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Features of Structural Equation Models

Multiple equations.

All the variables are random.

An explanatory variable in one equation can be the
response variable in another equation.

Models are represented by path diagrams.

Identifiability is always an issue.

The statistical models are models of influence. They are
often called causal models.
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The General (original) Model: Independently for i = 1, . . . , n, let

yi = α + βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ν + ΛFi + ei, where

yi is a q × 1 random vector.
α is a q × 1 vector of constants.
β is a q × q matrix of constants with zeros on the main diagonal.
Γ is a q × p matrix of constants.
xi is a p× 1 random vector with expected value µx and positive definite
covariance matrix Φx.
εi is a q × 1 random vector with expected value zero and positive definite
covariance matrix Ψ.
Fi (F for Factor) is a partitioned vector with xi stacked on top of yi. It is a
(p+ q)× 1 random vector whose expected value is denoted by µF , and
whose variance-covariance matrix is denoted by Φ.
di is a k × 1 random vector. The expected value of di will be denoted by µ,
and the covariance matrix of di will be denoted by Σ.
ν is a k × 1 vector of constants.
Λ is a k × (p+ q) matrix of constants.
ei is a k × 1 random vector with expected value zero and covariance matrix
Ω, which need not be positive definite.
xi, εi and ei are independent. 3 / 32



Example: A Path Model with Measurement Error
A	  Path	  Model	  with	  Measurement	  Error	  

e1 e2 e3

W V1 V2

�1
�2

Yi,1 = α1 + γ1Xi + εi,1

Yi,2 = α2 + βYi,1 + γ2Xi + εi,2

Wi = ν1 + λ1Xi + ei,1

Vi,1 = ν2 + λ2Y i, 1 + ei,2

Vi,2 = ν3 + λ3Y i, 2 + ei,3

Truth ≈ Original Model → Surrogate Model 1 → Surrogate Model 2 . . .
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Surrogate Mother

https://en.wikipedia.org/wiki/File:Harlow%27s_Monkey.png

5 / 32



Surrogate Models
Truth ≈ Original Model → Surrogate Model 1 → Surrogate Model 2 . . .

We more or less accept the original model, but we can’t
identify the parameters.

So we re-parameterize, obtaining a surrogate model.
Repeat.

We will carefully keep track of the meaning of the new
parameters in terms of the parameters of the original
model.
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The Original Model

yi = α + βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ν + ΛFi + ei,

where . . .

Carefully count the parameters that appear only in E(di)
and not in cov(di).

There are more of these parameters than elements of di.

Parameter count rule.
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Center the model

There are too many expected values and intercepts to
identify.

Center all the random variables in the model by adding
and subtracting expected values.

Obtain a centered surrogate model

c
yi = β

c
yi +Γ

c
xi +εi

c
Fi =

( c
xi
c
yi

)
c
di = Λ

c
Fi +ei

Same β, Γ and Λ, same variances and covariances.
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Change of variables

Centering is a change of variables.

Expected values and intercepts are gone, and the
dimension of the parameter space is reduced.

Drop the little c over the random vectors.
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A General Two-Stage Centered Model
Stage 1 is the latent variable model and Stage 2 is the measurement model.

Independently for i = 1, . . . , n,

yi = βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ΛFi + ei

di (the data) are observable. All other variables are latent.

yi = βyi + Γxi + εi is called the Latent Variable Model.

The latent vectors xi and yi are collected into a factor Fi.

di = ΛFi + ei is called the Measurement Model.
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yi = βyi + Γxi + εi Fi =

(
xi
yi

)
di = ΛFi + ei

yi is a q × 1 random vector.

β is a q × q matrix of constants with zeros on the main
diagonal.

xi is a p× 1 random vector.

Γ is a q × p matrix of constants.

εi is a q × 1 random vector.

Fi (F for Factor) is just xi stacked on top of yi. It is a
(p+ q)× 1 random vector.

di is a k × 1 random vector. Sometimes, di =

(
wi

vi

)
.

Λ is a k × (p+ q) matrix of constants: “factor loadings.”

ei is a k × 1 random vector.

xi, εi and ei are independent.
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Covariance matrices
More notation

yi = βyi + Γxi + εi

Fi =

(
xi

yi

)
di = ΛFi + ei

cov(xi) = Φx

cov(εi) = Ψ

cov(Fi) = Φ =

(
cov(xi) cov(xi,yi)

cov(yi,xi) cov(yi)

)
=

(
Φ11 Φ12

Φ>
12 Φ22

)
cov(ei) = Ω

cov(di) = Σ

Collect the unique elements of β, Γ, Λ, Φx, Ψ and Ω into a
parameter vector θ.

