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Original and Surrogate Models

Original model has expected values, intercepts, and slopes
that need not equal one.

Re-parameterization via a change of variables yields a
surrogate model.

Centered surrogate model has the same covariance matrix
as the original.
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Why should the variance of the factors equal one?

Inherited from exploratory factor analysis, which was
mostly a disaster.

The standard answer is something like this: “Because its
arbitrary. The variance depends upon the scale on which
the variable is measured, but we cant see it to measure it
directly. So set it to one for convenience.”

But saying it does not make it so. If F is a random
variable with an unknown variance, then

V ar(F ) = φ is an unknown parameter.
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Centered Model
One factor, four observed variables

d1 = λ1F + e1

d2 = λ2F + e2

d3 = λ3F + e3

d4 = λ4F + e4

e1, . . . , e4, F all independent
V ar(ej) = ωj V ar(F ) = φ
λ1, λ2, λ3 6= 0

Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


Passes the Counting Rule test with 10 equations in 9 unknowns
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But for any c 6= 0

θ1 φ λ1 λ2 λ3 λ4 ω1 ω2 ω3 ω4

θ2 φ/c2 cλ1 cλ2 cλ3 cλ4 ω1 ω2 ω3 ω4

Both yield

Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


The choice φ = 1 just sets c =

√
φ: convenient but seemingly

arbitrary.
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Lack of identifiability

For any set of true parameter values, there are infinitely
many untrue sets of parameter values that yield the same
Σ and hence the same probability distribution of the
observable data (assuming multivariate normality).

There is no way to know the full truth based on the data,
no matter how large the sample size.

But there is a way to know the partial truth.
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Certain functions of the parameter vector are
identifiable

At points in the parameter space where λ1, λ2, λ3 6= 0,
σ12σ13
σ23

= λ1λ2φλ1λ3φ
λ2λ3φ

= λ21φ

And so if λ1 > 0, the function λjφ
1/2 is identifiable

for j = 1, . . . , 4.

σ11 − σ12σ13
σ23

= ω1, and so ωj is identifiable for j = 1, . . . , 4.

σ13
σ23

= λ1λ3φ
λ2λ3φ

= λ1
λ2

, so ratios of factor loadings are
identifiable.
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Reliability

Reliability is the squared correlation between the observed
score and the true score.

The proportion of variance in the observed score that is not
error.

For D1 = λ1F + e1 it’s

ρ2 =

(
Cov(D1, F )

SD(D1)SD(F )

)2

=

(
λ1φ√

λ21φ+ ω1
√
φ

)2

=
λ21φ

λ21φ+ ω1

λ21φ and ω1 are both identifiable, so we’ve got it.
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For completeness

ρ2 =
λ21φ

λ21φ+ ω1
Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4



σ12σ13
σ23σ11

=
λ1λ2φλ1λ3φ

λ2λ3φ(λ21φ+ ω1)

=
λ21φ

λ21φ+ ω1

= ρ2
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What can we successfully estimate?

Error variances are knowable.

Factor loadings and variance of the factor are not knowable
separately.

But both are knowable up to multiplication by a non-zero
constant, so signs of factor loadings are knowable (if one
sign is known).

Relative magnitudes (ratios) of factor loadings are
knowable.

Reliabilities are knowable.
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Re-parameterization

The choice φ = 1 is a very smart re-parameterization.

It re-expresses the factor loadings as multiples of the
square root of φ.

That is, in standard deviation units.

It preserves what information is accessible about the
parameters of the original model.

Much better than exploratory factor analysis, which lost
even the signs of the factor loadings.

