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Preface to the Second Edition

The modeling and analysis of lifetimes is an important aspect of statistical work in a:
wide variety of scientific and technological fields. This book provides a comprehen- .
sive account of models and methods for lifetime data.. ,

“The field of lifetime data analysis has grown and matured since the first edition of
the book was published. This second edition has accordingly been rewritten to reflect
new developments in methodology, theory, and computing. The orientation and phi-
losophy, however, remain close to the first edition. Lifetime data analysis is cov-
ered without concentrating exclusively on any specific field of application, though
as before most of the examples are drawn from engineering and the biomedical sci-
ences. There is a strong emphasis on parametric models, but non- and semiparametric
methods are also given detailed treatments. Likelihood-based inference procedures
are emphasized and serve to unify the methodology; implementation using both spe-
cial lifetime data software, and general optimization software is discussed.

Extensive developments in software have made it possible to focus less on com-
putational details and simplified methods of estimation than in the first edition, and
to expand examples and illustrations, Graphical tools now feature more prominently.
Many new references have been added, and some references and material from the
first edition thus have been dropped. I have attempted, however, to retain enough
early references to indicate the origins and evolution of different topics.

This edition of the book, like the first, is intended to serve as a reference for indi-
viduals interested in the analysis of lifetime data and as a text for graduate courses.
Several appendices review aspects of statistical theory and computation that underlie
the methodology presented in the book. A Problems and Supplements section con-
cludes each chapter. There are many statistical software packages with capabilities
in lifetime data analysis, and I have not attempted to provide an overview or com-
parison. Most of the examples were prepared using S-Plus, but other packages could
have been used. Brief Computational Notes are provided at the ends of most chap-
ters. Data sets discussed in the book are almost all either given or identified as being
available electronically from Web locations mentioned in Appendix G.

There has been a small reorganization of topics from the first edition, consisting
mainly of an expanded discussion of observation schemes and censoring (now in a
new Chapter 2), and an expanded treatment of multiple failure modes (now given in

Xv



xvi PREFACE TO THE SECOND EDITION

a separatc Chaptcr 9). Several new topics have been introduced, including counting
process-martingale tools, resampling and simulation methodology, estimating func-
tion methods, treatments of interval censored and truncated data, and discussions of
multivariate lifetimes and event history models. In addition, material on many other
topics has been updated and extensively revised, as have the Problems and Supple-
ments sections.

To keep the book at a rcasonable length I have had to omit or merely outline
certain topics that might havs been included, Some such topics are mentioned in the
Bibliographic Notes that have been introduced at the ends of chapters, or in the Prob-
lems and Supplements sections. Statistical science encyclopedias (e.g. Kotz et al.
1988: Armitage and Colton 1998) are valuable sources of further information on
a wide range of topics associated with lifetime data, Web-based tools for locating
resourcc malerials also make it relatively easy to research topics not covered in the

-book,

Chapter | contains introductory material on lifetime distributions and surveys
important models, Chapter ' deals with observation schemes for lifetime data and
the formation of likelihood functions. Chapter 3 discusses graphical methods and
nonparametric estimation of distribution characteristics based on different types of
lifetime data, Chapter 4 introduces inference procedures for parametric models,
including exponential, gamria, inverse Gaussian, and mixture models, Chapter 5
provides corresponding proczdures for log-location-scale models and extensions to
them; the Weibull. log-normal and log-logistic models are treated in detail. Chap-
ter 6 discusses regression models, exploratory and diagnostic methods, and develops
inference procedures for parametric models, Chapter 7 deals with semiparametric
methodology for proportional or multiplicative hazards models, Chapter 8 presents
rank-based and semiparamelric procedures based on location-scale models, Chap-
ter Y gives a thorough treatment of multiple failure modes, or competing risks.
Chapter 10 discusses goodness-of-fit tests and describes procedures for specific
maodels in the book. Finally, Chapter 11 introduces several important topics that
go heyond univariate survival analysis: multivariate lifetime models, sequences of
lifetimes, event history proce.ses, and joint models for lifetimes and coprocesses. It
is shown how the methods of previous chapters can be applied to many problems in
these areas.

I am indebted- to various iadividuals for their contributions to this edition of the
book. Ker-Ai Lee and Melanie Wigg assisted with computing and the preparation
of examples. Some examples are based on joint work with Richard Cook, Jack
Kalbfleisch, and graduate stirdent Wenqing He. I have benefitted for many years
from collaboration and conveisations with Richard Cook, Jack Kalbfleisch, and Jock
MacKay, and from my interactions with numerous fine graduate students at Water-
loo.

I want to acknowledge and thank Lynda Clarke, who has labored long, hard, and
expertly on the manuscript, as she did on the first edition of the bock 20 years ago.

The University of Waterloo's Department of Statistics and Actuarial Science has
provided a stimulating envirorment for research and teaching throughout my career.
Part of the work for this editior was done during a sabbatical leave spent at University

PREFACE Tb THE SECOND EDITION XV

of Auckland (January-March 2000) and at University College London (January-
March 2001); their hospitality is gratefully acknowledged. I also want to acknowl-
edge support over many years from the research grants programs of the Natural

Sciences and Engineering Research Council of Canada (NSERC), and to thank Gep-
eral Motors Canada for their cosponsorship, with NSERC, of a personal Industrial

Research Chair, . .
Finally, I thank my family and especially my wife, Liz, for her patience and sup-

port during this project, .
JERALD, F. LAWLESS

Waterloo, Ontario
April 2002
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Preface to the First Edition

The statistical analysis of lifetime or response time data has become a topic of con-
siderable interest to statisticians and workers in areas such as engineering, medicine,
and the biological sciences, The field has expanded rapidly in recent years, and pub-
lications on the subject can be found in the literatures of several disciplines besides
statistics. This bock draws together material on the analysis of lifetime data and gives
a comprehensive presentation of important models and methods,

My aim is to give a broad coverage of the area without unduly concentrating on
any single field of application, Most of the examples in the book, however, come
from engineering or the biomedical sciences, where these methods are widely used.
The book contains what I feel are the most important topics in lifetime data method-
ology. These include various parametric models and their associated statistical meth-
ods, nonparametric and distribution-free methods, and graphical procedures. To keep
the book at a reasonable length I have had to either sketch or entirely omit topics that
could have usefully been treated in detail. Some of these topics are referenced or
touched upon in the Problems and Supplements sections at the ends of chapters.

" This book is intended as a reference for individuals interested in the analysis of -
lifetime data and can also be used as a text for graduate courses in this area, A basic-
knowledge of probability and statistical inference is assumed, but I have attempted to -
carefully lay out the models and assumptions upon which procedures are based and
to show how the procedures are developed, In addition, several appendices review
statistical theory that may be unfamiliar to some readers. Numerical illustrations
are given for most procedures, and the book contains numerous examples involving
real data. Each chapter concludes with a Problems and Supplements section, which
provides exercises on the chapter material, and supplements and extends the topics
discussed. For the reader interested in research on lifetime data methodology I have
given fairly extensive references to recent work and outstanding problems.

Chapter 1 contains introductory material on lifetime distributions and surveys the
most important parametric models..Censoring is introduced, and its ramifications for
statistical inference are considered. In. Chapter 2 some methods of examining uni-
variate lifetime data and obtaining nonparametric estimates of distribution charac-
teristics are discussed; life tables and graphical procedures play key roles, Chapters

Xix
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3, 4, and 5 deal with in‘erence for important parametric models, including the expo-
nential, Weibull, gamma, log-normal, and generalized gamma distributions, This is
extended in C]{apter 6 to problems with concomitant variables, through regression
models based on these distributions. Chapters 7 and 8 present nonparametric and
distribution-free procedures: Chapter 7 deals with methods based on the propor-
tional hazards regression model, and Chapter 8 gives distribution-free procedurés
for single- and many-sample problems. Goodness-of-fit tests for lifetime distribution
models are considered in Chapter 9, Chapter 10 contains brief discussions of two
important topics for which it was not feasible to give extended treatments: multi-
variate and stochastic p-ocess models, Several sections in this book are marked with
asterisks; these contain Jiscussions of a technical nature and can be omitted on a first
reading,

A final remark concerning the methods presented is that the computer is, as always
in modern statistics, a vseful if not indispensible tool, For some problems, methods
that do not require a co nputer are available, but more often access to a computer is
a necessity. 1 have com nented, wherever possible, on the computational aspects of
procedures and have included additional material on computation in the Appendices,

Part of the work for the book was done during a sabbatical leave spent at Imperial
College, London, and the University of Reading from 1978 to 1979; their hospitai«
ity is gratefully acknowledged, I would also like to express my appreciation to two
extremely fine typists, Annemarie Nittel and Lynda Hohner, who labored long and
diligently in the preparation of the manuscript.

J. F. LAWLESS

Waterlon, Omario
June 1981

- Statistical Models and Methods
for Lifetime Data '




CHAPTER 1

Basic Concepts and Models

1.1 INTRODUCTION

The statistical analysis of what are variously referred to as lifetime, survival time,
or failure time data is an important topic in many areas, including the biomedical,
engineering, and social sciences. Applications of lifetime distribution methodology
range from investigations of the durability of manufactured items to studies of human
diseases and their treatment. Some methods of dealing with lifetime data are quite
old, but starting about 1970 the field expanded rapidly with respect tc methodology,
theory, and fields of application. Software packages for lifetime data analysis have
been widely available since about 1980, with the frequent appearance of new features
and packages.

This book presents and illustrates statistical methods for modeling and analyzing
lifetime data, The aim is to provide a general treatment, and not focus exclusively on
a particular field of application, Lifetime distribution methodology is widely used in
the biomedical and engineering sciences, however, and. most of the examples in the
book come from those areas.

Throughout the book various types of data will, for convenience, be referred to as
“lifetime” data, Basically, however, we consider situations in which the time to the
oceurrence of some event is of interest for individuals in some population. Some-
times the events are actual deaths of individuals and “lifetime” is the length of life
measured from some particular starting point. In other instances “lifetime” and the
words “death” or “failure,” which denote the event of interest, are used in a figura-
tive sense. In discussing applications, other terms such as “survival time” and “failure
time” are also frequently used. :

The following examples illustrate some ways in which lifetime data arise.

1
1

Example 1.1.1. Manufactured items with mechanical or electronic components
are often subjected to life tests in order to obtain information on their durability. This
involves putting items in operation, often in a laboratory setting, and observing them

" until they fail, It is common here to refer to the lifetimes as “failure times,” since’

when an item ceases operating satisfactorily, it is said to have “failed.”



2 BASIC CONCEPTS AND MODELS

Example 1,1.2, Demographers and social scientists are interested in the dura-
tion of certain life “states™ “or humans, Consider, for example, marriage and, in par-
ticular, the marriages formed during the year 1980 in a particular country. Then the
lifetime of a marriage would be its duration; a marriage may end due tc annulment,
divorce, or death,

Example 1.1.3.  In me-ical studies dealing with potentially fatal diseases one
is interested in the survival time of individuals with the disease, measured from the
date of diagnosis or some other starting point. For example, it is common to compare
treatments for a disease at least partly in terms of the survival time distributions for
patients receiving the differsnt treatments.

Example 1.1.4. A stan:dard experiment in the investigation of carcinogenic sub-
stances is one in which laboratory animals are subjected to doses of the substance
and then observed to see if they develop tumors, A main variable of interest is the
time to appearance of a tumor, measured from when the dose is administered.

The definition of lifetime. includes a time scale and time origin, as well as a speci-
fication of (he event (e.p., fzilure or death) that determines lifetime. In some settings
it is difficult to say precisely when the event occurs: for example, this is the case
for (he appearance of a tumor in Example '1,1.4, The time scale is not always real
or chronological time, espe:ially where machines or equipment are concerned. For
example, miles driven migh be used as a time scale with motor vehicles, and number
of pages of output for a conwputer printer or photocopier.

The main problems addr:ssed in this book are those of specifying models to rep-

_resent lifetime distributions and of making inferences based on these models. The

objectives of modeling and statistical analysis include description or estimation of
distributions, comparison of distributions, furthering scientific understanding, pro-
cess or system improvement, prediction, and decision, Covariates or explanatory
variables that can be related to lifetime usually feature prominently in these activ-
ities, In some settings there may be more than one lifetime variable associated with
an individual, or an individual may die in different ways. The types of models used
in lifetime data analysis range from fully parametric to nonparametric; semipara-
metric models that have both parametric and nonparametric features are common,
The remaining sections of this chapter introduce lifetime models, but first we discuss
some additional features and examples of lifetime data,

The chronological time nceded to observe the lifetimes of all individuals in a study
may be large cnough that practical constraints prevent full observation. This leads
to what is termed “censorirg,” in which an individual’s lifetime is known only to
excced a certain value. In Example 1.1.1, for example, a life test might be terminated
after, say, 28 days; if an itern had not failed by that time, we would know only that
its lifetime exceeded 28 days and refer to that value as a “censoring time.” More
gencrally, it may nol be possible to determine exactly when a failure or death occurs,
because individuals are seer only at certain times, In that case, we may know only
that a lifetime lies in some interval (L, R); we refer to this as “interval censoring.”
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Another complication is that covariates associated with lifetime data may vary over
time, and it may nct be possible to observe their values at all times. '

These and other features associated with lifetime data create interesting problems
for analysis, and much of the development of the subject has been devoted to dealing
with them. Chapter 2 considers these issues in detail. The remainder of this chapter
covers the basic concepts of lifetime distributions and introduces important mod-
els. Section 1.2 discusses lifetime distributions generally, and Section 1.3 introduces
important parametric univariate models. Sections 1.4 to 1.6 discuss more complex
models involving covariates, multiple lifetimes, and multiple types of failure. Before
turning to this, we consider a few examples of lifetime data, to illustrate some of the
p'oints just mentioned.

Example 1.1.5. Nelson (1972a) described the results of a life test experiment in
which specimens of a type of electrical insulating fluid were subjected to a constant
voltage stress, The length of time until each specimen failed, or “broke down,” was
observed. Table 1.1 gives results for seven groups of specimens, tested at voltages
ranging from 26 to 38 kilovolts (kV).

*'The main purpose of the experiment was to investigate the distribution of time to
breakdown for the insulating fluid and to relate this to the voltage level, Quite clearly,
breakdown times tend to decrease as the voltage increases. In addition to the formu-
lation of a model relating breakdown times and voltage, the estimation of the break-
down time distrlbution at a “normal” voltage of 20 kV was important. Breakdown
times tend to be very large at 20 kV, and this involves a substantial extrapolation
from the experimental data. ‘ : ‘

The experiment in Example 1.1.5 was run long enough to observe the failure of
all the‘insulation specimens tested. Sometimes it may take a lonig time for all jtems
to fail, and it is deemed necessary to terminate a study before this can happen. In this
éase; the lifetimes of certain items are censored. For example, if a decision had been

Table 1.1, Times to Breakdown (in minutes) at Each of Seven Voltage Levels

Voltage Level (kV) m Breakdown Times
© 26 3 5.79, 1579.52, 2323.7

28 5 68.85, 426.07, 110,29, 108.29, 1067.6

30 11 17.05, 22.66, 21,02, 175.88, 139.07, 144.12, 20.46, 43.40,
194,90, 47.30, 7.74

32 15 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91,
0.27, 0.69, 100.58, 27.80, 13.95, 53,24

34 19 0.96, 4.15, 0.19, 0,78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91,
32.52, '3.16, 4.85,2.78, 4.67, 1.31,'12,06, 36,71, 72,89

36 15 1.97, 0.59, 2.58, 1.69, 2.71, 25,50, 0.35, 0.99, 3.99, 3.67,

' 2.07, 0.96, 5.35, 2,90, 13.77
38 8 0.47,0.73, 1,40, 0,74, 0.39, 1.13, 0.09, 2.38
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Table 1.2. Lifetimes for 10 Pieces of Equipment
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made in the preceding experiment to terminate testing after 180 minutes had elapsed,
then two of the observations in the 26- and 28-kV sample and one each in the 30-
and 32-kV samples would have been censored. In each case, we would not know the
exact Failure time of the item, but only that it exceeded 180 minutes.

Censoring arises in lifetime data in a variety of ways and is discussed in detail
in Chapter 2. The remaining examples in this section all involve censoring of some

kind.,

Example 1.1.6. Bartholomew (1957) considered a situation in which pieces of
equipment were installed in a system at different times. At a later date some of the
pieces had failed and the rest were still in use. With the aim of studying the lifetime
distribution of the equipment, Bartholomew gave the data in Table 1.2 for 10 pieces
of equipment, The first item was installed on June 11 and data were collected up to
August 31. At that time, three items (numbers 2, 4, and 10) had still not failed, and
their failure times are therefore censored; we know for these items only that their

failure times exceed 72, 60, and 21 days, respectively.

