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Factor	Analysis:	The	Measurement	
Model	
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Example	with	2	factors	and	8	observed	variables	

Di = �Fi + ei

Di,1 = �11Fi,1 + �12Fi,2 + ei,1

Di,2 = �21Fi,1 + �22Fi,2 + ei,2 etc.

The	lambda	values	are	called	factor	loadings.	
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Terminology	

•  The	lambda	values	are	called	factor	loadings.	
•  F1	and	F2	are	sometimes	called	common	
factors,	because	they	influence	all	the	
observed	variables.	

•  Error	terms	e1,	…,	e8	are	sometimes	called	
unique	factors,	because	each	one	influences	
only	a	single	observed	variable.	

Di,1 = �11Fi,1 + �12Fi,2 + ei,1

Di,2 = �21Fi,1 + �22Fi,2 + ei,2 etc.



Factor	Analysis	can	be	

•  Exploratory:		The	goal	is	to	describe	and	
summarize	the	data	by	explaining	a	large	
number	of	observed	variables	in	terms	of	a	
smaller	number	of	latent	variables	(factors).	
The	factors	are	the	reason	the	observable	
variables	have	the	correlations	they	do.		

•  Confirmatory:		Statistical	estimation	and	
testing	as	usual.	



Unconstrained	(Exploratory)		Factor	Analysis	

•  Arrows	from	all	factors	to	all	observed	variables.	
•  Massively	non-identifiable.	
•  Reasonable,	been	going	on	for	around	70-100	years,	and	completely	

DOOMED	TO	FAILURE	as	a	method	of	statistical	estimation.	



Calculate	the	covariance	matrix	

Di = ⇤Fi + ei

cov(Fi) = �

cov(ei) = ⌦

Fi and ei independent (multivariate normal)

cov(Di) = ⌃ = ⇤�⇤> +⌦



A	Re-parameterization	

⌃ = ⇤�⇤> +⌦

Square root matrix: � = SS = SS>, so

⇤�⇤> = ⇤SS>⇤>

= (⇤S)I(S>⇤>)

= (⇤S)I(⇤S)>

= ⇤2I⇤
>
2



Parameters	are	not	identifiable	

•  Two	distinct	(Lambda,	Phi,	Omega)	sets	give	the	
same	Sigma,	and	hence	the	same	distribution	of	
the	data	(under	normality).	

•  Actually,	there	are	infinitely	many.	Let	Q	be	an	
arbitrary	covariance	matrix	for	F.	
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Restrict	the	model	

•  Set	Phi	=	the	identity,	so	cov(F)	=	I	
•  All	the	factors	are	standardized,	as	well	as	
independent.	

•  Justify	this	on	the	grounds	of	simplicity.	
•  Say	the	factors	are	“orthogonal”	(at	right	
angles,	uncorrelated).	

⇤�⇤> = ⇤2I⇤
>
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Another	Source	of	non-identifiability	
R	is	an	orthoganal	(rotation)	matrix	

Infinitely	many	rotation	matrices	produce	the	same	Sigma.	

⌃ = ⇤⇤> +⌦

= ⇤RR>⇤> +⌦

= (⇤R)(R>⇤>) +⌦

= (⇤R)(⇤R)> +⌦

= ⇤2⇤
>
2 +⌦



A	Solution	
•  Place	some	restrictions	on	the	factor	loadings,	so	that	
the	only	rotation	matrix	that	preserves	the	restrictions	
is	the	identity	matrix.	For	example,	λij	=	0	for	j>i	

•  There	are	other	sets	of	restrictions	that	work.	
•  Generally,	they	result	in	a	set	of	factor	loadings	that	
are	impossible	to	interpret.	Don’t	worry	about	it.	

•  Estimate	the	loadings	by	maximum	likelihood.	Other	
methods	are	possible	but	used	much	less	than	in	the	
past.	

•  All	(orthoganal)	rotations	result	in	the	same	value	of	
the	likelihood	function	(the	maximum	is	not	unique).	

•  Rotate	the	factors	(that	is,	post-multiply	the	estimated	
loadings	by	a	rotation	matrix)	so	as	to	achieve	a	simple	
pattern	that	is	easy	to	interpret.	

•  The	result	is	often	satisfying,	but	has	no	necessary	
connection	to	reality.	



Consulting	advice	

•  When	a	non-statistician	claims	to	have	done	a	“factor	
analysis,”	ask	what	kind.	

•  Usually	it	was	a	principal	components	analysis.	
•  Principal	components	are	linear	combinations	of	the	
observed	variables.	They	come	from	the	observed	
variables	by	direct	calculation.	

•  In	true	factor	analysis,	it’s	the	observed	variables	that	
arise	from	the	factors.	

•  So	principal	components	analysis	is	kind	of	like	
backwards	factor	analysis,	though	the	spirit	is	similar.	

•  Most	factor	analysis	software	(SAS,	SPSS,	etc.)	does	
principal	components	analysis	by	default.	
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