θ is a function of the original model parameters.
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Matrix Form
A	  Path	  Model	  with	  Measurement	  Error	  

e1 e2 e3

W V1 V2

�1
�2

Yi,1 = γ1Xi + εi,1

Yi,2 = βYi,1 + γ2Xi + εi,2

Wi = Xi + ei,1

Vi,1 = Yi,1 + ei,2

Vi,2 = Yi,2 + ei,3

yi = βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ΛFi + ei

yi = β yi + Γ xi + εi(
Yi,1
Yi,2

)
=

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ1
γ2

)
Xi +

(
εi,1
εi,2

)
di = Λ Fi + ei Wi

Vi,1
Vi,2

 =

 1 0 0
0 1 0
0 0 1

  Xi

Yi,1
Yi,2

 +

 ei,1
ei,2
ei,3
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Observable variables in the “latent” variable model
yi = βyi + Γxi + εi
Fairly common

These present no problem.

Let P (ej = 0) = 1, so V ar(ej) = 0.

And Cov(ei, ej) = 0

Because if P (ej = 0) = 1,

Cov(ei, ej) = E(eiej)− E(ei)E(ej)

= E(ei · 0)− E(ei) · 0
= 0− 0 = 0

In Ω = cov(ei), column j (and row j) are all zeros.

Ω singular, no problem.
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What should you be able to do?

Given a path diagram, write the model equations and say
which exogenous variables are correlated with each other.

Given the model equations and information about which
exogenous variables are correlated with each other, draw
the path diagram.

Given either piece of information, write the model in
matrix form and say what all the matrices are.

Calculate model covariance matrices.

Check identifiability.
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This is a surrogate model
For two reasons

X

W
1

V

e
1

εY

e
3

W
2

e
1

β

Y = βX + ε

W1 = X + e1

W2 = X + e2

V = Y + e3

V ar(X) = φ

V ar(ε) = ψ

V ar(e1) = ω1

V ar(e2) = ω2

V ar(e3) = ω3

Y = βX + ε

W1 = λ1X + e1

W2 = λ1X + e2

V = λ2Y + e3
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Covariance Matrices

Y = βX + ε

W1 = X + e1

W2 = X + e2

V = Y + e3

Centered original model

Y = βX + ε

W1 = λ1X + e1

W2 = λ1X + e2

V = λ2Y + e3

W1 W2 V

W1 φ+ ω1 φ βφ

W2 φ+ ω2 βφ

V β2φ+ ψ + ω3

W1 W2 V

λ2
1φ+ ω1 λ2

1φ λ1λ2βφ

λ2
1φ+ ω2 λ1λ2βφ

λ2
2(β2φ+ ψ)

+ω3

Five parameters Seven parameters
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Change of Variables

W1 = λ1X + e1

W2 = λ1X + e2

Y = βX + ε

V = λ2Y + e3

Let X ′ = λ1X

V ar(X ′) = λ2
1φ = φ′.

W1 = X ′ + e1

W2 = X ′ + e2

Y = βX + ε

=

(
β

λ1

)
(λ1X) + ε

=

(
β

λ1

)
X ′ + ε
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Another Change of Variables
Have Y =

(
β
λ1

)
X ′ + ε

V = λ2Y + e3

= λ2

(
β

λ1
X ′ + ε

)
+ e3

=

(
λ2

λ1
β

)
X ′ + λ2ε+ e3

= β′X ′ + ε′ + e3

= Y ′ + e3
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Collect what we have

X ′ = λ1X, φ′ = λ2
1φ.

β′ = λ2
λ1
β.

ε′ = λ2ε, ψ
′ = λ2

2ψ.

ω1, ω2 and ω3 are unaffected.