Example 1.1.7. Gehan (1965) and others have discussed the results of a clinical
trial reported by Freireich et al. (1963), in which the drug 6-mercaptopurine (6-MP)
was compared to a placebo with respect to the ability to maintain remission in acute
leukemia patients. Table 1.3 gives remission times for two groups of 21 patients each,
one group given the placebo and the other the drug 6-MP.

The starred observations are censoring times; for these patients, the disease was
still in a state of remission at the end of the study. Censoring is common in clini-
cal trials, since the trial is often terminated before all individuals have “failed.” In
addition, individuals may enter a study at various times, and hence may be under
observation for different lengths of time. In this trial, individuals entered the study in
matched pairs at different times and a sequential stopping rule was used to termmate
the study (Klein and Moeschberger 1997 p. 2).

Exémple 1.1.8. Themeau and Hamilton (1997) discussed data that arose in a
study of persons with cystic fibrosis (Fuchs et al. 1994), These individuals are sus-
ceptible to an accumulation of mucus in the lungs, which leads to pulmonary exacer-

_ bations and deterioration of lung function, In a clinical trial to mvestngqte the efficacy

of daily administration of a recombinant form of the human enzyme DNase 1 in pre-
venting exacerbations, subjects were randomly assigned to the new treatment (called
thDNase or Pulmezyme) or a placebo. Subjects, who were exacerbation-free at ran-

Table 1.3. Lengths of Remission (in weeks) for Two Groups of Patients®

MR 66,667, 09 10,10% 11% 13, 16, 17*, 19*, 20%, 22, 23, 25%,32%, 32%, 34*, 35"
Placebo. 1,1,2,2,3,4,4,5,5,8,8, 88 11,11, 12, 12, 15, 17, 22, 23

9Stars denote censored observations,
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Table 1.4, Times to First Pulmonary Exacerbation for

10 Subjects
1 (days)” trt fev?
168" 1 28.8
169* 1 64.0
65 0 67.2
168 1 57.6
71 0 57.6
166* 1 25,6
168 0 86.4
90 0 32.0
169* 1 86.4
8 0 28.8

“Starred values are censering times, )
" fev measure is percent of predicted normal fev, based on sex, age,
and height,

domizalion, were followed for approximately 169 days and the days at which an
exacerbation period started were noted. When an exacerbation spell began, a subject
was given antibjotics, and after the exacerbation had disappedred the subject was
then considered at risk for &t new exacerbation. Consequently, some subjects had no

- exucerbations over the 169-day follow-up period, some had one, and some had two
or more,

There were 324 subject:: assigned to the Placebo group by randomization, and
321 to the rhDNase group, The objective was to compare the two groups in terms of
the avoidance of exacerbatins. The simplest comparison is to note that 139 (43%)
of Placebo subjects had at least one exacerbation and that 104 (32%) of rhDNase
subjects did. A more comp:ehensive comparison can be based on the time ¢ to the
first exacerbation after randsmization. Table {.4 shows data for ten subjects: failure
time 1 and two covariates, {rt (= 0 for Placebo and ! for rhDNase) and fev (forced
expiratory volume at the time of randomization, which is a measure of initial pul-
monary function). A still nore comprehensive analysis might also use the data on
second and subsequent exacerbations; this topic is discussed in Chapter 11.

Example L1Y,  Table 1.5 presents survival data on 40 advanced lung cancer
patients, taken from a study discussed by Prentice (1973), The main purpose of
the study was to compare tie effects of two chemotherapy treatments in prolong-
ing survival time. All patien's represented here received prior therapy and were then
randomly assigned (o one o7 the two treatments, termed “standard” and “test.”” Sur-
vival times 7, measured (ror the start of treatment for each patient, are recorded in
Table I5. Censored observitions correspond to patients whe were still alive at the
time the data were collected. Concomitant variables that were thought possibly to
he important are also shown for each patient, First, patients can have different types
of tumors; they have been classified into four categories (squamous, small, adeno;

INTRODUCTION !

Table 1.5. Lung Cancer Survival Data®? i

t X X2 X3 t xp ! Xz X3

Standard, Squamous Test, Squamous

411 70 64 5 999 90 54 12
126 60 63 9 231* 50 52 8
118 70 65 11 991 70 50 7
82 40 69 10 1 20 63 21
8 . 40 63 58 201 80 . 52 28
25*. 70 48 9 44 60 70 13
11 70 48 11 15 50 40 13
Standard, Small . . Test, Small
) - 103* 70 36 22
54 80 . 63 -4 2 40 44 26
153 60 63 14 20 10 54 9
16 30 53 4 51 30 59 87
56 80 43 12
21 40 35 2 Test, Adeno
287 60 66 25
10 40 67 23 18 40 69 5
90 60 50 22
Standard, Adeno 84 80 62 4
8 20 61 19 Test, Large
4
2 % & 164 70 68 15
Standard, Large 19 30 39 4
, 43 60 49 1t
177 50 66 16 340 80 64 10
12 40 68 12 231 70 67 18
200 80 41 12
250 70 53 8
100 " 60 37 13

“Sinrred quantities denole censored cbservations, ) ]
bDays of survival ¢, performance status x1, age in years x3, and number of months from diagnosis to

cnlry into the study xa.

and large). Also given for each patient is a Karnofsky score, or performance status,

assigned at the time of diagnosis. This is a measure of general medical status on a .

scale of 10 to 90: 10, 20, and 30 mean that the patient is completely hospitalized; 40,
50, and 60 that he is partially confined to hospital; and 70, 80, and 90 that he is able
to care for himself, Finally, the age of the patient and the number of months from
diagnosis of lung cancer to entry into the study are recorded.

Example 1.1,10. The data in Table 1.6 are from an experiment in which new
models of a small electrical appliance were being tested (Nelson 1970b). The appli-

ances were operated repeatedly by an automatic testing machine; the lifetimes given
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Table 1:6. Failure Data for Electrical Appliance Test

Number Number K Number

of Cycles Failure of Cycles Failure of Cycles Failure
to Failure Code to Failure Code to Failure Code
I | 958 10 35 15
2,223 9 7,846 9 2,400 9
4.329 ) 9 170 6 1,167 9
3112 9 31,059 6 2,831 2
13,403 0 3,504 9 2,702 10
6,367 0 2,568 9 708 6
2,451 5 2,471 9 1,925 9
381 6 3,214 9 1,990 9
1.062 5 3,034 9 2,551 9
1,594 2 3,034 9 2,761 6
329 ‘ 6 49 15 2,565 0
2,327 6 ‘ 6,976 9 3,478 9

here are the number of cycles of use completed until the appliances failed. There are |
two complicating factors: one is that there were many different ways in which an ’

appliance could fail} 18 to be exact. Therefore in Table 1.6 each observation has a
failure code beside it. Numbers | through 18 refer to the 18 different possible causes
of Tailure for the appliances, In addition, some of the observations were censored,

since it was not always possible to continue testing long enough for an appliance to ’

fail. Appliances that have censored failure times are indicated in Table 1.6 as having
a failure code of 0. - . : i

The joint distribution of failure times and failure' modes is of interest, This can
be used to help plan further development and testing of the appliance, The failure
time distribution will-change as the appliance is developed, and product improve-
ments effectively remove ce:tain causes of failure. In the final stages, the failure time
distribution model can be used to predict the implications of a warranty plan for the
appliance. '

The preceding examples show some of the ways in which lifetime data arise and |

some of the questions that such data hope to answer. We now leave the discussion of
data for the time being and surn (o an examination of statistical models for lifetime
distributions.

1.2 LIFETIME DISTRII:UTIONS

1.2.1 Continuous Models

We begin by considering the case of a single continuous lifetime variable, T. Specifi-

caily, let 7' be a nonnegative random variable representing the lifetimes of individuals -

in some population,

LIFETIME DISTRIBUTIONS

All functions, unléss stated otherwise, are defined over thg interval [0, 00). 'Let
f(t) denote the probability density function (p.d.f.) of T and let the (cumulative)
distribution function (c.d.f.) be

t
Foy=PrT 0= [ f@dx
0 .
The probability of an individual surviving to time ¢ is given by the survivor function
~ o0 ) '
SO =Pr(T=t= f f(x)dx. (1.2.1)
/ ] '

In some contexts involving systems or lifetimes of manufactured items, S(t) is
referred to as the reliability function. Note that S(¢) is 2 monotone decreasing con-
tinuous function with §(0) = | and S(c0) = limy 00 S(¢) = 0. Occasionally v\‘/e
Thay wish to allow S(c0) > O to consider settings where some individuals never fail;
these will be treated as special cases.

The pth quantile of the distribution of T is the value ¢, such that

Pr(T <tp) = p.

That is, tp = F ~(p). The pth quantile is also referred to as the 100 pth percentile
of the distribution. The .5 quantile is called the median of the distribution,
A very important concept with lifetime distributions is the hazard function (),

defined as
Pri¢t <T <t+ AT 21)
At

ko= Jim,

AON (12.2)
S()

The lLiazard function specifies the instantancous raie of death or failure at time ¢;
given that the individual survives up to £; h(r) At is the approximate probability of
death in [¢, t + At), given survival up to £. The hazard function is sometimes given
other names, among them the hazard rate and the force of mortality,

The functions f(¢), F(£), S(t), and k() give mathematically equivalent specifi-
cations of the distribution of T. It is easy to derive expressions for S(¢) and f(¢) in

terms of A(¢): since f(t) = —§'(1), (1.2.2) implies that
d
h(x) = ——log S(x).
dx
Thus

. t
1ogS(x)15=—f0 h(x)dx,
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and since S(0) = 1, we find that
. ! '
S(r) = exp (——/ hix) dx) . (1.2,3)
0
It is also useful to defins the cumulative hazard function
!
H{) =/ h(x)dx,
0

which, by (1.2.3), is rclated to the survivor function by S(t) = exp[—H ()], If
§(00) = 0, then H(o0) = oo. Finally, in addition to (1.2.3), it follows immediately
from (1.,2.2) that

! .
Sty =h(exp (——/ h(x) dx) . (1.2.4),
0 .

Example 1.2.1.  Suppose T has p.d.f.
)= Bt~ exp (=) t>0,

where f > 0 is a parameter; this is a Weibull distribution, discussed in Section 1.3.2.
Tt follows easily from (1.2.1) that the survivor function for T is S(t) = exp(—t#),
and then from (1.2.2) the hzard function is A (t) = Bt#~!, Conversely, if the model
is specified initially in terms of A(t), then S(£) and f(r) are readily obtained from
(1.2.3)and (1.2.4), ' ‘

1.2.2 Discrete Models

Sometimes, for example, v'hen lifetimes are grouped or measured as a number of
cycles of some sort, 7 may be treated as a discrete randoni variable. Suppose T can
take on values f1,72,..., vith 0 < f; < t3 < ..+, and let the probability function '
(p.f.) be

fup=Pr(T = 1) J=12..,.
The survivor function is then

SO=PrTzn=3 fUp. (1.2.5)

j:szl

When considered as a function forall 1 > 0, S(¢) is a left-continuous, nonincreasing
step function, with §(0) = 1 and S(co) = 0,

LIFETIME DISTRIBUTIONS 11
The discrete time hazard function is defined as
hty)) = Pr(T =4|T = tj)

AU 12,6
G 1200 (1.2.6)

As in the continuous case, the probability, survivor, and hazard functicns give equiv-

.alent specifications of the distribution of T. Since f(t;) = S(t;) — S{tj+1) (1.2.6)

implies that

S(ty41)
S(t;)

S(t) = ]‘[ [1- h‘(D (1.2.8)
Juy<t

An analog of the continuous H (¢) could be defined two ways in the discrete case.
One would be by analogy with (1.2.3), as —log S(¢), where S(¢) is given by (1.2.8).
It is easily seen that this does not equal Zj;:,« f(t;), which is the second analog.
The next section introduces a way to unify continuous, discrete, and mixed lifetime
distributions in one f_ramework, and it is the second definition of H (1) that is adopted.

h(t_;):l— =1,2,..., (1.2.7)

and thus

1.2.3 A General Formulation

. Continuous, discrete, and mixed distributions can conveniently be treated within a

sirigle framework. To do this we introduce two types of integrals, called Riemann—
Stieltjes integrals and product integrals.

Let G(u) be a nondecreasing, right-continuous function with left-hand limits and
a finite number of discontinuities in any finite interval, Assume that g(u) == G'(u)

_exists except at points of discontinuity of G and that at points of discontinuity a; we

have G(a;) — G(a;—) = g, where G(a—) = limag—g G(a — Aa). The Riemann--
Stieltjes integral of dG over the interval (a, b] is then defined as

b
f dG(u):f guydu+ Y gj (1.2.9)
(a,b] a

jia<d;sb

where the first integral on the right side of(1.12.9) is a Riemann integral. We can think

~of dG(w) as equal to g(u) du + G(u) — G(u—).

In general, a distribution function F(t) = Pr(T <t)isa right-continuous, non-
decreasing function, with jumps at points a; for which Pr(T = a;) = f; > 0,
and p.df. f(u) = F/(u) at points where F (1) is continuous. Then (1.2.9) gives
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Pria < T < D)as

Fh) — F@a) = dFu)
J(a,b]
4 .
= / fwydu+ > gy (1.2.10) -
Ja Jua<ajsh .

If (1) is continuous, there swe no jump points, and if 7 has a discrete distribution
then 7(u) is a step function with f (1) = 0 at all continuity points, Figure 1.1 por:
trays discrete and continuous cases for F(¢),

To give a general treatinent of the hazard function we introduce the product inte-
gral, Lel a =.up < uy < +++ < uy = b partition (a, b], with Aw; = y; — .y and
ma;(é;u) —> 0 when m — o, The product integral of a function dG (x) as defined
carlier is

m .

H{l +dG) = lim TT(1+Gau) - G-}, (L2.11)
(a,h] = !

If G (i) is continuous for all i in (a, b], then dG (1) = g(u) du and (1.2.11) gives "

i

A () = 1 )
(H}'( 4 g (i) du} mlll‘];l’og‘“ + g () Ay + o(Auy))

1

= lim ‘]"[{1 + g (i) Auyl,
i=|

m—oco

1.0+ — 1.0

I (1y0.5 F o5 -
(),0 1 0.0
o123 0 5 10
! t

Figure 1.1, Cwinulative distribution functions.
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where o(x) means a function w(x) such that w(x)/x —~ Oasx — 0. By noting that
log{l + g(u:) Awy) = g(ug) Aui + o(Auw;) for Au; small and taking the log of the
product integral, we see that in the continuous case

b
[T+ g du) = exp U g (1) du}, (1.2.12)
(a.b) a

which relates the product and Riemann integrals,
If G () has jumps at points a; (j = 1,2, ...) of sizes g, then (L.2.11) gives

[T+ dGwn=]0+gwaut [ (+eap (1.2.13)

{a.b] (a:b] ' jia<aysb

Note that if G(u) is a step function, then g(u) = 0 at all continuity points and the
first term on the right side disappears. : _ ‘

"We are now in a position to consider the hazard function. Let h(u) = f(u)/S(u)
représent the hazard function for T at points where F (i) (or S(u)) is continuous, and
hj= Pr(T =a;|T = aj)be the discrete hazard values at times a; for which a jump

in Foccurs. The cumulative hazard function is then defined by a Riemann-Stieltjes
integral of the form (1.2.9):

t t )
H(t);f. dH(u):f hu) du + Z hy. (1.2.14)
0 0 ’

Juapst

Given the cumulative hazard function, we can obtain the survivor function through
the fundamental result that for any sequence of values 0 = ug < #) <+ < Um =1,

m .
Pr(th)=1—[Pr(T2u,-[T2u,-_1). (1.2.15)

=1

Now for Au; = u; — ;.| sufficiently small, [u;—1, 1;) contains either 0 or 1 jump
points, and .

Pr(uj-1 <T < uy)
Pr(T = uj-1) .
=1—[H@u~—)— H@u-1-)] + o(Au;).

i

Pr(T = wilT > upg) =1~

Therefore by (1:2.15) and (1.2.11),

Pr(T>1= I‘[[1 —dH®w)]. (1.2.16)
.
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Note that in (1.2.16) the protluct integral is over the open interval (0, f) since S(t) =
Pr(T = 1) and is left-continuous, whereas. H (1) is right-continuous, Sometimes
§(1) is defined as Pr(T > 1) and in that case (1.2.16) 1s replaced with the product
integral over (0, r1.

