Structural Equation Models: The General Case¹ STA2053 Fall 2022

¹See last slide for copyright information.

Features of Structural Equation Models

- Multiple equations.
- All the variables are random.
- An explanatory variable in one equation can be the response variable in another equation.
- Models are represented by path diagrams.
- Identifiability is always an issue.
- The statistical models are models of influence. They are often called *causal models*.

The General (original) Model: Independently for i = 1, ..., n, let

$$egin{array}{rcl} \mathbf{y}_i &=& oldsymbol{lpha} + oldsymbol{eta} \mathbf{y}_i + oldsymbol{\Gamma} \mathbf{x}_i + oldsymbol{\epsilon}_i \ \mathbf{F}_i &=& egin{pmatrix} \mathbf{x}_i \ \mathbf{y}_i \end{pmatrix} \ \mathbf{d}_i &=& oldsymbol{
u} + oldsymbol{\Lambda} \mathbf{F}_i + \mathbf{e}_i, ext{ where } \end{array}$$

- \mathbf{y}_i is a $q \times 1$ random vector.
- α is a $q \times 1$ vector of constants.
- β is a $q \times q$ matrix of constants with zeros on the main diagonal.
- Γ is a $q \times p$ matrix of constants.
- \mathbf{x}_i is a $p \times 1$ random vector with expected value $\boldsymbol{\mu}_x$ and positive definite covariance matrix $\boldsymbol{\Phi}_x$.
- ϵ_i is a $q \times 1$ random vector with expected value zero and positive definite covariance matrix Ψ .
- \mathbf{F}_i (*F* for Factor) is a partitioned vector with \mathbf{x}_i stacked on top of \mathbf{y}_i . It is a $(p+q) \times 1$ random vector whose expected value is denoted by $\boldsymbol{\mu}_F$, and whose variance-covariance matrix is denoted by $\boldsymbol{\Phi}$.
- \mathbf{d}_i is a $k \times 1$ random vector. The expected value of \mathbf{d}_i will be denoted by $\boldsymbol{\mu}$, and the covariance matrix of \mathbf{d}_i will be denoted by $\boldsymbol{\Sigma}$.
- $\boldsymbol{\nu}$ is a $k \times 1$ vector of constants.
- Λ is a $k \times (p+q)$ matrix of constants.
- \mathbf{e}_i is a $k \times 1$ random vector with expected value zero and covariance matrix $\mathbf{\Omega}$, which need not be positive definite.
- $\mathbf{x}_i, \, \boldsymbol{\epsilon}_i \text{ and } \mathbf{e}_i \text{ are independent.}$

Example: A Path Model with Measurement Error

Truth \approx Original Model \rightarrow Surrogate Model $1 \rightarrow$ Surrogate Model $2 \dots$

Surrogate Mother

https://en.wikipedia.org/wiki/File:Harlow%27s_Monkey.png

- We more or less accept the original model, but we can't identify the parameters.
- So we re-parameterize, obtaining a surrogate model. Repeat.
- We will carefully keep track of the *meaning* of the new parameters in terms of the parameters of the original model.

$$egin{array}{rcl} \mathbf{y}_i &=& oldsymbol{lpha} + oldsymbol{eta} \mathbf{y}_i + oldsymbol{\Gamma} \mathbf{x}_i + oldsymbol{\epsilon}_i \ \mathbf{F}_i &=& igg(rac{\mathbf{x}_i}{\mathbf{y}_i}igg) \ \mathbf{d}_i &=& oldsymbol{
u} + oldsymbol{\Lambda} \mathbf{F}_i + \mathbf{e}_i, \end{array}$$

where ...

- Carefully count the parameters that appear only in $E(\mathbf{d}_i)$ and not in $cov(\mathbf{d}_i)$.
- There are more of these parameters than elements of \mathbf{d}_i .
- Parameter count rule.