This is the second major re-parameterization. The first was
losing the the means and intercepts.
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Re-parameterizations

Original model → Surrogate model 1 → Surrogate model 2 . . .
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Add a factor to the centered original model
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Model Equations

d1 = λ1F1 + e1

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = λ4F2 + e4

d5 = λ5F2 + e5

d6 = λ6F2 + e6

cov

(
F1

F2

)
=

(
φ11 φ12

φ12 φ22

) e1, . . . , e6 independent of each other and of F1, F2

λ1, . . . λ6 6= 0
V ar(ej) = ωj
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Parameters are not identifiable

Σ =
λ21φ11 + ω1 λ1λ2φ11 λ1λ3φ11 λ1λ4φ12 λ1λ5φ12 λ1λ6φ12
λ1λ2φ11 λ22φ11 + ω2 λ2λ3φ11 λ2λ4φ12 λ2λ5φ12 λ2λ6φ12
λ1λ3φ11 λ2λ3φ11 λ23φ11 + ω3 λ3λ4φ12 λ3λ5φ12 λ3λ6φ12
λ1λ4φ12 λ2λ4φ12 λ3λ4φ12 λ24φ22 + ω4 λ4λ5φ22 λ4λ6φ22
λ1λ5φ12 λ2λ5φ12 λ3λ5φ12 λ4λ5φ22 λ25φ22 + ω5 λ5λ6φ22
λ1λ6φ12 λ2λ6φ12 λ3λ6φ12 λ4λ6φ22 λ5λ6φ22 λ26φ22 + ω6



θ1 = (λ1, . . . , λ6, φ11, φ12, φ22, ω1, . . . , ω6)

θ2 = (λ′1, . . . , λ
′
6, φ

′
11, φ

′
12, φ

′
22, ω

′
1, . . . , ω

′
6)

λ′1 = c1λ1 λ′2 = c1λ2 λ′3 = c1λ3 φ′11 = φ11/c
2
1

λ′4 = c2λ4 λ′5 = c2λ5 λ′6 = c2λ6 φ′22 = φ22/c
2
2

φ′12 = φ12
c1c2

ω′
j = ωj for j = 1, . . . , 6

15 / 53



Variances and covariances of factors

Are knowable only up to multiplication by positive
constants.

Since the parameters of the latent variable model will be
recovered from Φ = cov(F), they also will be knowable
only up to multiplication by positive constants at best.

Luckily, in most applications the interest is in testing
(pos-neg-zero) more than estimation.
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cov(F1, F2) is un-knowable, but

Easy to tell if its zero.

Sign is known if one factor loading from each set is known
say λ1 > 0, λ4 > 0.

And,

σ14√
σ12σ13
σ23

√
σ45σ46
σ56

=
λ1λ4φ12

λ1
√
φ11λ4

√
φ22

=
φ12√

φ11
√
φ22

= Corr(F1, F2)

The correlation between factors is identifiable!
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The correlation between factors is identifiable

Furthermore, it is the same function of Σ that yields φ12
under the surrogate model with V ar(F1) = V ar(F2) = 1.

Therefore, Corr(F1, F2) = φ12 under the surrogate model is
actually Corr(F1, F2) under the original model.

Estimation is very meaningful.
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Setting variances of factors to one

Is a very smart re-parameterization.

Is excellent when the interest is in correlations between
factors.
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Re-parameterization as a change of variables

dj = λjFj + ej

= (λj
√
φjj)

(
1√
φjj

Fj

)
+ ej

= λ′jF
′
j + ej
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Covariances

Cov(F ′
j , F

′
k) = E

(
1√
φjj

Fj
1√
φkk

Fk

)

=
E(FjFk)√
φjj
√
φkk

=
φjk√
φjj
√
φkk

= Corr(Fj, Fk)
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The other standard trick

Setting variances of all the factors to one is an excellent
re-parameterization in disguise.

The other standard trick is to set a factor loading equal to
one for each factor.

d = F + e is hard to believe if you take it literally.

It’s actually a re-parameterization.