The relationships (1.2.142 and (1.2.16) apply to all types of distribution. We get
(1.2.3) from (1.2,16) in the case of a continuous distribution by using (1.2.12), and
we gel (1.2.8) for a discrete distribution by using (1.2.13), In general (1.2,16) gives

Pr(T > 1) := expl—~/ h(u)du] H (1 —hy). ' (1.2.17)

[ ay <t
Finally, we note a useful result following immediately from (1.2.16): fora < b,

Pr(T > bT > a) = H[] —dHw)). (1.2,18)
[a.5)

1.2.4 Some Remarks on tle Hazard Function

The hazard (unction is a parficularly important characteristic of a lifetime distribu-
tion, Itindicates the way the r sk of failure varies with age or time, and this is of inter-
est in most applications. Prior information about the shape of the hazard function can
help guide model selection, Finally, if factors affecting an individual’s lifetime vary
aver time, it is often essential to approach modeling through the hazard function.

Figure 1.2 shows hazard functions and p.d.f’s for four continuous distributions.
The shapes of the hazard Functions are qualitatively different; distribution (a) has
4 monatone increasing hazard function, distribution (b) has a monotone decreasing
hazard function, (¢) has a so-called bathtub-shaped, or U-shaped, hazard function,
and (/) displays an inverse ba htub shape. Models with these and other shapes are all
useful in practice. If, for examole, individuals in a population are followed right from
actual birth to death, a bathtub-shaped hazard funclion is often seen. We are familiar
with this pattern in human populations: after an initial period in which deaths result
primarily [rom birth defects or infant diseases, the death rate drops and is relatively
constant until the age of 30 or so, after which it increases with age, This pattern also
manifests itsell in other biolo zical populations and in populations of manufactured
items, some of wl1|d1 contain Jefects. )

Distributions with i increasing hazard functions are seen for individuals for whom
some kind of aging or wearow takes place. Also, populations that display a bathtub-
shaped hazard function are sor 1etimes purged of weak individuals, leaving a reduced

papulation with an increasing hazard function. For example, manufacturers may use.

inspection or a burn-in process. in which items are subjected to a brief pericd of oper-
ation before being sent to customers, In this way defective or poor-quality items that
would fail early are removed “rom the population; this frequently leaves a residual
population that exhibits an inc: ‘easing hazard function.

Certain types of electronic devices display a decreasing hazard as items with
defects fail and are removed from the population, Roughly constant hazard functions
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Figure 1.2. Some hazard and probability density functions,

tend to occur in stable settings where failure or death is due to random phenomena
such as shocks or accidents, which are external to the individual, Shape (d) in Fig-
ure 1.2, where h(2) first increases to a maximum and then decreases, is encountered
in many applications, for example, in the case of survival after treatment for cancer,
where some individuals are cured, and in connection with the duration of marriage.

In many settings factors or covariates affecting an individual’s lifetime vary
over time; we refer to them as “time-varying” or “time-dependent” covariates. For
example, in life tests of electrical insulation (see Example 1.1.5) the voltage level
that items are subjected to is sometimes changed over time accordmg to a fixed

—
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schedule, In studies of the ag.e at which smokers develop chronic diseases, the type
and level of smoking for erch individual can vary over time. The duration of a
marriage (see Example 1,1.7) may be affected by the presence of children or the
conple’s employment status, both of which can change over time, When there are
lime-varying covariates, it is asually essential to think about models in terms of their

hazard funclions. We cannct discuss a lifetime’s relationship to covariates without

considering the covariate “history,” that is, the values the covariates take over time;
a generally useful approach is to consider the hazard functicn at time ¢ conditional
on previous covariate values. Subtle issues arise in connecticn with the modeling
and interpretation of time-varying covariate effects. Discussion is provided in Chap-
ters 6, 7, and 8, and inlroductory remarks are given in Section 1.4, where regression
madels are discussed.

1.3 SOME IMPORTANT MODELS

Vartous parametric families of models ave used in the analysls of lifetime data and the
modeling of aging or failure rocesses. Among univariate models, a few distributions
accupy a central position because of their demonstrated usefulness in a wide range
of situations, Foremost in this category are the exponential, Weibull, log-notmal,
log-logistic, and gamma distributions. This section introduces these and some other
motdels,

Sometimes there is information about the aging or failure process in a popula-
tion that suggests a particula- distribution, though this information is rarely specific
enough to narrow consideratron to just one family of models. Some references pro-
viding theoretical motivaticr- for cerlain models are provided in the Bibliographic
Notes section at the end of tl.e chapter, The motivation for using a particular model
in a given situation is often empirical, it having been found that the model satisfac-
torily describes the distribution of lifetimes in populations like the one under study.
Convenience of analysis car also be a factor, Section 1.6 provides some general
remarks on model selection and analysis.

We make one additional preliminary remark. Models are presented here without
the inclusion of a so-called threshold parameter, of guarantee time. Briefly, this is a
time y = () hefore which it is assumed that an individual cannot die, Occasionally
a situation calls for the inclusion of such a parameter. The distributions considered
can all be extended to include a threshold parameter by replacing the lifetime ¢ by
¢ =t ="y, with 1’ satisfying the restriction ¢/ > 0. For example, we consider in
Section 1.3, the exponential distribution, in which T has p.d.f. f(t) = Aexp(—2Af),
with + > 0. If a threshold parameter were introduced, the p.d.f. would be

f@y=ae =y

Properties of the latter distribution follow immediately from those of the former,
since 79 = T ~ ¢ has p.d.f 2 exp(—=Ar'), with ¢/ = 0,
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1.3.1 The Exponential Distribution

The exponential distribution is characterized by a constant hazard function
h(t) = A t =0, (1L.3.)

where A > 0. The p.d.f. and survivor function are found from (1,2.4) and (1,2.3) to
be

f)y=re and S@t)=eV, (1.3.2)

respectively. The distribution is also often written using the parameterization § =
A1, in which case the p.d.f. becomes

f=6"te " tz0 (1.3.3)

We will sometimes use the notation T ~ Exp(8) to indicate that a random variable
T has distribution (1.3.3). The mean and variance of the distributicn are § and 62,
respectively, and the pth quantile is t, = —6log(l — p). The distribution where
6 = 1 is called the standard exponential distribution; its p.d.f. is shown in Figure 1.3,
Clearly, if T has p.d.f. (1.3.2), then AT ~ Exp(1).

Historically, the exponential was the first widely discussed lifetime distribution
model. This was in part because of the availability of simple statistical methods for
it. The assumption of a constant hazard function is very restrictive, so the model’s
applicability is fairly limited. Statistical inference under an exponential model is
considered in Chapter 3.

F® 0S5 1

0.0 ~

Figure 1,3. The standard exponential p.d.f,
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1.3.2 The Weibull Distribution

The Weibull distribution is perhaps the most widely used lifetime distribution model.
Application to the lifetimes or durability of manufactured items is common, and it
is used as a model with diverse types of items, such as ball bearings, automobile
components, and electrical insulation, Tt is also used in biological and medical appli-
cations, for example, in studies on the time to the occurrence of tumors in human
populations or in laboratory inimals.

The Weibull distribution kas a hazard function of the form

hr) = AP, (1.3.4)

where A > 0 and 8 > 0 are parameters, It includes the exponential distribution as
_ the special case where g = 1. By (1.2.4) and (1.2.3), the p.d.f. and survivor function
of the distribution are

fy =8N expl-anf] >0 (1.3.3)

and
S() =exp[—-(AP]  £>0. (1.3.6)

The rth moment E(X") of thz distribution is A™"T"(1 + r/f), where

[0.0]
Ck) = / k=l gy k>0
Jo

is the gamma function (see Appendix B). The mean and variance are thus ATt +
1/B) and A4 (1 4-2/8) = T(1 + 1/8)3].

The Weibull hazard function is monotone increasing if 8 > 1, decreasing if 8 <
I, and constant {for 8 = 1. The model is fairly flexible (see Fig. 1.4) and has been
found to provide a good description of many types of lifetime data. This and the fact
that the model has simple exp essions for the p.d.f. ahd survivor and hazard functions
partly account for its populaity. The Weibull distribution arises as an asymptotic
extreme value distribution (sze Problem 1.12), and in some instances this can be
used to provide motivation fo- it as a model,

The scale parameter o = ).~ is often used in place of A. The pth quantile corre-
sponding to (1.3,6) is then

1p = af—log(l — p]'/5, (1.3.7)

and by putting p = 1 — ¢! == ,632 into (1.3.7) we sce that « is the .632 quantile of
the distribution, regardless of the value of B. In some areas, especially in engineering,
o is termed the characteristic life of the distribution,

The notation T ~ Weib(w, 8) will occasionally be used to indicate that a random
variable 7' has distribution (1.3.5) with A = a~!, The shape of the Weibull p.d.f. and
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Figure 1.4, Weibull p,d.f.’s and hazard functions for A = | and f = 0.5, 1.5. and 3.0.

hazard function depends only on B, which is sometimes called the shape parameter
for the distribution, Typical 8 values vary from application to application, but in
many. situations distributions with 3 in the range 0.5 to 3 are appropriate. Figure 1.4
shows some Weibull p.d.f’s and the corresponding hazard functions for A = 1 and
several values of 8. Note that the effect of different values of A in Figure 1.4 is
just to change the scale on the horizontal (¢) axis, and not the basic shape of the

graph.
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1.3.2.1 The Extremne Value Distribution

1t is convenient at this point to introduce a distribution that is closely related to the
Weihull distribution, This is the so-called first asymptotic distribution of extreme
values, hereafter referred to simply as the extreme value distribution. This distribu-
tion is also sometimes referred to as the Gumbel distribution. Qur interest in it arises
because if T has a Weibull distribulion, then log T has an extreme value distribution.

The p.d.[. and survivor furction for the extreme value distribution are, respec-

tively,

S =b""exp [LI:E -~ exp (y ; u>:| —co<y<oo (138
y
/)7 el 4

S(y) = exp | —exp ! — —00 <y <oo, (139
\

where h > 0 and u(—~00 < u < oo) are parameters. It is easily seen that if T
has a Welbull distribution with: p.d.f, (1.3.5), then ¥ = log T has an extreme value
distribution with b = ™! and t = —logA = loge. In analyzing data it is often
convenient to work with log lil stimes, so the extreme value distribution is frequently
encountered,

We use the notation ¥ ~ iV (u, b) to indicate that the random variable ¥ has
p.d.f. (1.3.8). The extreme value distribution EV(0, 1) with u = O and b =1 is
termed the standard extreme value distribution. A graph of its p.d.f. is given in Fig-
ure 1.5, Cleatly, if ¥ ~ EV (i, b) then (Y — u)/b ~ EV (0, 1). Since u is a location
and b a scale parameler, values of 1 and b different from 0 and 1 do not affect the
shape of f(y), but only the loc ition and scale.

Moments of the distribution are conveniently obtained via the moment generating
function, For the standard extreme value distribution, this is

04
Sy 02 A
//
00 4
T T T T T T T
-4 -3 -2 -1 0 1 2
y

Figure 1.5, The standard extreme value p.d.f.
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M) = /-oo e exp(x — ") dx.

—c0 ;

Letting 1 = ¢*, we have

[0.¢]
M@®) = / we™ du
4}

=T(1+8).

The mean of the standard extreme value distribution is found from this to be () =
~y, where y = 0.5772- - - is known as Euler’s constant; the variance is r)-y?% =
n2/6 (see Appendix B). The mean and variance of the general distribution (1.3.8) are
u — yb and (w2/6)b?, since (¥ — u)/b has the standard extreme value distribution.

The pth quantile of (1.3.8) is
¥p = it + blog[~log(l = p)]

which implies that the location parameter u is the .632 quantile.
The statistical analysis of data under a Weibull distribution model is discussed in
Chapter 5, and the extreme value distribution is considered further therc_s,

1.3.3 The Log—Normal Distribution

The log-normal distribution has been used as a model in diverse applications in engi-
neering, medicine, and other areas. The lifetime T is said to be log-normally dis-

tributed if ¥ = log T is normally distributed, say with mean w, variance o?, and
p.d.f,
1 1/y—p\
e - —~00 <y < 00,
e exp{ 2( p ) oco<y<
From this the p.d.f. of T = exp Y is easily found to be
FO = —exp | -k [(BLE 1 oiso (13.10)
=3 C. bauhend . b
anlor P | T2\ o

The survivor and hazard functions for the log-normal distribution involve the stan-
dard normal distribution function

d(x) = /x _L__e~,¢2/z du
—0co (277)1/2 '

The log-normal survivor function is easily seen to be
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, log1 —
| 5(:):1-¢<—°-g—0-—’i). (1.3.11)

and the hazard function is given as A(f) = f{£)/S().

The hazard function can ke shown (see Problem 1.4) to have the valueOatt =0,
increase to a maximum, and then decrease, approaching 0 as ¢ — oo. This shape
arises in many situations, for example, when a population consists of a mixture of

Probability Density Functions

RO

Hazard Functions

h

Figure 1.6, Log-normal p.d f.'s and hazard functions for 2 = 0 and o = 0.25, 0.5, and 1.5.
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individuals who tend to have short and long lifetimes, respectively, Examples include
survival after treatment for some forms of cancer, where persons who are cured
become long-term survivors, and the duration of marriages, whete after a certain
number of years the risk of marriage dissolution due to divorce tends to decrease.

The notation ¥ ~ N (i, o2) is used to denote that ¥ is normal with mean w and
variance o2, and T ~ Log N, o2 is used to denote that T has p.d.f. (1.3.10). Fig-
ure 1.6 shows some log-normal p.d.f.’s and hazard functions for 4 = 0 and different
values of o It should be noted that a nonzero value of 4 just changes the scale on the
time axis, and not the basic shapes of the functions portrayed, since u is a location
parameter for ¥ (= logT) and e* is a scale parameter in (1.3,10).

Some additional properties of the log-normal distribution are discussed in Prob-
lem 1.4, including the fact that the mean and variance are exp(u + 0%/2) and
[exp(a?) — 1][exp(2u + o)), respectively, The median (1.50) is exp(uw). Statistical
inference for log-normal distributions is considered in Chapter 5.

1.3.4 The Log-Logistic Distribution
The log-logistic distribution has p.d.f. of the form

(B/a)(t/a)P"!

0+ G/aff t>0, (1.3.12)

f) =

where o« > 0 and 8 > O are parameters. The survivor function and hazard function
are, respectively, ’
S = [1+ (/)17

-1 ‘
_(Ls,/f_)g_/ﬁ)__. (1.3.13)

M = TG aP]

The log-logistic gets its name from the fact that ¥ = log T has a logistic distribution
with p.d.f. -

(1.3.14)

—00 <Yy <09,

__blexpl(y —u)/b]
SO = Tl —w/pR

where u = loga and b = g1, 50 that —00 < u < coand b > 0. We use the
notation ¥ ~ Logist(u, b) to indicate that ¥ has p.d.f. f(¥), and T ~ LLogist(c, 8)
to indicate that T has p.d.f, (1.3.12).

The rth moment of T ‘exists and is given by E(T") = a'T'(1 + r/BT( —r/B),
provided 8 > r (se¢’Problem 1.5). The mean therefore exists only if 8 > 1, in which
case E(T) = al'(1+ B-Hr{ - ﬂ"l). The moments of Y = log T are easily found
via its moment géneratirig function; the mean equals u and the variance is n’b?/3
(Problem 1.5). Figure 1.7 shows p.d.f’s and hazard functions of T for b = 0.14,
0.28, and 0.83. These are chosen so that the variance of Y is roughly the same as the
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Figure 1.7, Log-logistic p.d.f."+ and hozard functions for v =0 and b = 0,14, 0.28, and 0.83.

variance of a normal distribution with o = 0,25, 0.5 and 1.5, respectively, Note the
similarity of Figures 1.6 and !.7.

The logistic and normal distributions have similar shapes, and it is easily seen
(Problem L1.5) that for # > 1 the hazard function has the same characteristic shape
as the log-normal: it has £(0) = 0, increases to a maximum, and then approaches 0
monolanically as ¢ — oo, For B < | the hazard function is monotone decreasihg.
Inference for the log-logistic and logistic distributions is discussed in Chapter 5.
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1,3.5 The Gamma Distribution
The gamma distribution has a p.d.f. of the form

A,(A.t)k'-le_}"

N0 t >0, (1.3.15)

f) =

where k > 0 and A > 0 are parameters; A~ is a scale parameter and & is sometimes
called the index or shape parameter. This distribution, like the Weibull distribution,
includes the exponential as a special case (k = 1). The survivor and hazard functions
involve the incomplete gamma function [see (B.12) of Appendix B]

1 X
Ik, x) = —l:(_k—)_/(; wk=te ™ du, (1.3.16)

; Integrating (1.3.15), we find that the survivor function is

S(t) =1~ Ik, At).