W1 = X + e1

W2 = X + e2

Y = βX + ε

V = Y + e3

W1 = X ′ + e1

W2 = X ′ + e2

Y ′ = β′X ′ + ε′

V = Y ′ + e3
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Covariance Matrices

W1 W2 V

W1 φ+ ω1 φ βφ

W2 φ+ ω2 βφ

V β2φ+ ψ + ω3

W1 W2 V

λ2
1φ+ ω1 λ2

1φ λ1λ2βφ

λ2
1φ+ ω2 λ1λ2βφ

λ2
2(β2φ+ ψ)

+ω3

W1 W2 V

W1 φ′ + ω1 φ′ β′φ′

W2 φ′ + ω2 β′φ′

V β′2φ′ + ψ′ + ω3

W1 W2 V

λ21φ+ ω1 λ21φ
(
λ2
λ1
β
)

(λ21φ)

λ21φ+ ω2

(
λ2
λ1
β
)

(λ21φ)(
λ2
λ1
β
)2

(λ21φ)

+(λ22ψ) + ω3

The parameters of the surrogate model are identifiable functions of

the original parameters. Mostly.
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One more re-parameterization
By a change of variables

V = Y ′ + e3

= β′X ′ + ε′ + e3

= β′X ′ + (ε′ + e3)

= β′X ′ + ε′′

with

V ar(ε′′) = V ar(ε′) + V ar(e3)

= λ2
2ψ + ω3

= ψ′′
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The final surrogate model
Parameters are identifiable functions of the original model parameters.

X

W
1

Y

e
1

ε

W
2

e
1

β

W1 W2 V
W1 φ′ + ω1 φ′ β′φ′

W2 φ′ + ω2 β′φ′

V β′2φ′ + ψ′′

β′ = λ2
λ1
β
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Next slide please
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Recall the notation

yi = βyi + Γxi + εi

Fi =

(
xi
yi

)
di = ΛFi + ei

cov(xi) = Φx

cov(εi) = Ψ

cov(Fi) = Φ =

(
cov(xi) cov(xi,yi)

cov(yi,xi) cov(yi)

)
=

(
Φ11 Φ12

Φ>12 Φ22

)
cov(ei) = Ω

cov(Di) = Σ

Calculate a general expression for Σ(θ). 25 / 32



For the latent variable model, calculate Φ = cov(Fi)
Have cov(xi) = Φx, need cov(yi) and cov(xi,yi)

yi = βyi + Γxi + εi

⇒ yi − βyi = Γxi + εi

⇒ Iyi − βyi = Γxi + εi

⇒ (I− β)yi = Γxi + εi

⇒ (I− β)−1(I− β)yi = (I− β)−1(Γxi + εi)

⇒ yi = (I− β)−1(Γxi + εi)

So,

cov(yi) = (I− β)−1cov(Γxi + εi)(I− β)−1>

= (I− β)−1 (cov(Γxi) + cov(εi)) (I− β>)−1

= (I− β)−1
(
ΓΦxΓ

> + Ψ
)

(I− β>)−1
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Theorem: If the original model holds, (I− β)−1 exists.

yi = α + βyi + Γxi + εi yields (I− β)yi = α + Γxi + εi.
Suppose (I− β)−1 does not exist. Then the rows of I− β are
linearly dependent, and there is a q × 1 non-zero vector of
constants a with a>(I− β) = 0. So,

a>(I− β)yi = 0 = a>α + a>Γxi + a>εi

⇒ V ar(0) = V ar(a>Γxi) + V ar(a>εi)

⇒ 0 = a>ΓΦxΓ
>a + a>Ψa > 0.

Contradicts I− β singular.
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A hole in the parameter space

|I− β| 6= 0 can create a hole in the parameter space.
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More calculations

Have cov(yi) = (I− β)−1
(
ΓΦxΓ

> + Ψ
)

(I− β>)−1.

Know cov(xi) = Φx

Easy to get cov(xi,yi).
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For the measurement model, calculate Σ = cov(di)

di = ΛFi + ei

⇒ cov(di) = cov(ΛFi + ei)

= cov(ΛFi) + cov(ei)

= Λcov(Fi)Λ
> + cov(ei)

= ΛΦΛ> + Ω

= Σ
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Two-stage Proofs of Identifiability
Stage 1 is the latent variable model and Stage 2 is the measurement model.

Show the parameters of the latent variable model
(β,Γ,Φx,Ψ) can be recovered from Φ = cov(Fi).

Solve

(
cov(xi) cov(xi,yi)

cov(yi,xi) cov(yi)

)
= Φ =

(
Φ11 Φ12

Φ>12 Φ22

)
for (β,Γ,Φx,Ψ)?

Show the parameters of the measurement model (Λ,Φ,Ω)
can be recovered from Σ = cov(di).

This means all the parameters can be recovered from Σ.

Break a big problem into two smaller ones.

Develop rules for checking identifiability at each stage.

Just look at the path diagram.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/brunner/oldclass/2053f22
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