- There are too many expected values and intercepts to identify.
- Center all the random variables in the model by adding and subtracting expected values.
- Obtain a *centered surrogate model*

$$egin{array}{rcl} \overset{c}{\mathbf{y}}_i &=& oldsymbol{eta} \overset{c}{\mathbf{y}}_i + oldsymbol{\Gamma} \overset{c}{\mathbf{x}}_i + oldsymbol{\epsilon}_i \ \overset{c}{\mathbf{F}}_i &=& \left(rac{\overset{c}{\mathbf{x}}_i}{\overset{c}{\mathbf{y}}_i}
ight) \ \overset{c}{\mathbf{d}}_i &=& oldsymbol{\Lambda} \overset{c}{\mathbf{F}}_i + \mathbf{e}_i \end{array}$$

• Same β , Γ and Λ , same variances and covariances.

- Centering is a change of variables.
- Expected values and intercepts are gone, and the dimension of the parameter space is reduced.
- Drop the little *c* over the random vectors.

A General Two-Stage Centered Model Stage 1 is the latent variable model and Stage 2 is the measurement model.

Independently for $i = 1, \ldots, n$,

$$egin{array}{rcl} \mathbf{y}_i &=& eta \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + eta_i \ \mathbf{F}_i &=& \left(rac{\mathbf{x}_i}{\mathbf{y}_i}
ight) \ \mathbf{d}_i &=& \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i \end{array}$$

- \mathbf{d}_i (the data) are observable. All other variables are latent.
- $\mathbf{y}_i = \boldsymbol{\beta} \mathbf{y}_i + \boldsymbol{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$ is called the *Latent Variable Model*.
- The latent vectors \mathbf{x}_i and \mathbf{y}_i are collected into a *factor* \mathbf{F}_i .
- $\mathbf{d}_i = \mathbf{A} \mathbf{F}_i + \mathbf{e}_i$ is called the *Measurement Model*.

$\mathbf{y}_i = oldsymbol{eta} \mathbf{y}_i + oldsymbol{\Gamma} \mathbf{x}_i + oldsymbol{\epsilon}_i \qquad \mathbf{F}_i = egin{pmatrix} \mathbf{x}_i \ \mathbf{y}_i \end{pmatrix} \quad \mathbf{d}_i = oldsymbol{\Lambda} \mathbf{F}_i + \mathbf{e}_i$

- \mathbf{y}_i is a $q \times 1$ random vector.
- β is a $q \times q$ matrix of constants with zeros on the main diagonal.
- \mathbf{x}_i is a $p \times 1$ random vector.
- Γ is a $q \times p$ matrix of constants.
- ϵ_i is a $q \times 1$ random vector.
- \mathbf{F}_i (*F* for Factor) is just \mathbf{x}_i stacked on top of \mathbf{y}_i . It is a $(p+q) \times 1$ random vector.
- \mathbf{d}_i is a $k \times 1$ random vector. Sometimes, $\mathbf{d}_i = \left(\frac{\mathbf{w}_i}{\mathbf{v}_i}\right)$.
- Λ is a $k \times (p+q)$ matrix of constants: "factor loadings."
- \mathbf{e}_i is a $k \times 1$ random vector.
- $\mathbf{x}_i, \, \boldsymbol{\epsilon}_i$ and \mathbf{e}_i are independent.

Covariance matrices More notation

$$egin{array}{rcl} \mathbf{y}_i &=& eta \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + m{\epsilon}_i \ \mathbf{F}_i &=& \left(rac{\mathbf{x}_i}{\mathbf{y}_i}
ight) \ \mathbf{d}_i &=& \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i \end{array}$$

$$\begin{aligned} \cos(\mathbf{x}_i) &= \Phi_x \\ \cos(\mathbf{\epsilon}_i) &= \Psi \\ \cos(\mathbf{F}_i) &= \Phi = \begin{pmatrix} \cos(\mathbf{x}_i) & \cos(\mathbf{x}_i, \mathbf{y}_i) \\ \cos(\mathbf{y}_i, \mathbf{x}_i) & \cos(\mathbf{y}_i) \end{pmatrix} = \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^\top & \Phi_{22} \end{pmatrix} \\ \cos(\mathbf{e}_i) &= \Omega \\ \cos(\mathbf{d}_i) &= \Sigma \end{aligned}$$

- Collect the unique elements of β , Γ , Λ , Φ_x , Ψ and Ω into a parameter vector θ .
- $\boldsymbol{\theta}$ is a *function* of the original model parameters.