The hazard function is #(t) = f(£)/5(); it can be shown (see Problem 1.6) to be
monotone increasing for k > 1, with h(0) = 0 and lim; 4.0 A(£) = AMFor0 <k <1,
R(r) is monotone decreasing, with lim; g 1(¢) = oo and limy»co h(t) = A.

The distribution with A = 1 is called the one-parameter gamina distribution and
has p.d.f. :

ph—1 gt

Its c.d.f. is given by (1.3.16). The notation ¥ ~ Ga(k) will be used to indicate
that a random variable ¥ has p.d.f. (1.3.17). Note that if T has p.d.f. (1.3.15), then
AT ~ Ga(k). The one-parameter gamma distribution is closely related to the chi-
squared (x2) distribution: if ¥ ~ Ga(k), then 2Y has a x* distribution with 2k
degrees of freedom, henceforth simply referred to as x(zm. Figure 1.8 shows p.d.f.'s
and hazard functions for a few gamma distributions.

The moment generating function of (1.3.17) is

oo eg'tk_[e"‘dt
M@) = e
® /o INC9)

=(1-07

and that of (1.3.15) is (1 — G/A)"‘. The moments of the distribution can be found
from this; for example, E(T7) = k(k+ 1) -+ (k + r — 1) for (1.3.17).

The gamma distribution is not used as a lifetime model as much as the Weibull,
log-normal, and log-logistic distributions. It does fit a variety of lifetime data ade-
quately, however. It also arises in some situations involving the exponential distri-

bution, because of the well-known result that sums of independent and identically
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Figure 1.8, Gamma p.d.f.'s and hezard functions for A = ! and k =0.5,2.0,and 3.0,

distributed (i.i.d.) exponential randoin variables have a gamma distribution. Specifi-
cally, if Ty, ..., T, are independent, each with p.d.f. (1.3.2), then Ty + . -+ + T}, has
a gamma distrlbution with parameters A and % = n,

1.3.6 Log-Location-Scale Models

A paramelric location-scale riodel for a random variable Y on (—oo, 00) is a distri-
bution with p.d.f. of the form
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f(y)=-;j-fo<y;"> o0 <y <00, (1.3.18)

where u(—o0 < u < oo) and b > 0 are location and scale parameters, and fp(z)
is a specified p.d.f. on (—o0, 00). The distribution and survivor functions for ¥ are
Fol(y — u)/b] and Sp[(y — u)/b], respectively, where

Z
Fo() = f folw)dw =1 - So(@).

The standardized random variable Z = (¥ — u)/b clearly has p.d.f. and survivor
functions fy(z) and Sp(z), and (1.3.18) with u = 0,b = 1 is called the standard form
of the distribution,

The lifetime distributions introduced in Sections 1.3.2 to 1.3.4 all have the prop-
erty that ¥ = log T' has a location-scale distribution: the Weibull, log-normal, and
log-logistic disfributions for T correspond to extreme value, normal, and logistic
distributions for Y, The survivor functions for Z = (¥ — u)/b are, respectively,

So(z) = exp(—e?)
So(z) =1 - ¢(z) normal

extreme value

So(z) = (1 + €9~ logistic,

where —00 < z < 0o and ®(z) is given just before (1.3.11). By the same token, any
location-scale model (1.3.18) gives a lifetime distribution through the transformation
T = exp(Y). Note that the survivor function for T can in this case be expressed as

Pr(T>1)= so‘<1—cﬂtb———5>

©
= S <E> , (1.3.19)

 where @ = exp(u), 8 = b1, and Sp(x)isa survivor function defined on (0, o0) by

the relationship Sjj(x) = So(]og x).

Families of distributions with three or more parameters can be obtamed by gener-
alizing (1.3.18) to let fo(z), Fo(z), or Sp(z) include one or more “shape” parameters.
We mention two such families that are useful because they include common two-
parameter lifetime distributions as special cases.

‘The first model is the generalized log-Burr family, for which the standardized
variable (¥ — u)/b has survivor function of the form

. RN |
Solz; k) = <1 + 7€-ez> _ —00 <z <00, (1.3.20)

i
i
i
i
i
)
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where k > 0 is a third paramcter; it is easily verified that (1.3.20) is a survivor func-
tion for all k > 0. The'special case &k = | gives the standard logistic distribution (see
(1.3.14)), and the limit as & > oo gives the extreme value distribution (see (1.3.9)).
The family of lifetime distributions obtained from (1.3,20) is given by (1.3.19) and

has
1/7e\f]7*
Pr("=n=1{1+~ <-> . (1.3.21)
k\a

The log-logistic survivor function is given by k = 1, and the Weibull survivor func-
tion is given by the limit as k — oco. Figure 1.9 shows p.d.f.’s for log-Burr distribu-
tions (1,3.20) with & = .5, [. 10, and oo. Note that E(Z) and Var(Z) vary with k
(sce Problem 1.9) so that the distributions in Figure 1.9 do not have identical means
and standard deviations.

Since the generalized log-Diurr family includes (he log-logistic and Weibul] distri-
butions, it allows discrimination between them, It is also a flexible model for fitting
to data; inference for it is discussed in Chapter 5.

A second extended model is the generalized log-gamma distribution, which
includes the Weibull and log-normal distributions as special cases. The model was
originally introduced by specifying that (T /a)? has a one-parameter gamma distri-
bution (1.3.17) with index parameter k > 0. Equivalently, W = (¥ — u;)/by, where
Y =logT, iy =logaand b = 8~} has a log-gamma distribution. However, the
mean and (he variance for the gamma distribution both equal %, and as k increases,
the gamma and log-gamma distributions do not have limits, The mean and variance
for W are (see Prablem 1,10} E(W) = ¥ (k) and Var(W) = ¥’ (k), where ¢ and
yr" are the digamma and trigemma functions (see Appendix B.2). For large k they

04 4
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Fipure 1.9, Pd.f's of log-Burr distributions for k = .5, 1, 10, co,
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behave like log k and &1, respectively (see (B9)), and it is therefore convenient a.nd
customary to define a transformed log-gamma variate Z = k'/2(W — log k), which
has p.d.f. (see Problem 1,10)

k=172

T (k)

folzi k) = exp(k'/2z —ke""%)  — o0 <z <00 (13.22)

The generalized log-gamma model is then the three-parameter family of distributions
for which Z = (¥ — u)/b has p.d.f. (1.3.22); the corresponding distribution of T' ==
exp(Y) is obtained from this, and is called the generalized gamma n]odgl. Figul.'e 1.1‘0
shows p.d.f.’s (1.3.22) for k = .5, 1, 10, and co. As for the log-Burr distributions in
Figure 1.9, note that E(Z) and Var(Z) vary with k.

For the special case k = I, (1.3.22) becomes the standard extreme value p.d.f.
(see (1.3.8)). It can also be shown (see Problem 1.10) that as k — oo, (1.3.22) con-
verges to the standard normal p.d.f., and thus the generalized gamma model includes
the Weibuli and log-normal distributions as special cases, The two-parameter gamma
distribution (1.3.15) also arises as a special case; in the original (@, 8, k) parameteri-
zation this corresponds to 8 = 1, and in the (u, b, k) parameterization with (1,3.22),
to b =.k~1/2, Inference for the generalized gamma and log-gamma distributions is
discussed in Chapter 3.

Other extended families may be useful from time to time. For example, one might
take Z = (¥ — u)/b to have a Student ¢ distribution with k degrees of freedom.
Kalbfleisch and Prentice (1980, Sec. 2.2.7) consider a four-parameter model in which
Z is a rescaled log F random variable; it includes the generalized log-Burr and log-
gamma families as special cases.
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Figure 1,10, Pd.f's of log-gamma distributions for k = .5, 1, 10, oo,
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1.3.7 The Inverse Gaussian Distribution

The inverse Gaussian distribution arises as the time until a continuous-time Wiener
process with drift parameter ¥ > 0 and dispersion parameter o2 first crosses a
given threshold level d > 0, The Wiener process is a Gaussian stochastic process
{X(t), t > 0}, with X(0) == 0, and one of its properties is that X (£) ~ N(yt, o2f)
for any specified 7 > 0 (e.g., Ross 1983), The random variable T = inf(t : X () =
d) can be shown to have p.(Lf,

_ d —(d — y1)?
S = oCmthife GXP[ 202t ] ¢>0.

This p.d.f. depends only on d/y and d /o, and it is common to reparameterize it by
defining o = d/y. A = d?/ 7% 50 that

2112

k!/z —~A(t ~ 2 .
f(t):(—i;“z;)l/zexp[ 4 “)] t>0, (1.3.23)

The mean and variance of T may be shown to be E(T) = s and Var(T) = /L3/A,
and the c.d.l. is

g 172 1/2
F(t) = & [(i - 1) (\) J + Mg [~ (i + 1) (3‘-) ] . (1.3.24)
I ! un 14

where ®(z) is the standard normal c.d.f, We will denote this model by 1G4, A).

The inverse. Gaussian distribution is sométimes a plausible model in settings
where failure occurs when a deterioration process reaches a certain level, More
generally, it is a reasonably flexible two-parameter fémily of models with properties
that are rather similar to those of the log-normal distribution, Figure 1.11 shows the
hazard and density functions for j+ = | and several values of A.

1.3.8 ' Models with Piecewise Constant or Polynomial Hazard Functions

Letay < a) < -+ < ay be svecified values with ag = 0 and ay = 00, If the hazard
function for T is of the form

h() = A;, aj-1 51 <ay (1.3.25)
where the A are posilive valuss for j = 1, ..., m, then T is said to have a piecewise-
constant hazard function. Thi: model may seem implausible, since A (1) is discontin-
uous at the cut points ay, ..., ay 1, but with an appropriate value of i and selection
of cut points, it can approximate arbitrary shapes of hazard functions and survivor
functions. Further, as we will s ee in Chapter 4, statistical methods based on the model
are straightforward, and it provides a convenient link between parametric and non-
parametric methods.

ST

A

SOME IMPORTANT MODELS

Probability Density Functions

1.5 4
1.0 4
F®
0.5
0.0 -~ ‘ ,
0 2 4
t :
|
Hazard Functions !
{
3'0 he . ! ,
h(t)y1.5 4
00 - ‘ ,

0 2 . 4
t

Figure 1,11, Inverse Gaussian p.d.f.'s and hazard functions for == I and A = 1,2, and 4.

The survivor function corresponding to (1.3.25) is readily found from (1.2.3) to

m(t)—1
S(t) = exp [-— Z Ajlaj —aj—1) — ki (t — am(l)-—l)ji )

j=1

where m(t) is defined by amy—1 <t < @m(n. The p.df. F(1) = A,,,'(f)S(t) is.piece-'
wise exponential. The survivor function is conveniently expressed by introducing the




32 BASIC CONCEPTS AND MODELS

notation below, which will be useful in the book:

S ‘ay
Aj(t) = / T(u <t)du J=1....m (1.3.26)
” “j-—l
Then,
it
S(1) =exp [~ Z N7y (t):] . (1.3.27)
J=1

Piecewise-constant hazard functions and the corresponding probability density
lunctions are discontinuous, which makes them unappealing in many settings.
Another way to obtain flexible hazard functions is to use spline functions, which
consist of polynomial pieces joined at the cut points ay, ..., @m-i. A cubic spline
2(t) on (ag, uy) consists of cubic polynomial pieces that are designed so that g(¢)
and ils first two derivatives are everywhere continuous on (ag, a). In particular,
they are conlingous at the cu. points ay, ..., am—1, Which are referred to as knots
in spline terminology. One cai also define splines of other orders (e.g., quadraﬁc or
linear), but cubic splines are favored for a number of reasons, and here we restrict
discussion to them.

It can be seen that only m +3 parameters are needed to specify a cubic spline with
m— 1 knols ay, ..., au-1. One specification is

m—1
gy =g +arf +aat+ast® + Y Bt —api,

j=l

where vy, = max(y, O). This is not a particularly good representation when fitting a
model (i.e., when cstimating g, ..., @3 and By, ..., Bu—1), however. In general, we
can write g(r) as

~m+3

g(t)= Y 8;B;(n,
Jj=1

where the B {t) are specified piecewise cubic basis functions, A common approach
is to use the so-called B-splin basis functions (e.g., de Boor 1978); software exists
for generating such functions.

Spline-based hazard mode's usually take 72(1) or log h(t) as a cubic spline. An
alternalive is (o use a cubic spline for the p.d.f. f (). Models with as few as one or
two well-chosen knols provid: considerable flexibility, Models where A (¢) or f(#)
are splines have the advantage that cumulative hazard and distribution functions
H () and F(¢) are easily obtained, but parameters may need to be constrained to
keep () and f(r) nonnegative. With a larger number of knots the end pieces over
(ag. ay) and (am-.1, am) can te difficult to estimate, and so linear instead of cubic
pieces are often used for thos2 intervals. When this is done, the spline is termed a
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natural cubic spline. It can be seen that only m — 1 parameters are needed to specify

a natural cubic spline g(¢) with m — 1 knots,
Spline models are discussed further in Section 4.2.3.

1.3.9 Some Other Models i

The dish’ibﬁtions described in preceding sections are the most frequently used para-
metric models. Other models are, however, sometimes used in applications, We list
a few models with references from which more information can be obtained.

1. Distributions in which either A(¢) or log[A(+)] is a low-order polynomial (e.g.,
Bain 1974; Gehan and Siddiqui 1973). Models of this type include the Gom-
pertz distribution, with h(t) = exp(a + Bt), and the Rayleigh, or linear hazard
rate, distribution, with 2(¢£) = a + bt. Note that for the Weibull distribution,
the log hazard function is linear in log . Models where h(t) or logh(t) is a
linear combination of specified functions can also be considered.

Models with bathtub-shaped hazards. Glaser (1980) and Hjorth (1980) discuss
distributions with nonmonotone hazard functions, and provide references.
Discrete distributions, Usually, when a discrete model is used with lifetime
data, it is a multinomial distribution, Methods for multinomial models are dis-
cussed in Chapter 3. Occasionally, discrete parametric distributions are used;
often these are based on one of the common continuous life distributions.

2

H

w

1.3.10 Mixture Models

Discrete mixture models arise when individuals in a population are each one of k
distinct types, with a proportion, pi, of the population being of the ith type; the p;
satisfy 0 < p; < 1 and Y.pi = L Individuals of type i are assumed to have a -
lifetime distribution with survivor function S; (). An individual randomly selected
from this population then has survivor function

S(t) = p1Si(6) + - + prSe(®). (1.3.28)

Models of this kind are termed discrete mixture models, and are useful in situations
where the population is heterogeneous but it is not possible to distinguish between
individuals of different types. Often the S;(¢) in (1.3.28) are taken to be from the
same parametric family, though this is, of course, unnecessary. The properties of
a mixture model follow from the properties of the k distributions, or components,
involved in the mixture, Estimation can be difficult, and models with k larger than 3
are rarely used,

Two special models with & = 2 are important. One has a degenerate component
with a probability mass at T = oo. The survivor function for this model is

S()=pSit)+1—p t =0, (1.3.29)

where 0 < p < 1,and Si(¢) is a survivor function with S (co) = 0. This is used in
settings where some fraction 1 — p of individuals in a population have very long life-



34 BASIC CONCEPTS AND MODELS

times, which for conveniencs are assumed infinite. In medical applications involving
treatment of disease (1.3.29" is sometimes referred to as a cure-rate model.

The second special model has a degenerate component with a probability mass at
T = 0. The survivor function is

S(1) = pSi (1) t >0, (1.3.30)

where 0 < p < 1, and §;() is a survivor function, This is used in settings where
some fraction | — p of individuals in a population die or fail at ¢ = 0; one application
is to manufactured items that defects may render inoperative.

Continuous mixture mods:ls can also be considered, They have survivor functions
of the form

5'(1):/ S1(t)2)g(z) dz, (1.3.31)

where z is an unobservable random variable with p.d.f. g(z) and S (¢]z) is the sur- -

vivor function for 7', given z. The most widely studied and used models assume that
the hazard function for T given z is zhp(r), where z > 0 and hg(?) is a baseline
hazard function, In this case

o0
L) = /0 e~ g(z) dz, (1.3.32)
where Hp(1) = [(; lto () d «. Such models are called “frailty” models; the name

comes from thinking of z as a factor that renders an individual’s hazard function
zho(1) bigger or smaller than the baseline 1p(?).

Discrete and continuous mixture models can be discussed within a single frame-
work by replacing (1.3.31) v+ith the Riemann-Sticltjes integral

S(t):/n S1(t2) dG(z), (1.3.33)

where G(z) is a distribution function as in (1.2.10).

Since the randomn variabl: z is unobservable, (1.3.33) can be viewed as merely a
way to generate new models S(¢). However, insight into the effects of heterogeneity
in populations can be gained from such models; see Problem 1.14. Inference for
mixture models is discussed in Chapter 4.