Every model you’ve seen with a factor loading of one is a
surrogate model.
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Back to a single-factor model with λ1 > 0

d1 = λ1F + e1

d2 = λ2F + e2

d3 = λ3F + e3
...

dj =

(
λj
λ1

)
(λ1F ) + ej

= λ′jF
′ + ej

d1 = F ′ + e1

d2 = λ′2F
′ + e2

d3 = λ′3F
′ + e3

...
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Σ under the surrogate model

Σ =

 φ+ ω1 λ2φ λ3φ
λ2φ λ22φ+ ω2 λ2λ3φ
λ3φ λ2λ3φ λ23φ+ ω3



Value under model
Function of Σ Surrogate Original

σ23
σ13

λ2
λ2
λ1

σ23
σ12

λ3
λ3
λ1

σ12σ13
σ23

φ λ21φ
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Under the surrogate model

It looks like λj is identifiable, but actually it’s λj/λ1.

Estimates of λj for j 6= 1 are actually estimates of λj/λ1.

It looks like φ is identifiable, but actually it’s λ21φ.

φ is being expressed as a multiple of λ21.

Estimates of φ are actually estimates of λ21φ.

Make d1 the clearest representative of the factor.
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Add an observable variable to the surrogate model

Parameters are all identifiable, even if the factor loading of
the new variable equals zero.

Equality restrictions on Σ are created, because we are
adding more equations than unknowns.

These equality restrictions apply to the original model.

It is straightforward to see what the restrictions are,
though the calculations can be time consuming.
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Finding the equality restrictions

Calculate Σ(θ).

Solve the covariance structure equations explicitly,
obtaining θ as a function of Σ.

Substitute the solutions back into Σ(θ).

Simplify.
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Example: Add a 4th variable

D1 = F + e1

D2 = λ2F + e2

D3 = λ3F + e3

D4 = λ4F + e4

e1, . . . , e4, F all independent
V ar(ej) = ωj V ar(F ) = φ
λ1, λ2, λ3 6= 0
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Covariance Matrix

Σ(θ) =


φ+ ω1 λ2φ λ3φ λ4φ
λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


Solutions

λ2 = σ23
σ13

λ3 = σ23
σ12

λ4 = σ24
σ12

φ = σ12σ13
σ23

Substitute

σ12 = λ2φ

=
σ23
σ13

σ12σ13
σ23

= σ12
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Substitute solutions into expressions for the covariances

σ12 = σ12

σ13 = σ13

σ14 =
σ24σ13
σ23

σ23 = σ23

σ24 = σ24

σ34 =
σ24σ13
σ12
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Equality Constraints

σ14σ23 = σ24σ13

σ12σ34 = σ24σ13

These hold regardless of whether factor loadings are zero (1234).

σ12σ34 = σ13σ24 = σ14σ23
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Add another 3-variable factor

Identifiability is maintained.

The covariance φ12 = σ14

Actually σ14 = λ1λ4φ12 under the original model.

The covariances of the surrogate model are just those of
the surrogate model, multiplied by un-knowable positive
constants.

As more variables and more factors are added, all this
remains true.
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Comparing the surrogate models

Either set variances of factors to one, or set one loading per
factor to one.

Both arise from a similar change of variables.

F ′
j = λjFj or F ′

j = 1√
φjj
Fj .

Meaning of surrogate model parameters in terms of the
original model is different except for the signs.

Both surrogate models share the same equality constraints,
and hence the same goodness of fit results for any given
data set.

Are these constraints also true of the original model?
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The Equivalence Rule
See text for proof

For a centered factor analysis model with at least one reference
variable for each factor, suppose that surrogate models are
obtained by either standardizing the factors, or by setting the
factor loading of a reference variable equal to one for each
factor. Then the parameters of one surrogate model are
identifiable if and only if the parameters of the other surrogate
model are identifiable.
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Which re-parameterization is better?

Technically, they are equivalent.

Interpretation of the surrogate model parameters is different.

Standardizing the factors (Surrogate model 2A) is more
convenient for estimating correlations between factors.

Setting one loading per factor equal to one (Surrogate model 2B)
is more convenient for estimating the relative sizes of factor
loadings.