Matrix Form

$$\begin{array}{rcl} \mathbf{y}_{i} & = & \boldsymbol{\beta} & \mathbf{y}_{i} & + & \boldsymbol{\Gamma} & \mathbf{x}_{i} & + & \boldsymbol{\epsilon}_{i} \\ \left(\begin{array}{c} Y_{i,1} \\ Y_{i,2} \end{array}\right) & = & \left(\begin{array}{c} 0 & 0 \\ \beta & 0 \end{array}\right) & \left(\begin{array}{c} Y_{i,1} \\ Y_{i,2} \end{array}\right) & + & \left(\begin{array}{c} \gamma_{1} \\ \gamma_{2} \end{array}\right) & X_{i} & + & \left(\begin{array}{c} \epsilon_{i,1} \\ \epsilon_{i,2} \end{array}\right) \\ \mathbf{d}_{i} & = & \boldsymbol{\Lambda} & \mathbf{F}_{i} & + & \mathbf{e}_{i} \\ \left(\begin{array}{c} W_{i} \\ V_{i,1} \\ V_{i,2} \end{array}\right) & = & \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) & \left(\begin{array}{c} X_{i} \\ Y_{i,1} \\ Y_{i,2} \end{array}\right) & + & \left(\begin{array}{c} e_{i,1} \\ e_{i,2} \\ e_{i,3} \end{array}\right) \end{array}$$

Observable variables in the "latent" variable model $\mathbf{y}_i = \boldsymbol{\beta} \mathbf{y}_i + \boldsymbol{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$ Fairly common

- These present no problem.
- Let $P(e_j = 0) = 1$, so $Var(e_j) = 0$.
- And $Cov(e_i, e_j) = 0$
- Because if $P(e_j = 0) = 1$,

$$Cov(e_i, e_j) = E(e_i e_j) - E(e_i)E(e_j)$$
$$= E(e_i \cdot 0) - E(e_i) \cdot 0$$
$$= 0 - 0 = 0$$

- In $\Omega = cov(\mathbf{e}_i)$, column j (and row j) are all zeros.
- Ω singular, no problem.

What should you be able to do?

- Given a path diagram, write the model equations and say which exogenous variables are correlated with each other.
- Given the model equations and information about which exogenous variables are correlated with each other, draw the path diagram.
- Given either piece of information, write the model in matrix form and say what all the matrices are.
- Calculate model covariance matrices.
- Check identifiability.

This is a surrogate model For two reasons

 $Y = \beta X + \epsilon$ $W_1 = X + e_1$ $W_2 = X + e_2$ $V = Y + e_3$

 $Var(X) = \phi$ $Var(\epsilon) = \psi$ $Var(e_1) = \omega_1$ $Var(e_2) = \omega_2$ $Var(e_3) = \omega_3$

 $Y = \beta X + \epsilon$ $W_1 = \lambda_1 X + e_1$ $W_2 = \lambda_1 X + e_2$ $V = \lambda_2 Y + e_3$