1.4 REGRESSION MODELS

The use of explanatory variables, or covariates, in a regression model is an important
way to répresent heterogeneity in a population. Indeed, the main objective in many
studies is to understand and exploit the relationship between lifetime and covariates.
Thus, data often include covariates that might be related to lifetime: for example, in
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a survival study for lung cancer patients (see Example 1.1.9) factors such as the age
and general condition of the patient, and the type of tumor, were recorded. In experi-
ments on the time to failure of electrical insulation an important factor is the voltage
the insulation is subjected to (see Example 1.1.5). In clinical trials in medicine, the
treatment assigned to a patient may be considered a covariate (Example 1.1.8).

Regression models for lifetimes can be formulated in many ways, and several
types are in common use, Regression analysis is discussed at length in Chapters 6, 7,
and 8. We provide & brief introduction here.

Any of the parametric models discussed in this chapter can be made into a regres-
sion model by specifying a relationship between the model parameters and covari-
ates. Suppose that each individual in a population has a lifetime T and a column
vector X = (x1, ..., xp) of covariates. Then, for example, an exponential distribu-
tion model (see Section 1.3.1) would assume that given X, the distribution of T is
exponential with survivor function

S(¢ix) = exp[—A(x)t]. (1.4.1)

The specification of the model also involves a functional form for A(x). A common
form is A (x) = exp(fB'x), where B isa p x 1 column vector of regression coefficients;
this has the convenient property that A(x) > 0 for all real vectors B and x.

Often only certain parameters in a lifetime distribution are assumed to depend on
covariates. For example, log-location-scale models ( 1.3.18), with only u depending
on x, are useful, The specification u(x) = B'x gives a model where ¥ = log T has
survivor function of the form

Pr(Yzylx)=so<y'bB "), (1.4.2)

where b > 0 is a scale parameter. Such models are familiar in.ordinary regressiomn

analysis, particularly for the case where Sp(z) is the standard normal survivor func-
tion.-

Semiparametric maodels are also widely used; they specify the dependence of T
or Y on x parametrically, but leave the actual distribution arbitrary. For example,
ordinary least-square estimation of B when E(Y|x) = B’x can be viewed as an
estimation procedure for a model (1.4.2) where So(z) is unspecified aside from the
assumption about E(Y |x), The best known semiparametric lifetime regression model
is the proportional hazards model introduced by Cox (1972a), which takes the hazard
function for T given x to be of the form

h(t1x) = ho(t) exp(B'x), (1.4.3)

where hg(t) is an arbitrary “baseline” hazard function.

As discussed in Section 1,2.4, covariates may vary over time. In this case models
cannot simply be specified in terms of survivor functions like (1.4.1) and (1.4.2),
because there is an entire “history,” X = {x(#), t = 0}, to consider for a covari-
ate. Sometimes a time-varying covariate may be linked physically with the lifetime

—— g -
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process: for example, blood pressure may be Hnked to the time or age at which an
individual hag a first steoke, Such covariates are termed internal, and their treatment
requires care, A covariate process X = {x(¢), ¢ = 0}, which develops independently
of the lifetime process, is termed external; factors such as air pollution or climatic
conditions; or applied stresses such as voltage or temperature in life test experiments,

arc examples, We restrict further discussion in this section to external covariates; note .

that fixed (constant) covariat:s are external.

A convenient apptoach tc modeling with time-varying covariates is through the
hazard function, which may “e allowed to depend on previous covariate history. Let
X (1) = {x(s), O < s < t} dznote the history up to time ¢, with X (c0) = X.Itisa
natural assumption that the hazard function for T given X depend only on X (£); we
denote this ds (] X (£)). A zimple but flexible approach is to define a vector w(t)
that représents features of X (r), then specify h(r{X (1)) as a function of ¢ and w(t).
The multiplicalive formulation

h(1X (1)) = ho(f) exp(B'w()) (1.4.4)

is useful; it is an extension of the proportional hazards model (1.4.3).

A connection hetween the hazard function and survival probabilities can still be
made in the usual way. If T Fas hazard function 2(1[X) = h(t|w(¢)), then it follows
from the argument leading to (1.2.16) that

Pr(T =11X)= l—[[l ~dHulw))]. (1.4.5)
0.0

In the case where 7 is contiruous, d H (u|w(u)) = h(u|w(u)) du, where h(e|w(u))
is assumed continuous, except possibly at a finite set of points in any interval, and
(1.2.12) gives -

. ‘ ‘
Pr(T = 1|X) =exp {—-/ h(u{w(u))du} . (1.4,6)
0 f

Regression moclels for the case of discrete lifetimes T are also conveniently for-
mulated via the hazard function, giving hi(t{w(z)) for fixed or time-varying covari-
ates. The relationship (1.4.5) stilf holds, with dH (¢{w(¢)) = h(ajiw(a;)) at times
daj, where Pr(T = t|X) > 0, and O elsewhere,

1.5 MULTIPLE LIFETIMES AND MULTIPLE MODES OF FAILURE

Sometimes two or more lifeti ne variables T1, ..., T are of interest simultaneously;
there are several {ypes of sefiings where this may occur. One is where there are &
separate lifctimes for an individual: for example, the lifetimes of left and right front
brake pads in a car or the times until a particular condition appears in the left and

right eyes of a person, A similar situation occurs when individuals fall into clusters

or groups, with the expectation being that the lifetimes Ty, ..., T of k individuals
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in the same group have some degree of association, In carcinogenicily experiments
involving the time to the appearance of a tumor in laboratory animals, for example,
we would expect some association for animals in the same litter (i.e., with the same
parents).

These situations lead to a consideration of multivariate lifetime distributions,
which can be specified in terms of a joint p.d.f. or a joint survivor function,

S(t1y oo te) = Pr(Ty =t o0, T 2 1) (1.5.1)

A full treatment of multivariate models is beyond the scope of this book; separate
treatments of this area exist (e.g., Joe 1997, Hougaard 2000), We provide' a brief
discussion in Section 11,1, focusing on problems where methods based on univariate
lifetimes may be adopted.

‘Another class of situations is where a sequence of times 77, T2, ... can occur
for a single individual. For a repairable system, for example, T; could be the time
between the (f — 1)st and jth failures, In Example 1.1.8, patients with cystic fibrosis
could experience successive intervals of time free from pulmionary infections, of
lengths Ty, T2, .. .. In these circumstances the lifetime T; can be observed only if
Ti...., Tj—1 have already been observed, and it is natural to consider a sequence of
models f(t1), f(21t1), f(t3]t1, £2), and so on. This allows univariate lifetime models
to be used; we consider examples in Section 11.2.

A third kind of multivariate problem occurs when there is a single lifetime for each
individual, but failure or death may be of different modes or types. Often the modes
tefer to causes of failure, in which case the term “competing risks” is sometimes
used, For example, an individual in a demographic study might be recorded as dying
at age T from one of cancer, cardiovascular disease, or “other” causes; a marriage
may end due to death of one partner, death of both partners, or divorce; an appliance
may fail for any of several different reasons (see Example 1.1,10).

The distinguishing feature of the multiple failure modes setting is that each indi-
vidual has,a lifetime T and a mode of failure C, so we require a joint model for T
and C. This can be approached by specifying models for Pr(T < ¢, C = j) or by.
specifyirig mode-specific hazard functions : "
Pr(T <t+4At, C=jiT=1)
_ At
for failure modes j = 1,..., K. The analysis of multiple modes of failure is of

considerable importance, and it turns out to be closely related to the analysis of
ordinary univariate lifetime data. Chapter 9 is devoted to this topic.

(1.5.2)

L) = 1i
i® A0

1.6 SOME COMMENTS ON MODEL SELECTION
" AND STATISTICAL ANALYSIS

A number of factors enter into the process of modeling and analyzing lifetime dis-
tributions. These include the level of detail needed to address specific objectives,
background information about the variables and distributions in question, the type of
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data available to fit and check models, the availability of software and, more gener-
ally, the ease of analysis and interpretation. The planning of experiments and other
processes for data collection is also closely linked to modeling issues; observational
schemes and matters of design are discussed in Chapter 2.

Two séts of choices are whether to use discrete or continuous-time models, and
whether: to use parametric or nonparametric assumptions. Most of the standard life-
time data methoclology and software is for continuous-time models, and so ¢ven
when time is discrete (e.g., number of cycles to failure) we often use continuous
models. This book deals primarily with continuous models, but discrete distributions
are described and used in several chapters. '

The choice between parametric and nonparametric specifications is influenced by
the amount and type of data available, by background knowledge that may point
to specific parametric forms. by assumptions about the regularity or smoothness of
the distributions in question, and by the objectives of analysis. Personal taste influ-
ences what approach is adopted, but analysis of data usually involves both parametric

and nonparametric aspects. This book deals with both parametric and nonparametric

methods,

Advantages of parametric'models include simplicity, the availability of likelihood-
hased inference procedures, and ease of use for description, comparison, predic-
tion. or decision. The selection of a specific parametric model is often dictated
by its tractability and how well it fits the data. A primary requirement is that the
model ‘adequately capture features of the lifetime distribution that are apparent
from empiricdl dala. The ability to represent perceived features of the density and
hazard functions is often important, as is the behavior ‘of the model in either the
left or vight tails of the distribution. Convenient representation and comparison of
distribulion characteristics such as quantiles and survival probabilities is another
consideration,

Even when no covariates sre present, rather large samples are often needed before
the supcriority of one model over another in terms of fit is indicated, and severe right
censoring limits the compatiron of models. This increases an already strong tendency
to use models that are mathematically or computationally convenient, and to a large
cxtent this accounts for the extensive use of Weibull, log-logistic, and log-normal
models. As the number and complexity of fixed covariates increases, the emphasis on
distributional shape is usuall» much reduced, the primary focus being on location and
dispersion aspects of 7 or lcg 7. Many software packages include methodology for
exponential, Weibull, log-normal, log-logistic, and gamma distributions. We discuss
how to deal conveniently with them and other models throughout the book.

Nonparametric and semiparametric methods are somewhat less fettered by
ussumptions than fully pararietric methods. They are also useful for checking para-
melric modeling assumptions, Many software packages provide such methodology.

Itis iinpprtahl to bear in mind that models only approximate reality, and that in
a given situalion several models may provide a good description of observed data.
A question of considerable immportance is whether alternative models provide consis-
tent conclusions or output frem the analysis, Observed data may admit more than one
interpretation, but beyond this, we should recognize which conclusions or actions are
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sensitive to the choice of model and which are not. This book emphasizes applica-
tions in which the objectives are “scientific,” for example, to increase understanding
of some lifetime process, to estimate important characteristics, or to develop a good
model. Lifetime distributions are also used to make decisions in many fields; see, for
example, Klugman et al. (1998, Ch. 2) for applications to insurance, and Ascher and
Feingold (1984, Ch. 7) and Blischke and Murthy (2000, Chs, 16-18) for applications
to system maintenance planning and to product warranty design. The soundness of
such decisions naturally depends on the soundness of the models on which they are
based.

BIBLIOGRAPHIC NOTES

Many of the origins of lifetime data analysis are in demography and actuarial science,
in particular the use of the hazard function or “force of mortality,” as it is often called
in those disciplines. Qver the twenticth century, problems arising in the engineering,
life, physical, economic, and social sciences motivated extensive development of
models and methodology. Properties of hazard functions and applications to reliabil-
ity were considered by Barlow, Proschan, and others (Barlow and Proschan 1975).
Cox (1972a) stressed the use of the hazard function in problems involving covari-
ates. The use of product integrals to represent lifetime distributions became common
from about 1980; Gill and Johansen (1990) survey this topic. Fleming and Harring-
ton.(1991) and Andersen et al, (1993} are fundamental references on mathematical
aspects of lifetime and event history processes.

Parametric lifetime distributions weré used a good deal in the 1930s and 1940s,
and started to be very widely studied from about 1950, though some of the models
in question had been used much earlier in other contexts, The encyclopedic volumes
by Johnson, Kotz, and Balakrishnan (1994, 1995) provide numerous references and
properties of many parametric models, as do articles in the Encyclopedia of Statisti-
cal Sciences (Kotz et al, 1988). We provide only a few key references here.

Davis (1952) described applications of the exponential distribution to reliability;
Feigl and Zelen (1965) provided an early application of an exponential model with
covariates to medical survival data. The Weibull distribution was studied by Weibull
(1951) in connection with the strength of materials; Lieblein and Zelen (1956) and
Kao (1959) considered applications in reliability, and Pike (1966) applications in
medicine. Gumbel (1958) considered the Weibull and the extreme value distribution
in extreme value theory. The log-normal distribution was used by Boag (1949) and
Glasser (1965) for cancer survival data and by Nelson and Hahn (1972) for reliability
data. Bennett (1983a) described medical applications of the log-logistic distribution,
Buckland (1964) and Cox (1962) discussed the gamma distribution in connection
with failure times. :

The generalized log-Burr model (1.3.21) derives from the work of Burr (1942),
Tadikamalla (1980) considers the form here. The generalized gamma distribution
was introduced by Stacy (1962), but Prentice (1974) gave the form (1.3.22) con-
sidered here, and Farewell and Prentice (1977) discussed applications to reliability.

¢
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Chhikara and Folks (1977, 1989) discuss the inverse Gaussian model! and its use
as a lifctime distribution, Cesmond (1985) studies physical models of failure and
the relationship hetween the inverse Gaussian and Birnbaum-Saunders distribution
(Birnbaum and Saunders 1969). The piecewise exponential model has been used
for a long time in demography; Holford (1976) is an important modern reference.

Kooperberg and Stone (1992) and Rosenberg (1995) consider cubic-spline models .

for density and hazard functions. Titterington et al. (1985) discuss discrete-mixture
models. Early examples of ¢pplications in reliability were given by Cox (1959) and
Kao (1959); Maller and Zhou (1996) discuss cure-rate models of the form (1.3.27).
Vaupel ct al. (1979), Aalen (1988 1994), and Hougaard (2000) discuss continuous
mixtures and the concept of frailty.

Paramelric regression medels for lifetime data have been widely used since about
1960; early references include Feigl and Zelen (1965), Zippin and Armitage (1966),
Pike (1966), Nelson (1970a), Nelson and Hahn (1972), Prentice (1973) and Breslow
(1974). Cox (1972a) introduced the semiparametric proportional hazards model and

the incorporation of time-varying covariates, Semiparametric location-scale mod--

els are closely liriked with rmnk-based methodology; an early referénce to problems
involving censored data is P -entice (1978).

Multivariate lifetime distributions are considered at length by Hougaard (2000)
and also by Joe (1997). Mrltiple failure modes have a long history in connection
with competing risk, or multiple decrement, models in actuarial science or demog-
raphy. Important modern references include Cox (1959), Altschuler (1970), Nelson
(1969, 1972b), and Prentice et al. (1978). Crowder (2001) gives a detailed account.
Finally, numerous books discuss the application of lifetime distributions to specific
ficlds. In addition to the prceding references, we mention Klugman et al. (1998)
for applications to insurance and actuarial science, Lancaster (1990) for applica-
tions to economics, and Blassfeld and Rohwer (1995) for applications to the social
sciences,

COMPUTATIONAL NOTES

Software to compute the dznsity function, distribution or survivor function, and

quantiles of many of the patametric families in this chapter is widely available, as is |

the capability to simulate observations from these distributions, Procedures for com-
puting special functions suc' as gamma, digamma, and trigamma functions are also
available. Software that implements statistical methodology in subsequent chapters
is also widely available in packages such as SAS, S-Plus, BMDP, SPSS, Systat, and
Stata. This hook does not give instructions on how to use specific packages, since
there are so many choices aailable. However, specific procedures in S-Plus (Math-
soft, Inc.) and SAS (SAS Institute) will be mentioned in some places, since these
packages are very popular and were used in preparing the examples in the book.
Brief comments are also provided in the Computational Notes at the ends of chap-
tess. Various surveys of software for lifetime data analysis also exist. For example,
Collett (1994) and Harrell and Goldstein (1997) provide general overviews.

