta_n^*) \cdot \sqrt{n} (T_n - \theta) \cdot (T_n - \theta) \\ &\stackrel{d}{\to} g'(\theta) T + 0 \end{split}$$

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

That was fun, but it was all univariate.

- The multivariate CLT establishes convergence to a multivariate normal.
- Vectors of MLEs are approximately multivariate normal for large samples.
- The multivariate delta method can yield the asymptotic distribution of useful functions of the MLE vector.

We need to look at random vectors and the multivariate normal distribution.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/2053f22