Centered original model

$Y = \beta X + \epsilon$			$Y = \beta X + \epsilon$					
$W_1 = X + e_1$				$W_1 = \lambda_1 X + e_1$				
$W_2 = X + e_2$				$W_2 = \lambda_1 X + e_2$				
	V	= Y +	- e ₃		V	$= \lambda_2 Y +$	e_3	
	W_1	W_2	V		W_1	W_2	V	
W_1	$\phi + \omega_1$	ϕ	$eta \phi$		$\lambda_1^2 \phi + \omega_1$	$\lambda_1^2 \phi$	$\lambda_1\lambda_2eta\phi$	
W_2		$\phi + \omega_2$	$eta \phi$			$\lambda_1^2 \phi + \omega_2$	$\lambda_1\lambda_2eta\phi$	
V			$\beta^2 \phi + \psi + \omega_3$				$\lambda_2^2(\beta^2\phi+\psi)$	
							$+\omega_3$	
		D :				a		

Five parameters

Seven parameters

Change of Variables

$$W_1 = \lambda_1 X + e_1$$

$$W_2 = \lambda_1 X + e_2$$

$$Y = \beta X + \epsilon$$

$$V = \lambda_2 Y + e_3$$

Let
$$X' = \lambda_1 X$$

• $Var(X') = \lambda_1^2 \phi = \phi'.$
• $W_1 = X' + e_1$
• $W_2 = X' + e_2$
 $Y = \beta X + \epsilon$
 $= \left(\frac{\beta}{\Delta}\right) (\lambda_1 X)$

$$= \beta X + \epsilon$$
$$= \left(\frac{\beta}{\lambda_1}\right)(\lambda_1 X) + \epsilon$$
$$= \left(\frac{\beta}{\lambda_1}\right) X' + \epsilon$$

Another Change of Variables Have $Y = \left(\frac{\beta}{\lambda_1}\right) X' + \epsilon$

$$V = \lambda_2 Y + e_3$$

= $\lambda_2 \left(\frac{\beta}{\lambda_1} X' + \epsilon\right) + e_3$
= $\left(\frac{\lambda_2}{\lambda_1}\beta\right) X' + \lambda_2 \epsilon + e_3$
= $\beta' X' + \epsilon' + e_3$
= $Y' + e_3$

Collect what we have

•
$$X' = \lambda_1 X, \ \phi' = \lambda_1^2 \phi.$$

• $\beta' = \frac{\lambda_2}{\lambda_1} \beta.$
• $\epsilon' = \lambda_2 \epsilon, \ \psi' = \lambda_2^2 \psi.$

• ω_1, ω_2 and ω_3 are unaffected.

Covariance Matrices

	W_1	W_2	V	 W_1	W_2	V
W_1	$\phi + \omega_1$	ϕ	$eta \phi$	$\lambda_1^2 \phi + \omega_1$	$\lambda_1^2 \phi$	$\lambda_1\lambda_2eta\phi$
W_2		$\phi + \omega_2$	$eta \phi$		$\lambda_1^2 \phi + \omega_2$	$\lambda_1\lambda_2eta\phi$
V			$\beta^2 \phi + \psi + \omega_3$			$\lambda_2^2(\beta^2\phi+\psi)$
						$+\omega_3$

	W_1	W_2	V _	W_1	W_2	V
W_1	$\phi' + \omega_1$	ϕ'	$eta'\phi'$	$\lambda_1^2 \phi + \omega_1$	$\lambda_1^2 \phi$	$\left(\frac{\lambda_2}{\lambda_1}\beta\right)(\lambda_1^2\phi)$
W_2		$\phi' + \omega_2$	$eta'\phi'$		$\lambda_1^2\phi+\omega_2$	$\left(\frac{\lambda_2}{\lambda_1}\beta\right)(\lambda_1^2\phi)$
V			$\beta'^2 \phi' + \psi' + \omega_3$			$\left(\frac{\lambda_2}{\lambda_1}\beta\right)^2 (\lambda_1^2\phi)$
						$(\lambda_2^2\psi) + \omega_3$

The parameters of the surrogate model are identifiable functions of the original parameters. Mostly.