A
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PROBLEMS AND SUPPLEMENTS

1.1 Mean residual liferime, Let T be a continuous random variable with survivor
function S(¢). The mean residual life function m(t) is defined as

m(t) = E(T —t|T = 1),
(a) Prove that if m(t) exists, then

f7 Sx)dx

™= "5

The case t = 0 gives the well-known result
, _ .
E(T) = / S(x)dx.
0 N

Also obtain .S(¢) in terms of m (), showing that m(¢) uniquely defines the
distribution of T, through

t
S() = Ual) exp [—/ m(u)"1 du:\ .
m(t) 0

(b) Prove that
d "‘]
tl_lglo m(t) = :l—lfgo <—E; log f(t)) '

where f(t) = -—_S’(t) is the p.d.f. of 7. Use this to show that for the log-
normal distribution m(t) = oo as ¢t — 0Q. o
' (Sections 1.2.1, 1.3.4)

1.2 Classifying life distributions. Suppose a continuous lifetime distribution has
" survivor function S(t), hazard function #(t), cumulative hazard function A (¢),
and mean residual life function m (¢). Consider the following properties that a
distribution might have:
I A(1) is nondecreasing for ¢ > 0. Distributions with this property are often
said to have the increasing failure rate (IFR) property.
“II. H(t)/t is nondecreasing for ¢ > 0. Distributions with this property are
often said to have the increasing failure rate on the average (IFRA) prop-
erty. .
I m(r) < m(0) for all ¢ = 0. Distributions with this property are often said
to have the “new better than used” property.
IV. m(t)is a decreasing function for ¢t > 0. This is called the decreasing mean
residual life property.
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'(n) Prove that] = II = III,
(b) .Prove that I := IV = IIL

(It is sometimes usefu! to classify distributions according to criteria like these,
for example, .in applications to system reliability,)
(Section 1.2; Bryson and Siddiqui 1969; Barlow and Proschan 1975)

1.3 Distributions with decreasing failure rates. A continuous lifetime distribution
is said to have the decreasing failure rate (DFR) property if its hazard function
Ii(t) is nonincreasing for 1 > 0.

(a) Show that h'(+) < O only if f/(¢) < 0, and thus a necessary condition for
a distribution to hitve a DFR is that its p.d.f, have a unique mode at 7 = 0.

(b) Prove that a discre te mixture of distributions that all have DFRs itself has
a DFR. Show that a discrete mixture of exponential distributions therefore
has.a DFR and also that a mlxtme of IFR distributions does not necessarlly
have an IFR,

(Sections 1.2, 1.3.10; Proschan 1963)-

1.4 The log-normal distrilution. Consider the log-normal distribution with p.d.f.
(1.3.10).

(a) Show that the mean and variance of the distribution are
E(T) = e Var(T) = (¢ — 1)(e2+7).
(b) Show that the log-normal hazard function k(¢) has £(0) = 0, increases to

a maximum, then decreases, with h(¢) = 0 ast — oo,
(¢) Show that the turning point #* for h(t) satisfies the equation

h(1*) = (o2 + log ™ — p),

olt*
and use this to sho'v that.

e/1-rrz <r*< ep,—a2+l.

(Section 1.3.3; Watson ahd Wells 1961'; Goldthwaite 1961)

L5 The logistic and log-logistic distributions. Consider the log-logistic distribution
{1:3.12), and the corres sonding logistic distribution with location parameter u
and scale parameter b for ¥ = log T
(a) Show that the moment generating function for W = (¥ ~ u)/bis M(@) =

Elexp(8W)] = T'(* +6)T"(1 — ), and deduce from this that the mean and
variance of W are 0 and 72/3, respectively, Thus deduce the mean and
variance of Y. (Note that C(f) = log M (#) is the “cumulant” generating
function, that E(W) = C’(0), Var(W) = C”(0), and see Appendix B.)
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(b) Show that the hazard function (1.3.13) is monotone decreasing ifg <1
and that it behaves like the log-normal hazard function if 8 > 1. That is,
for B > 1, A(t) has h(0) = 0, increases to a maximum, then approaches 0
monotonically as ¢t = oo,

(¢) Find the pth quantile of T and show that when 8 > 1 the turning point for
h(t) occurs at the (8 — 1)/8 quantile.

(d) Show that E(T7) exists if and only if 8 > r, and i 1n that case equals

@' T(14+B7HT (1= g7,
(Section 1.3.4)
1.6 The gamma distribution. Consider the gamma distribution with p.d.f. f(1)

given by (1.3.15).

(a) Show that the hazard function for this distribution is strlctly monotone
increasing if £ > 1 and strictly monotone decreasmg ifk < 1. In both
cases show that limy—co h(t) = X :

(b) Show that the mean residual life function m(z) as deﬁned in Problem 1. 1
satisfies !

lim m(t) = AL |
{—00 !
(¢) For the case in which the index parameter k is an integer, prove by repeated
integration by parts that

oo k=1 G_Al(kf)i

/ f(x) dx = g ——-———i! .
In other WOrds, if T has p.df. (1 3.15), then P(T = t) = P(Yy < k),
where Yy, has a Poisson distribution with mean Az, Note that this result

- also follows directly from well-known properties of the Poisson process,
(Section 1.3.5)

1.7 The generalized Pareto distribution. Consider the three-pavameter distribution
with hazard functlon of thie form

B
h(t) = o + ——
)= t+ )/
Examine the range of values that «, B, and y can take. Investigate h{s) z}nd
show that it can be monotone increasing or monotone decreasing, according
to the values of the parameters. Give the p.d.f. and survivor function for the

distribution,
(Davis and Feldstein 1979)
1.8 A model capable of bathtub-s'hapetli hazards. Consider the model that has haz-
ard function

h(t) = Tf? + 8t
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Show that the hazard function may be bathtub-shaped, and consider the flexi-
hility of thie model in al'owing a variety of shapes for the hazard function.

(Hjorth 1980)
Show for the generalize'] log-Burr distribution (1.3.20) that the moment gener-
ating function M (8) = Z[exp(82)] is

[0+ Ftk—r+0)
Ik +1)

Show that £(Z) = log ¢ — yr(k) + vr(1) and that Var(Z) = W' (k) + (1),
where 1r(z) and y'(2) ¢re the digamma and trigamma functions, respectively
(Appendix B). Examinc the values of E(Z) and Var(Z) as k ranges from |
to 0o,

M(B) =

(Section 1.3.6)

The log-gamma distribwion. Suppose T has a gamma distribution (1.3.15) with
» = I. Show that the moment generating function M (9) = E[exp(d W)] for
W =logT is

I'(k+6)

M) = —T

Show further that E(W» = (k) and Var(W) = (k), where yr and " are
as in Problem 1.9, Derive (1.3.22) as the distribution of Z = k'/2(W — log k),
and show that as k — oo, it approaches the standard normal p.d.f.

(Bartlett and Kendall 1946; Prentice 1974; Section 1.3.6)

Let ¥ = log T have a logistic distribution with 1 = 0, bh=1

- (a) Determine the specfic extreme value and normal distributions that have

1,12

the same mean and variance as Y. Graph and compare the p.d.f.'s of the
three distributions, {Zomment on the similarities and dissimilarities in the
maodels, with a view to discriminating among them.,
(1) Compare in a similer way the p.d.f’s of T = exp Y in the three cases.
(Section 1.3.6)

Let Xy, Xa, ... be i.i.d, random variables with continuous distribution function
[(x) = P(X; < x) that satisfies the conditions

I, F(()) = (),

2, For some 8 > 0. lim,_,o+[F(xt)/F ()] = xP, with x > 0.

The second condition spacifies that F(x) ~ ax?, where @ > 0, as x — ot,

(n) Let ¥y = min(Xy, ..., Xa). Determine the survivor function of ¥, and
hence the survivor function of Z, = n'/BY,, Show thatas n — oo the
distribution of Z, cemverges to a Weibull distribution.

(h) Examine whether or not condition 2 holds when the X;s have (1) a Weibull
distribution (2) a geimma distribution, and (3) a uniform distribution on
(0, a).
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(These results are sometimes put forward as motivation for the Weibull model,
as, for example, when an individual is assumed to die at the point at which
one of many factors reaches a critical level. The approach here is not totally

realistic, since the X;s have been assumed to be i.i.d., but the limiting Weibull
i

form may hold under weaker conditions.) ;
' (Section 1.3.2)

1,13 A mixed exponential model, Suppose that a population contains individuals for
which lifetimes T are exponentially distributed, but that the hazard function A
varies across individuals. Specifically, suppose that the distribution of T given’

A has p.d.f.
fely=re 120,
and that A itself has a gamma distribution with p.d.f,

A'k—-le—v\./a

(a) Find the unconditional p.d.f. and survivor function for T and show that the
unconditional hazard function is

h(t) =

o
1+l
- Note that this is a special case of the generalized Pareto moadel of Prob-
lem 1.7. Show that h(¢) is monotone decreasing,.

(b) Prove that if the distribution of T, given A, is exponential and A has a con-
tinuous distribution on (0, 0o), then the hazard function for the marginal
distribution of 7 is monotone decreasing.

(¢) Prove more generally that if the distribution of T, given A, has a hazard
function A(z; A) that is monotone decreasing for any A > 0, and A has a
distribution on (0, 00), then the hazard function for the marginal distribu-

tion of T is monotone decreasing. This generalizes results in Problem 1.3,
(Section 1.3,10; Proschan 1963; Barlow et al. 1963)

1.14 Burrdistributions and properties of mixtures. The results in the preceding prob-
lem can be generalized. Consider frailty models with survivor functions of the
form (1,3.32), where Z has a gamma distribution with mean 1 and variance ¢.
That is, the p.d.f. g(z) is given by (1.3.15) with A =k = ¢~
(a) Show that the survivor (1.3.32) in this case becomes

1 —k
S(t): |:1+-H0(t):| ,
k

so that the Burr distribution (1.3.21) arises by‘taking Ho(t) = (t/a)f of
Weibull form,
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1.15

1.16
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(b) Consider the case ‘vhere Hp(t) = 12 is of Weibull form. Obtain the hazard
function h(t) = —§'(¢)/S(t) and plot it for the values k = 1, 2, oo,

(¢) Determine and plot E(Z|T > 1) as a function of ¢.

(d) Use the preceding results to comment on the effects of heterogeneity on

hazard functions for lifetimes,
(Sections 1,3.6, 1.3,10)

Discrete models.
(a) For the Poisson distribution with probability function
J

A
PiX=j)=e=
!

Jj=01...,
show that the hazard function is monotone increasing.
(b) For the negative binomial miodel with probability function

Pr(X = ) = <",°‘),7“(p— Y j=01,...
7

where v > 0 and (' < p < 1, show that the hazard function is monotone
decreasing (increasing) if @ < (& > 1). What happens if & = 17
(Scction 1.3.7)

Failure rate in multiva-iate lifetime distributions, There are various ways in
which the hazard functiyn (failure rate) concept can be extended to multivariate
distributions. One appreach to the idea of increasing hazard functions (Brindley
and Thompson 1972) it as follows: suppose that continuous random variables
Ty..... Ty have the joint survivor function

Sty oo h))=Pr(Ty 211,00, Ty 2 1) ti = 0.

Suppose that for any subset {iy, ..., iu} of {1,..., n} the jointsurvivor func-
o Sy iw (tiyr -0 f3,) of Ty, T, ds such that :

Styoim iy + X000ty XD

1.6.1)
Siveim iy e oy fi) (

is monotone decreasing in f;,, ..., #;,,, forany x > 0, Then (Ty, ..., Ty) is said

to have the multivariate increasing failure rate (MIFR) property.

(a) For aunivariate distribution with survivor function §(¢) the MIFR property
states that S(r+.v)/ 5(¢) is decreasing in  for all fixed x > 0. Show that this
is equivalent lo the statement that the hazard function h(r) = —5'(z)/S(t)
is monotone increaring; that is, the distribution has an IFR.

(b) Prove that ¥ = mir (T}, ..., Tp) has an IFR if (T}, ..., T;;) has the MIFR
property.
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(c) The standard bivariate logistic distribution has distribution function

FOyy) = (1 +e +e7)7! -~ 00 < Yi, Y2 < 00
Obtain the joint survivor function for Tj = exp Y; and T, = exp Y2, and

examine (1.7.1) in this case. Does (T, T2) have the MIFR property?
' (Section 1.5)

1.17 Multiple modes of failure. Consider the definition of mode-specific hazard
‘functions (1.5.2).
(a) Show that.the hazard function for T is le-:l Aj(t), and thus obtain the
marginal-survivor function S(t) for T,
(b) The mode-specific subdensity functions f;(¢) are defined by

. Pra<T <t+ A1, C=))
fi(®) = dm Al :

Show that f;(2) = A;()S(t). )
(¢) Find Fj(t) = Pr(T <1, C = j) and thereby also obtain Pr(C = j) and

Pr(C = j|T <1).
(Section 1.5)



CHAPTER 2

Observation Schemes, Censoring,
and Likelihood

2.1 INTRODUCTION

Section 1.1 showed that lifetime data often come with the feature known as right-
censoring. As we will see in this chapter, other restrictions on the information avail-
able about a set of lifetimes can also occur, A major challenge of lifetime data
analysis is to develop-methodology that deals with censoring and other conditions.
The statistical inference procedures in this book use likelihood functiofis based on

observed data. This chapter establishes the form of the likelihood under censoring

‘and Mnditions associated with the selection and observation of individuals in

a study, and serves as a basis for thie methodology presented in subsequent chapters. -

We begin with some preliminary discussion of likelthood; a general summary is
given in Appendix C. Suppose that the probability distribution of potentially observ-
able data in a study is specified up to the parameter vector 0. A likelihood function
for @ is, as a function of @, proportional to the probability of data that were observed.

That is,
L(0) o Pr(Data; 8), 2.1.1)

where Data denotes observed data, and Pr denotes the probability density or mass
function from which the data are assumed to arise, A more formal notation for L(8),
which we will use only if necessary, is L(6; Data).

Standard likelihood-based methodology applies to_models where @ is a finite
dimensional vector, and includes maximum likelihood estimation of @ and the con-
struction . of confidence intervals’ and tests. The likelihood is, in conjunction with
a prior distribution for 6, also the basis for Bayesian analysis. Inferences for non-
parainetric or semiparametric models can be developed by likelihood theory as well;
in this case, the parameter specifying the model is infinite dimensional, and often -
uncountable. As discussed in Appendix C, more than one likeliliood function may
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he obtainable from a given data set and model, by employing subsets of the full data

or by conditioning on certair outcomes. This is sometimes a way to avoid nuisance

parameters, and is associated with the terms marginal and conditional likelihood. In

-this chapter we focus on “odinary” likelihood functions, but these terms and the

more general conceplt of part-al likelihood (Appendix C) are encountered briefly.
The following example illastrates some of the points mentioned.

Example 2.1.1.  Suppos:: that lifetimes for individuals in some population fol-
low a distribution with proa’ability density function (p.d.f.) £(#) and distribution
function F(t), and that the lifetimes ¢y, ..., t, for a random sample of n individuals
are observed. In the format of(Z. 1.1), Data = (1, ..., fy) and

Pr(Data) = [ | £ (). 2.1.2)
i=1

I¥ it is assumed that f(¢) nas a specific parametric form [ (¢; ), then the likeli-
hood function is

L(O) =[] 0). 2.1.3)
i=l1

This can be maximized to give an estimate 8, and consequently an estimate F(¢; )
of the distribution function, A. nonparametric approach would be to-assume that F(¢)
is discrete, say with unspecified probabilities f(t) = F(t) — F(t — 1) at the jump
points 1 = 1,2,3,...; this ix not very restrictive, since lifetime measurements are
in practice discrete, In this case, we consider f = (f(1), f(2),...) as the model
parameter and the right side of (2.1.2) as the likelihood. It is easily seen that (2.1.2)
is maxiniized subject to f (1) = 0, Zf’i, f(s)=1by

. ] ]
foy==3 1@=0,

=1

where / (A} is the indicator finction that equals | if event A is true and 0 if it is not
true. Although 1 (1) may not he a highly appealing estimate because of its roughness,
the corresponding estimate F(t) = f(1) + .-+ f(r). or

o I n
F(t) = — ;
() ==3 1 <0,

i=1

is an appealing estimate of F. It is known as the empirical distribution function.
Now suppose thal t1, ..., i, are not from an unrestricted random sample of indi-

viduals. but rather a random sample of those with lifetimes 1 year or less, with there

being no information about the number of individuals with lifetimes greater than 1

- et ot S e TR o
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year, Truncated samples of this type sometimes arise in reliability and in epidemi-
ology (e.g., Kalbfleisch and Lawless 1989). In this case, the data in (2.1.1) include
the nonignorable information that i < 1 fori =1, ..., n. The likelihood function is
then given by ‘

'\h

|

[[Pram s vy=T] [ (%)
{=1 (1)

i=1

‘11

rather than by (2.1.2).

We now turn to the guestion of how individuals are selected and observed in
studying lifetime distributions, This may be done in a variety of ways, depending
on factors such as the (chronological) time needed to observe the events that defirie
lifetime, the feasibility of following individuals over time, and the mechanism for
recording lifetimes and covariate values.