Hand calculations and identifiability proofs with Surrogate
model 2B can be easier.

If there is a serious latent variable model, Surrogate model 2B is
much easier to specify with lavaan.

Mixing Surrogate model 2B with double measurement is natural.

Don’t do both restrictions for the same factor!
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Why are we doing this? To buy identifiability.

The parameters of the original model cannot be estimated
directly. For example, maximum likelihood will fail because
the maximum is not unique.

The parameters of the surrogate models are identifiable
(estimable) functions of the parameters of the true model.

They have the same signs (positive, negative or zero) as the
corresponding parameters of the true model.

Hypothesis tests mean what you think they do.

Parameter estimates can be useful if you know what the
new parameters mean.
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The Crossover Rule

It is unfortunate that variables can only be caused by one
factor. In fact, its unbelievable most of the time.
A pattern like this would be nicer.

The	Crossover	Rule	
•  It	is	unfortunate	that	variables	can	only	be	
caused	by	one	factor.		In	fact,	it’s	unbelievable	
most	of	the	time.	

•  A	pattern	like	this	would	be	nicer.	
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The Crossover Rule
A weak version of the extra variables rule

When you add a set of observable variables to a measurement
model whose parameters are already identifiable

Straight arrows with factor loadings on them may point
from each existing factor to each new variable.

You don’t need to include all such arrows.

Error terms for the new set of variables may have non-zero
covariances with each other, but not with the error
variances or factors of the original model.

Some of the new error terms may have zero covariance with
each other. Its up to you.

All parameters of the new model are identifiable.

38 / 53



The Crossover Rule
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We can do a bit better
Include more covariances between error terms.

Call it the extra variables rule.
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We have some identifiability rules

Double Measurement rule.

Scalar three-variable rules.

The equivalence rule.

Combination rule.

Extra variable rule (enhanced cross-over rule)

Error-free rule.

Need the 2-variable rules.

Need the vector 3-variable rule.
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Two-variable Rule

The parameters of a factor analysis model are identifiable
provided

There are two factors.

There are two reference variables for each factor.

For each factor, either the variance equals one and the sign
of one factor loading is known, or the factor loading of at
least one reference variable is equal to one.

The two factors have non-zero covariance.

Errors are independent of one another and of the factors.
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Two-variable Addition Rule

A factor with just two reference variables may be added to a
measurement model whose parameters are identifiable, and the
parameters of the combined model will be identifiable provided

The errors for the two additional reference variables are
independent of one another and of the error terms already
in the model.

For each factor, either the variance equals one and the sign
of one factor loading is known, or the factor loading of at
least one reference variable is equal to one.

In the existing model with identifiable parameters,

There is at least one reference variable for each factor, and
At least one factor has a non-zero covariance with the new
factor.
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Vector 3-variable rule

Let

d1 = F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3

where

F, d1 and d2 and d3 are all p× 1.

Λ2 and Λ3 have inverses.

cov(F, ej) = cov(ei, ej) = O

This is not quite enough.
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Scalar 3-variable rule
Put some more arrows
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Brand Awareness Model 1
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Brand Awareness Model 2
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Brand Awareness Model 3
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Brand Awareness Model 4
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Brand Awareness Model 5
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A big complicated measurement model

F
1

F
2

F
3

F
4

d
1

d
2

d
3

e
1

e
2 e

3

d
4

e
4

d
5

d
6

e
5 e

6

d
7

d
8

e
7 e

8

d
9

d
10

e
9 e

10

d
11

d
12

e
11 e

12

1 1 1 1 1

1

λ
2 λ

3
λ
4

λ
5

λ
6

λ
8

ω
6,7

φ
1,2

φ
2,3

φ
2,4

φ
3,4

λ
7

ω
11,12

51 / 53



Bifactor Model
From Uli Schimmack’s blog
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/brunner/oldclass/2053f22
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