One more re-parameterization By a change of variables

$$V = Y' + e_3$$

= $\beta' X' + \epsilon' + e_3$
= $\beta' X' + (\epsilon' + e_3)$
= $\beta' X' + \epsilon''$

with

$$Var(\epsilon'') = Var(\epsilon') + Var(e_3)$$
$$= \lambda_2^2 \psi + \omega_3$$
$$= \psi''$$

The final surrogate model

Parameters are identifiable functions of the original model parameters.

	W_1	W_2	V
W_1	$\phi' + \omega_1$	ϕ'	$\beta' \phi'$
W_2		$\phi' + \omega_2$	$eta \phi \prime$
V			$\beta^{\prime 2} \phi^{\prime} + \psi^{\prime\prime}$

 $\beta' = \frac{\lambda_2}{\lambda_1}\beta$

Next slide please

Recall the notation

$$egin{array}{rcl} \mathbf{y}_i &=& eta \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + eta_i \ \mathbf{F}_i &=& \left(rac{\mathbf{x}_i}{\mathbf{y}_i}
ight) \ \mathbf{d}_i &=& \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i \end{array}$$

Calculate a general expression for $\Sigma(\theta)$.

For the latent variable model, calculate $\Phi = cov(\mathbf{F}_i)$ Have $cov(\mathbf{x}_i) = \Phi_x$, need $cov(\mathbf{y}_i)$ and $cov(\mathbf{x}_i, \mathbf{y}_i)$

$$\begin{aligned} \mathbf{y}_{i} &= \boldsymbol{\beta} \mathbf{y}_{i} + \boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i} \\ \Rightarrow & \mathbf{y}_{i} - \boldsymbol{\beta} \mathbf{y}_{i} = \boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i} \\ \Rightarrow & \mathbf{I} \mathbf{y}_{i} - \boldsymbol{\beta} \mathbf{y}_{i} = \boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i} \\ \Rightarrow & (\mathbf{I} - \boldsymbol{\beta}) \mathbf{y}_{i} = \boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i} \\ \Rightarrow & (\mathbf{I} - \boldsymbol{\beta})^{-1} (\mathbf{I} - \boldsymbol{\beta}) \mathbf{y}_{i} = (\mathbf{I} - \boldsymbol{\beta})^{-1} (\boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i}) \\ \Rightarrow & \mathbf{y}_{i} = (\mathbf{I} - \boldsymbol{\beta})^{-1} (\boldsymbol{\Gamma} \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i}) \end{aligned}$$

So,

$$cov(\mathbf{y}_i) = (\mathbf{I} - \boldsymbol{\beta})^{-1} cov(\boldsymbol{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i)(\mathbf{I} - \boldsymbol{\beta})^{-1\top}$$

= $(\mathbf{I} - \boldsymbol{\beta})^{-1} (cov(\boldsymbol{\Gamma} \mathbf{x}_i) + cov(\boldsymbol{\epsilon}_i)) (\mathbf{I} - \boldsymbol{\beta}^{\top})^{-1}$
= $(\mathbf{I} - \boldsymbol{\beta})^{-1} \left(\boldsymbol{\Gamma} \boldsymbol{\Phi}_x \boldsymbol{\Gamma}^{\top} + \boldsymbol{\Psi}\right) (\mathbf{I} - \boldsymbol{\beta}^{\top})^{-1}$

 $\mathbf{y}_i = \boldsymbol{\alpha} + \boldsymbol{\beta} \mathbf{y}_i + \mathbf{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$ yields $(\mathbf{I} - \boldsymbol{\beta}) \mathbf{y}_i = \boldsymbol{\alpha} + \mathbf{\Gamma} \mathbf{x}_i + \boldsymbol{\epsilon}_i$. Suppose $(\mathbf{I} - \boldsymbol{\beta})^{-1}$ does not exist. Then the rows of $\mathbf{I} - \boldsymbol{\beta}$ are linearly dependent, and there is a $q \times 1$ non-zero vector of constants \mathbf{a} with $\mathbf{a}^{\top}(\mathbf{I} - \boldsymbol{\beta}) = 0$. So,