Many studies follow individuals longitudinally over time: This is referred to as a
prospective study, and examples include life tests, clinical trials, and other types of
follow-up studies (see Examples 1.1.1 and 1.1.3-1.1.10). The group or cohort of indi-
viduals in such studies is often, but not necessarily, randomly selected fram a popu-
lation of individuals who are at the time origin (¢ = O) for the lifetime variable T
Limitations on the information collected may be imposed by time, cost, and other
constraints. Termination of follow-up before an individual fails causes their lifetime
to be right censored. In some settings it may be possible only to determine whether
an individual is unfailed or failed at a succession of time points a; < az < '+« < dm;

_ in this case, the lifetime is known only to lie in some interval [aj..1, ay), a feature

known as interval-censoring. The case where the interval is [0, ay) is known as left

censoring. The values of time-varying covariates may likewise be observable only at.

certain times.

Sometimes individuals cannot be randomly selected and followed from ¢ = 0.
One possibility is that they are randomly selected from a population of individu-
als who are alive, and then followed. If u is an individual’s t-value at the time of
selection, then it is an initial condition on the data that T > u, and this must be
reflected in the likelihood function. Another possibility is that the observation of
data for an individual is at least in part retrospective; this means that at least some of
Data used in the likelihood function arises chronologically before the time individu-
als are selected for the study. In this case, there may be nonignorable conditions that
apply to the lifetimes of individuals who are selected.

These observational features are discussed in subsequent sections. Right censor-
ing is the most prevalent complication with lifetime data, and Section 2.2 considers
its sources and effects. Sections 2.3 and 2.4 deal with other forms of incomplete
data and with nonignorable conditions that arise because of the way individuals are
selected for a study. Section 2.5 discusses issues pertaining to the planning of stud-
ies. With this material in place, we will be in a position to develop methodology for
a wide range of settings and models. ?
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2.2 RIGHT CENSORING AND MAXIMUM LIKELIHOOD

Right censoring, whereby only lower bounds on lifetime are available for some indi-
viduals, can occur for various reasons, It may be planned, as when a decision is made

10 terminate a life test before all items have failed, or unplanned, as when a person in -

a prospective study is “lost t3 follow-up™ because they move away from the region

where the study takes place. To obtain a likelihood function (2.1.1) or the proper-

ties of 'statislical procedures based on censored data it is necessary to consider the

process by which both lifetinies and censoring tifies arise. To do this we apparently .

need 4 probability model for ‘he censoring mechanism. Interestingly, it turns out that
the observed likelihood function for lifetime parameters takes the same form under
a wide variety of mechanisms., We consider some specific types of censoring in the
next section and then give a general formulation. .

We first introduce some rotation for censored data, Suppose that n individuals
have lifetimes represented by random variables T, ..., Tp. Instead of the observed
values [or each lifetime, hoviever, we have a time 4 which we know is either the
lifelime or a censoring time. Lel us define a variable §; = I(T; = #) that equals
1 if T} =-t;-and-0-itT7 > #; this is called the censori'rfgmmdicator for ¢,
since it tells us if 4 is an obierved lifetime (§; = 1) or censoring time (§; = 0).
The observed data then consist of (4, 8;),1 = 1, ..., n. With this notation we occa-
sionally let-r; represent either a random variable or a realized value. This violates
the convention where capital 'etiers représent random varjables and lowercase letters
represent realized values, but no confusion should arise.

The most important result of this section is that for a variety of censoring mecha-
nisms the observed likelihood function takes the form

L=]Trm"seu+'-.

=1

This is derived below as expression (2.2.3) for the most basic type of censoring, and
subsequeritly for some other ceusoring mechanisms, '

2.2.1‘ Some Tybes of Right Censoring

-Several censoring mechanisnis and the likelihood function obtained for each are
described in this section. For simplicity we ignore covariates and assume that life-
times T; arc independent and identically distributed; extensions to allow covariates
are straightforward,

2.2.1,1 Type I Censoring

A Type | ¢ensoring mechanism is said to apply when each individual has a fixed
potential censoring time C; > 0 such that T; is observed if 7} < C;; otherwise, we
know only that T; > C;. Typ= | censoring often arises when a study is conducted
over a specified time period. In Example 1.1.5, termination of a life test on electrical

" function from (2.2.2) as
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insulation specimens after 180 minutes would, for example, mean that C; = 180 for
cach item. In clinical trials there is often staggered entry of individuals to the study
combined with a specified end-of-study date. Example 1.1.7 discussed a clinical trial
concerning the duration of remission for patients with leukemia, which was p.lan‘ned
to run for one year, with patients entering the trial over that period. The lifetime
variable T; for a patieht was the duration of their remission measured from time of
entry to the study, and C; would be the time between their date of entry and FheI e’nd
of study, Example 1,1,6 involved a similar design for a study of equipment reliability.
" In our general notation, we have '

4 = min(T;, Cy), & =I(T =C) (22.1)
for Type 1 censoring. The likélihood function for a Type 1 censored sample is based
on the probability distribution of (4, 8;), i = 1,...,n. Both t and & are random

variables in (2.2.1), and their joint p.d.f. is

Fa)Y Pr(T; > Cp=H, (2.2.2)

To see this, note that the C; are fixed constants and that ¢; can take on values < Cj,
with

Prit;y =Ci, 8 =0) = Pr(T; > Cy)
Priti, 8 =1) = ft:) i 2 Gy,

where Pr in the second expression denotes either a p.d.f. or probability mass func-.
tion according to whether the T} distribution is continuous or discrete at t;. Assuming
that the lifetimes Ty, ..., T, are statistically independent, we obtain the likelihood

i

L=[]fe¥su+H'". 2.2.3)

=1 ,

The term S(t;+) appears in (2.2.3) because it equals Pr(T; > ;) in general; if S(f)
is continuous at-#;, then S (5 +) = S(). '

The -adjustment to (2.2.3) when fixed covariates x; are present in the model is
simply to replace S(t) and f(¢) with S;(¢#) = Pr(T =z t|x;) and i) = f@lx). In
the case of external time-varying covariates (Section 1.4), S;(t) is given by (1.4.6)
and f;(t) by & (1)S; (1), where h; (t) = A(t|X;). ‘

Exact sampling properties of estimates or tests based on a likelihood function of
the form (2.2.3) are generally intractable mathematically, but standard large sample
results for maximum likelihood (described in Appendix C) apply, and finite sample
properties can be investigated by simulation, Asymptotic theory and statistical infer-
ence from likelihoods based on censored data are discussed in Section 2.2.3 and, for
specific models, in later chapters throughout the book.

o
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Suppese that lifetimes 7; are independent and follow an expo-
= Aexp(—At) and survivor function S{¢) =

Example 2,2.1,
nential distribution with p.d.f. f(1)
exp(—At). Then (2.2.3) givies

. 1
L) = ]"[(M-M)sf (e~M)1=4

i=l

n
= A"exp <—A~Z tg) ,
=]

where r = 3 §; is the observed number of uncensored lifetimes, or failures. The
log-likelihood function £(A) = log L()) is

22.4)

n
L) =rlogh =21 4. (2.2.5)

i=l

The maximum likelihood estimate is given by solving dé/dh = 0, and is A =
r/ ZL‘ t;. The exact distribution of A is rather intractable, as is the distribution of
the minimal sufficient statistic (r, 3 ).

For the Type I censoring scheme the censoring times C; are specified fixed values,
In many settings they are actually random, For example, in the clinical trial described
in Example [.1.7 and discusted earlier, individuals entered the study in a more or less
random fashion according to their time of diagnosis with leukemia, so their censoring
times were elfectively rando n. In fact, the study was actually terminated early, based
on the accumulating data, tl us altering the original censoring times. We consider a
q)mple model for random censoring next, and a more general model in Section 2.2.2,

2.2.1.2  Independent Randym Censoring
A very simple random censoring process that is often realistic is one in which each
individual is assumed to have a lifetime T and a censoring time C, with T and C
independent continuous random variables, with survivor functions S(¢) and G(t),
respectively. Al lifetimes and censoring times are assumed mutually independent,
and it is assumed that G(r) Coes not depend on any of the parameters of S(¢). As in
the case of Type | censoring, #; = min(T;, C;) and §; = 1if T; < C; and 8; = O if
> Cj. The data from obszrvations on » individuals is assumed to consist of the
pmls (f;.8;), 1 = 1,..., n; the same final result is obtained if C; is available for all
i=1....,n Thep. d i of (11, §;) is easily obtained: if f(¢) and g(¢) are the p.d.f.’s
for T; ,md C;. then

Priti=1,8i =0) = Pr(C; =t,T > C;)
= g(1)S()

Prit=1,8=1=Pr(Ty =0T < C))
= F(HG ).

EERR e s
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“These can be combined into the single expression

Pris =18)=[fOGM eSO,

and thus the distribution of (%, 8:),i = 1,..., n, is

[Tirecun® e seny’ .

i=1

Since G(¢) and g(¢) do not involve any of the parameters in f(¢), they can be
neglected and the likelihood function taken to be

| L =[] re%se)' =,

i=l

which is of the same form as (2.2.3). The earlier result for ”[‘ypeI 1 censoring can in
fact be considered as a special case of this if we allow the C; to have degenerate
distributions, each with mass at one fixed point. Another approach that leads directly
to this likelihood function is to argue that if G (¢) and g (¢) do not involve any param-
eters of f(¢), then Cy, ..., Cy are ancillary and one should condition on the realized
censoring times when making inferences about the distribution of T', This takes us
back to the Type 1 censoring framework. A point to note is that although it may be
desirable to make inferences conditional on the C; in any given situation, the prop-
erties of procedures averaged over the distribution of the C; may be of interest when
planning studies, and in some applications.

Although the independent random-censorship model is often reasonable, in many
situations the censoring process is linked to the failure time process. Suppose, for
example, that the termination date for a medical trial is not fixed before the study
commences, but is cliosen later, with the choice influenced by the results of the study
up to that time. In such instances it may be difficult to write down a model that fully
represents the process under study. Fortunately, the likelihood function (2.2.3) is still
applicable in many such complicated situations, This is discussed in Section 2.2.2.

2.21.3 Type 2 Censoring

The term Type 2 censoring refers to the situation where only the r smallest lifetimes
tay < +++ <ty in a random sample of n are observed; here r is a specified integer
between 1 and n. This censoring scheme arises when n individuals start on study at
the same time, with the study terminating once r failures (or lifetimes) have been
observed. Although some life tests are formulated with Type 2 censoring, they have
the practical disadvantage that the total time #( that the test will run is random and
hence unknown at the start of the test. Type 1 censoring is therefore much more com-
mon in planned experiments. The exact sampling properties of statistical procedures
based on a Type 2 censored sample are, however, tractable in many cases and this
censoring scheme is often discussed in theoretical work,
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Wilh Type 2 censoring the alue of 1 is chosen before the data are collected, and
the data consist of the r smallest lifetimes in a random sample Ty, ..., T,. For con-
tinuous distributions we can ignore the possibility of ties and denote the » smallest
lifetimes as Ty < T(py < -+ -2 Ty 1f the T; have p.d.f. f(¢) and survivor function
S(r). then from general results on order statistics (Appendix B.3) the joint p.d.f. of
7'()). P T(,-) is

Al ! ‘ .
T {]—[.f(t(i))} St 22.6)

i=1

The likelihood function is base 1 on (2.2.6). By dropping the constant n!/(n —r)} and
noting that in terms of the (&;. t;) notation we have §; = 0 and #; = 1.y for those
individuals whose lifetimes are censored, we see that (2.2.6) gives a likelihood of the
same form (2.2.3) as for Type | censoring. The sampling properties are, however,
different in finile samples.

Example 2,2.2. Consider the expunential distribution as in Example 2.2.1, but
suppose lifetimes are Type 2 censored, The log-likelihood is still of the form (2,2.5),
but here it can be written as

R
LAY =rlogh — A {:Z ty + (n— r)’r(r):]

i=1

and the maximum likelihood ertimate for A can be written as A = r/ W, where

,
W= Zl(,‘) + (= )iy,

i=]

Sincc r is fixed, the slatistic W is sufficient for A, and it is readily shown (see Sec-
tion 4.1.2) that with the data considered as ranidom variables, 2A W = 2rA/A ~ xér),
a chi-squared distribution with 21 degrees of freedom, This allows exact confidence
intervals and tests for A to be dveloped.

Progressive Type 2 Censoring
Progressive Type 2 censoring is a generalizalion of Type 2 censoring. In this case,
the first-ry failures in a life test of n items are observed; then n; of the remaining
n — ry unfailed items are remcved from the experiment, leaving n — r; — ny items
still present. When a further r; items have failed, 17 of the still unfailed items are
removed, and so on. The experiment terminates after some prearranged series of
repetilions of this procedure.

This scheme is of more theoretical than practical interest, but let us obtain the like-

lihood function, assuming that 'ifetimes are independent and indentically distributed

(1.1.d.) with p.d.f. £(1) and survivor function S(¢). For simplicity we suppose the cen-
soring has only two stages: at the time of the ryth failure, ny of the remaining n — r
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unfailed items are randomly selected and removed. The experiment then terminates
when a further r7 items have failed. At this point there will be n — r1 —nj —rz items
still unfailed. The observations in this case are the r{ failure times T(yy < -+ < T(r)
in the first stage of the experiment and the ry failure times in the second stage of
the experiment, which we will denote by T(“;) < o< T (’ﬁz). The experiment is
represented in Figure 2.1.
The distribution of the data can be written as

g1ltays v oo 1)) 8201y o By [ty o ) (2.27)
where g; and g represent p.d.f’s of the variables indicated. The joint p.d.f.
gty oo ater) of Tenys ooy T is given by (2.2.6), with r = 1. To write down
the second term in (2.2.7) we observe that given (1, ..., k), the lifetimes of the
itemns left in the experiment have a left-truncated distribution with p.d.f. and survivor
functions

I S()
W) =<7 S1() = =7~ 12t
S (ten) S (ten)
respectively. Thus T}y, ..., T¢r,y are the rp smallest observations in a random sample

of size n — i) — rq from this truncated distribution. By (2.2.6), the second term in
(2.2.7) is therefore

(n—ri=np! . NS Lint S bl
(n—ri—ny— rz)!ﬁ K i) [Sl (t("Z))] ’

Combining the two parts of (2.2.7), we obtain the likelihood function as

,  (2.2.8)

]n—r; ot 1 Taal]

Sf ()« £t [SC ™ £+ F) [5G

where ¢ = nl(n —ry — npl/[(n ~ r)in — ri — g — rz)!]. Once again, using the
(4, &) notation, we find that (2.2.8) is of the same form as (2.2.3).

Tk It T
RN

O} (2) ,(rl) @) (ry)
] | l o
" n jtems Experiment
on test Randomly remove terminates

n, unfailed items,

!
leaving n-r, -m,oon
test

Figure 2.1. Progressive Type 2 censoring.
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2.2.2 A General Formularion of Right Censoring

The censoring process is of:en not any of the types discussed so far, and may be
sufficiently complicated to make modeling it impossible, For example, a decision
to terminate a life test or clinical trial at time ¢, or to withdraw certain individuals,
might be based on failure information prior to time ¢, Fortunately it can be shown
that under rather general coditions the observed likelihood is of the form (2.2.3)
and can be used in the normal way to make inferences about the lifetime distribution
under study. -

The key idea for a general approach is to consider the failure and censoring pro-
cesses for a group of individuals as time goes by. We develop results for discrete-time
models first; the general case is then obtained by limiting arguments similar to those
used in Section 1.2.3 for the zeneral formulation of lifetime distributions.

Suppose that r individuals are followed from ¢ = 0 until each fails or is censored.
Assume that lifetimes and censoring times are discrete; for convenience and with no
loss of generality we assume allowable values for each are t =0, 1, 2, ., .. Suppose
~ for now that covariates do not vary over time and let k; (#) and S; (1) be the hazard-and
survivor functions (see (1.2.7) and (1.2.8)) for individual i, conditional on observed
covariate values.

We introcluce some additional notation directed at the evolution of the failure and
censoring processes over ims, as follows, Fort =0, 1,2, ... let

Yi(t) = I(T; > ¢, Individual i is not censored before )

dNi (1) = Y; (1) (T; = 1)

dCi() =Y, (1) (Individual i is censored at t)

The variable ¥;(#) is often called the at risk indicator; it equals 1 if and only if
individual / is alive and uncznsored just before time ¢, and hence at risk of being
observed to fail at ¢, The variables dN;(¢) and dC; (¢) record observed failure and
censoring events at time ¢, respectively. Among all the values {dN;(¢), dCi(r),
t > 0}, only one is nonzero for any individual,

We also define vectors dli(t) = (dNy(t),...,dN, (1)), dC(t) = (dCi(t),...,
dC, (1)), and

H(f)= [(dN(S),dC(S)), S=Ov1y""l—' 1}'
We refer to () as the history of the failure and censoring processes at time £, It
consists of the information ahout all failures and censoring events that occurred up

to time f — |, The important point is that the data that we observe (aside from the
covariale values) can be represented as

Data = (dN(1),dC(); t =0,1,2,...).