$$\mathbf{a}^{\top} (\mathbf{I} - \boldsymbol{\beta}) \mathbf{y}_{i} = 0 = \mathbf{a}^{\top} \boldsymbol{\alpha} + \mathbf{a}^{\top} \mathbf{\Gamma} \mathbf{x}_{i} + \mathbf{a}^{\top} \boldsymbol{\epsilon}_{i}$$

$$\Rightarrow Var(0) = Var(\mathbf{a}^{\top} \mathbf{\Gamma} \mathbf{x}_{i}) + Var(\mathbf{a}^{\top} \boldsymbol{\epsilon}_{i})$$

$$\Rightarrow 0 = \mathbf{a}^{\top} \mathbf{\Gamma} \mathbf{\Phi}_{x} \mathbf{\Gamma}^{\top} \mathbf{a} + \mathbf{a}^{\top} \mathbf{\Psi} \mathbf{a} > 0.$$

Contradicts $\mathbf{I} - \boldsymbol{\beta}$ singular.

$|\mathbf{I}-\boldsymbol{\beta}|\neq 0$ can create a hole in the parameter space.

- Have $cov(\mathbf{y}_i) = (\mathbf{I} \boldsymbol{\beta})^{-1} \left(\boldsymbol{\Gamma} \boldsymbol{\Phi}_x \boldsymbol{\Gamma}^\top + \boldsymbol{\Psi} \right) (\mathbf{I} \boldsymbol{\beta}^\top)^{-1}.$
- Know $cov(\mathbf{x}_i) = \mathbf{\Phi}_x$
- Easy to get $cov(\mathbf{x}_i, \mathbf{y}_i)$.

For the measurement model, calculate $\Sigma = cov(\mathbf{d}_i)$

$$\begin{aligned} \mathbf{d}_i &= \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i \\ \Rightarrow cov(\mathbf{d}_i) &= cov(\mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i) \\ &= cov(\mathbf{\Lambda} \mathbf{F}_i) + cov(\mathbf{e}_i) \\ &= \mathbf{\Lambda} cov(\mathbf{F}_i) \mathbf{\Lambda}^\top + cov(\mathbf{e}_i) \\ &= \mathbf{\Lambda} \mathbf{\Phi} \mathbf{\Lambda}^\top + \mathbf{\Omega} \\ &= \mathbf{\Sigma} \end{aligned}$$

Two-stage Proofs of Identifiability

Stage 1 is the latent variable model and Stage 2 is the measurement model.

- Show the parameters of the latent variable model $(\boldsymbol{\beta}, \boldsymbol{\Gamma}, \boldsymbol{\Phi}_x, \boldsymbol{\Psi})$ can be recovered from $\boldsymbol{\Phi} = cov(\mathbf{F}_i)$.
- Solve $\begin{pmatrix} cov(\mathbf{x}_i) & cov(\mathbf{x}_i, \mathbf{y}_i) \\ cov(\mathbf{y}_i, \mathbf{x}_i) & cov(\mathbf{y}_i) \end{pmatrix} = \mathbf{\Phi} = \begin{pmatrix} \mathbf{\Phi}_{11} & \mathbf{\Phi}_{12} \\ \mathbf{\Phi}_{12}^\top & \mathbf{\Phi}_{22} \end{pmatrix}$ for $(\boldsymbol{\beta}, \boldsymbol{\Gamma}, \mathbf{\Phi}_x, \boldsymbol{\Psi})$?
- Show the parameters of the measurement model (Λ, Φ, Ω) can be recovered from $\Sigma = cov(\mathbf{d}_i)$.
- This means all the parameters can be recovered from Σ .
- Break a big problem into two smaller ones.
- Develop *rules* for checking identifiability at each stage.
- Just look at the path diagram.

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/brunner/oldclass/2053f22