Furthermore, we can decompase Pr(Data) as

. Pr(Data) = n Pr(dNtl)]H(l))Pl'(dC(l)]dN(t), H()), (2.2.9)
1=

e e

£
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where (0) is null. In (2.2.9) all probabilities are conditional on covariate values,
but for simplicity this is suppressed in the notation.

So far we have made no assumptions about the censoring mechanism, but to pro-
ceed further it is necessary to do this. Assumptions that have become standard in
lifetime data analysis require that

PrAN@IH®) = [ [ry™MO1L — by (9]1O0 =M, (2.2.10)
i==] ’

Effectively, this requires that given #(¢) and covariate values, the failure mechanisms
for individuals at risk at time ¢ operate independently, and that for ¢ = 0,1,2,...

Pr(dN;(t) = L/H (1)) = Yi()h; (1), (2.2.11D)

The riotational convention 0° = 1 is used in (2.2.10), corresponding to the fact that
if ¥;(r) = O there is no information about individual { at time ¢, and the term in
the likelihood should equal one, Note that the value of ¥; (t) is determined by the
information in ().

The condition (2.2.11) represents a conditional (on H(r) and covariate values)
independence between failure and censoring at time ¢, and mechanisms that satisfy it
are often termed independent censoring mechanisms. Under (2.2.11), the probability
that an individual who is alive and uncensored just prior to time ¢ is observed to fail
at £ is hy(t), the same as if there were no censoring.

" If the terms Pr(dC(1)|dN(t), H(t)) in (2.2.9) do not involve any of the param-

‘eters that specify the /; (¢), the censoring scheme is called noninformative. These

terms can then be dropped from the likelihood, and by inserting (2.2.10) into (2.2.9),

~we get

n oo : :
L= l_[ 1—1 hi(t)le(t)[l — hi (t)]Yi(l)(]—dN,(!))‘ (2.2.12)
i=11t=0
Each individual is observed either to fail or be censored at some time ¢, In the case
of failure at r, dN;(¢) = 1 and Y;(s5) = I(s < 1); in the case of censoring at ¢,
dN;(t) = 0 and Y;(s) = I (s < 1). Since (see (1,2.6) and (1.2.8))

t-1
Si(t) = l_[(l — hi (), fi)) = i ()81 (1),

s=0

- we find that (2.2,12) gives, in the (#, &;) notation,

L=TTAw¥sw+n"" (2.2.13)

n
f=1

Since S;(t 4+ 1) = S;(t-), the likelihood i; exactly of the form (2.2.3) encountered
previously for Type 1 and other forms of censoring.
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To abtain the likelihood in the case of continuous or mixed distributions we use
the same ideas as in Section 1.2.3. We associate dN;(¢#) and dC;(t) with a short
interval [t,1 -+ di) in a partit'on of the time axis, and in (2.2.10) and (2.2.11) we
replace fy (1) with o H;(t), where H;(1) is the cumulative hazard function (1.2.14).
The preceding arguments go {hrough essentially unchanged as we take the product
limit of (2.2.12) and then use (1.2.16) to obtain the product integrals in

L= li[ I—[ dH,'(t)"N"(’)[] — dHi(f)]yl(')“"le,(‘)) .
{=1 (0.00)
£ @) S (), (2.2.14)

i
i=]

exactly as in (2.2.3).

2.2.2.1 Discussion
The independent censoring cordition (2.2.11) requires that censoring in [, £-+d!) not
depend on dN (¢). In the discrete-time case we usually assume that a censoring event
al time /°means that the physical censorship is just after time ¢, so that if ¥;(r) = 1,
an individual who dies att is ohserved to do so, as (2,2.11) indicates. Consistent with
this, for an individual censored at ¢ it is assumed that 7; > 7, as in (2.2.13), Censoring
is lypically noninformative in .his casc as well. More generally, (2,2.11) means that
censoring al time / cannot be related to failure information at or after time ¢, so it
cannot selectively discriminate among individuals according to when they will fail
in the future. This seems an obvious requirement for valid estimation of the lifetime
distribution in the presence of rensoring, but is one that is uncheckable solely on the
basis of the data (1, 8,), 7 == 1,..., n. It may also appear hard for it to be violated
by a real censoring process, Lut that is not so. For example, if a covariate x that
affects lifetime also affects the censoring process, then failure to include x in the
model for T can canse a violation of (2.2,11). Another setting where (2.2.11) could
be violated is in the discrete case where t = 0, 1,2, ... refers to equally spaced
points in continuous time, and where an individual alive and uncensored at time ¢
may be lost Lo follow-up between ¢ and ¢ + 1, In studies where the obseryation times
are far apart, the event that an individual is lost to follow-up (and therefore censored,
so that ¥ ( + 1) = 0) may not be independent of whether they fail in (¢, £ + 1].
There are two additional important features of the preceding development. One
is that the censoring mechanizm at time ¢ is allowed to depend on the history of
censoring and failure before ¢, The Type 2 censoring process is actually of this type.
More generally, it would be pernissible in a study to make a decision about censoring
individuals (i.e., removing them from the study) or terminating the study at time ¢
according to failure information up to that time. A second point is that the likelihood
(2.2.14) is available without a specific model of the censoring process. As long as the
terms Pr(dC)dN(), H()) in (2.2.9) do not involve parameters of interest, they
drop out of the likelihood, With independent censoring this is generally the case,
but even if these terms do contain information about the h; (t), it can be shown that
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(2.2.14) is a partial likelihood (see Appendix C) and can still be used for inference
in the usual way.

The observed likelihood (2,2.14) thus has the same form for a variety of cen-
soring schemes, Moreover, inference procedures based on maximux.n likelihoqd
large-sample theory can be applied in a straightforward way, as we will dl:scuss in
Section 2.2.3. However, the probability distributions upon which (2.2.14) is based
can differ substantially according to the censoring process, and small sample proper-
ties of estimates or tests may-therefore be different. In general, (2.2.14) is based on
the joint distribution for the censoring and failure processes, and it is oply ip special
cases such as Type 1 or independent random censoring that the censoring times can
be viewed as fixed values. .

If there are external time-varying covariates x(¢), then the preceding development
can be extended, We now assume that models for the hazard function of T given X =
{x(), t = 0} are as in Section 1.4, say of the form (1.4.4). The preceding.argument
goes through essentially unchanged, adding the X; (¢) to the history H(¢) 1n.(2.2.9),
(2.2.10), and (2.2.11). The likelihood function is then of the form (2.2.14), with S; (¢)
given by (1.4.6) and f; () by hi (1)S; (1), where h; (1) = h(t]X;) = h(tiwi(1)).

2.2.3 Likelihood Inference with Censored Data .

‘Sltatistical inference for pardm_etric models can in standard settings be based on well-
Known maximum likelihood methodology, described in general terms in Appendix C,
Let 6 be a p x 1 parameter vector, and let L(0) represent the likelihood an.d 29(0) =
log L) the log-likelihood function. The p x 1 vector U(0) = 8£(0)/90 is usually
called the score vector and the p x p matrix

—3%¢
= e 2.2.15)
10 = 3550 (

is called the information matrix, The maximum likelihood estimate (in.l.e.) 0 n'mxi~
mizes L(8) and £(8), and usually satisfies the score equation U(8) = 0. The Fisher .
or expected information matrix is defined as

Z(0) = E{I(®)}, (2.2.16)

where the expectation in (2.2.16) is with respect to the random Data, which specifies
the likelihood (see (2.1.1)), and is calculated under the probability distribution that
generates the observed data. Well-known large sample or asymptotic results that are
used for inference throughout this book include the fact that, considered as random
variables, @ is approximately normally distributed in large-samples and the likeli-
hood ratio statistic A(0) = 215(9) —2£(0) is approximately x2. Details of these and
other results are given in Appendix C.

" Standard large-sample procedures for maximum likelihood can be shown to apply
to all of the settings described in Sections 2.2.1 and 2.2.2. With Type 1 ce.n.soring,
asymptotic results of the usual type hold under essentially the same conditions as



62 OBJ3ERVATION SCHEMES, CENSORING, AND LIKELIHOOD

far the case of complete (i.:., uncensored) random samples. An added requirement
is that the sequence of fixed censoring times C1, ..., Cy, satisfy conditions so that as
n = oo, the expeeted infor nation Z(8) increases at rate n; a sufficient condition in
most instances is that the e;:pected number of observed (i.e., uncensored) lifetimes
approach infinity at rate n as n — oo,

Independent random censioring (Section 2.2.1.2) is subject to essentially the same
requirements as Type 1 censoring, the only distinction being that the C; are treated as
random variables rather than fixed constants, Type 2 censoring is also straightforward
to deal with; the usual assurr ption for the development of asymptotic results is that as
11 — 00, we have r — oo with r/n approaching a limiting constant p. In a few cases
involving Type 2 censoring, exact distributional results for m.le.’s or likelihood-
based procedures can be obtained,

Asymptotic results can be: derived in an elegant fashion for the general censoring
framework of Section 2.2.2 by the use of counting processes and martingale theory
(Appendix F). This approach obviates the need for special treatments of Type | or
Type 2 censoring, Detailed mathematical treatments are available, and we merely.
outline the main ideas,

Consider a continuous lifetime distribution with parametrically specified hazard
functions h;(t; @) fori = ..., n In this case, dH;(t; ) = h;(t; ) dt and the
product integral expression for the likelihood (2.2.14) is proportional to

n
L0y =TT TT hite: 0™O11 = (¢ 8) de]1OT=dM ),
I=1(0,00)
By (1.2.12) this cquals
: I N [0}
L) = n{ ]‘[ (e 6)"N"<‘>]exp [—f Yi()hi(2; 0) dt}.
i=1 | (0.00) 0. i

Defining the counting proc:ss N;(t) = fo' dN;(ut), we can then write the log-
likelihood as

i no co
2(0) = Z A log h;(1; @) dN;(t) — / Yi(h; (¢, ) de (2.2.17
i=1" J0
and the score functipn a8
[ dh(1; 0)/00 0 oh; (1, 0) ‘
U(8) = ‘ ———~—'—-—~—-—dN't—f V() ———d
;.o hi(t; 8) 0 0 A TR
Lo alogh;(r; 0
= A —g—a;’(—-——l[dNi(I) = Y1 ()hi(r; 0) di], (2.2.18)

i=1

assuming that we can differentiate through the integral sign. It is noted that because

'
{
'
8
1
)
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E{dN;(t) = Yi(Dh(t; 0) dt|H(1)) = 0,

the score function satisfies Eg{U(8)} = 0, and is therefore an unbiased estimating
finction (Appendix C.2). Morcover, the processes

!
M) = [ TN = Vi@ (ss 9

are martingales (see Appendix F.2) and by applying standard results we are able
to show that the log-likelihood (2.2.17) and score function (2.2.18) give the same
asymptotic results as standard settings. _

Maximum likelihood large-sample methods will be used throughout the book.
It should be noted that although some approaches utilize the expected information
(2.2.16), it is in many settings impossible to calculate this because there is not a
tractable or sufficiently detailed model of the censoring process. It is appropriate and
customary in most applications to use the ordinary information matrix (2.2.15) or the
observed information matrix I(8) in large-sample methodology.

Example 2.2.3. Consider once again the exponential distribution of Example
2.2.1, The observed log-likelihood function is given by (2.2.5) under all of the cen-
soring processes satisfying the conditions of Section 2.2.2:

n
ey =rlogh— Ay
f=1

where r = Y 8; is the number of observed (uncensored) lifetimes, The | x 1 infor-
mation matrix is

10y = —d2t _r
T T A

and the expected information matrix is Z(A) = E(r)/A%, For Type | or Type 2
censoring we can evaluate E(r), but for complicated censoring processes in which
_decisions to end follow-up are based on previous lifetimes, or when individuals are
lost to follow-up by an unknown process, it is not feasible to determine E(r). In this
case, we would use J(L); this turns out here to be the same as if we estimated E(r)

inZ(\) byr.

23 OTHER TYPES OF INCOMPLETE DATA

2.3.1 Intermittent Observation and Interval Censoring

Because lifetime data occur over chronological time, a variety of schemes are used to
obtain data according to prevailing time and resource constraints, This can produce
other forms of incompleteness besides right censoring, A common occurrence is for

i
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individuals in a study to be ob: erved intermittently, at discrete-time points. We begin
by considering a framework vhere each individual { = 1,...,n is observed at a
prespecified set of times 0 = a9 < aif < <+ < @iy < OO, If an individual has
not failed by tme a; j—y (j == 1....,my), they are observed next at a;j, and it is
determined whether or not fail.ire occurred in the interval (a;, -1, a;j]. The observed
data then consist of an interval (U;, V;] for each individual, with the information that
U; = T; < Vi, and the lifetime is said to be interval censored. If failure has not
accurred by time ajy,, then V; = co and U; = ajyy, isa right-censoring time for T;.

The observed likclihood function from a sample of N independent individuals
under this observation scheme is

L =[]trv - Fwnl, 23.1)

i=1

where (1) is the distributior function for 7; and we assume that F;(0) = 0. An
easy way lo oblain (2,3.1) is to notice that the observation for individual i is in effect
multinomial (13 pry, ... pigs where pyy = Fi(aij) — Fi(ai,j-1). Fot parametric
models, inference based on the likelihood (2.3.1) falls under the standard theory of
Appendix C. Nonparametric estimation is more complicated; some special problems
are discussed in Chapters 3 anc! 7, The case where observation times are the same for
all individuals (i.e., a;; = a;) is often referred to as grouped data,

The inierval-censoring framework juist described covers many situations; a few.

examples follow,

Example 2.3.1, Sometimes the failure of a piece of material or equipment can
be determined only by inspection, For example, a lifetime often associated with metal
components sucli as airplane Dodies, pressure tubes in nuclear reactors, or railway
track is the time until a definec type of flaw (e.g., a crack) appears. Components are
usually exaniined periodically, so ihe exact time of appearance is interval censored.

Example 2.3.2. In many longitudinal studies on humans it is feasible to see
individuals only at rather widely spaced intervals; in longitudinal surveys individuals
may be seen only every one or two years. The timing of some types of events can be
determined retrospectively, bur some cannot. For example, the determination that a
child has reached puberty may rely on tests carried out at the observation times, so
that the age of onset of puberty is interval censored.

Example 2.3.3, Current 3tatus Data. This term refers to interval censored
litetimes where the interval for an individual is either (0, C;] or (C;, 00), Such data
arise when individual i is exairincd once, at time C;, at which point it is determined
whether lailure has already occurred (ie., Ty < C;) or not (i.e., T; > C;). In shelf-
life problems involving food o drugs, an item may degrade over time, with failure
being defined in terms of the a nount of degradation. To determine whether an item

L e 5 e
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has failed it may be necessary to destroy the item, for example, to open a sealed
container or to carry out chemical analysis of the item. Current status data also arise
in animal carcinogenicity studies in which the time to occurrence of a tumor is of
interest, but where tumors can be detected only by autopsy when the animal is dead.
In demography, studies on female fertility in underdeveloped countries often use
current-status data on items such as the age at which a woman becomes fertile or first
gives birth, because accurate information about timing of events is hard to determine

retrospectively.

The assumption that observation times a;; are fixed ahead of time, or even that
they are determined independently of the process that generates lifetimes, is unsup-
portable in many settings. For example, a decision regarding when to see an individ-
ual next in a clinical study may be based on current information about the individual,
A more general process analogous to the censoring process in Section 2,2.2 can be’
considered. Suppose that if an individual is alive and uncensored at time a;, j—1, &
decision about the next observation time a;; is based on observed failure, covariate,
and observation time history #(ai,j—1) up to a; j—1. The choice of a;; is, however,
conditionally independent of failure and covariate information beyond a;, j—1, given

Hlay,j-1). In this case

Fi(aij) — Fi(ai,j—1)

. 2.3.2
1 — Fi(a,j-1) ( )

Priaij—1 < Ti < ajj|H{a,j-1), aij) =

~where H(a;, 1) is understood to include the information that individual { is alive
and uncensored at a,j—1. Under this observation process the data consist of the -
observation times 0 = ajp < +++ < a1,y < 00, and the information that aj m—1 <
Ty < ajm. Note that a;,,, = oo corresponds to right-censoring of the lifetime at
time a; u;—1. Assuming that the terms Priaj|Hiaij-1)), J = L...omy, do not
contair information about the lifetime distribution, the observed likelihood function

for individual { is proportional to : !

my—1 . . . !
1—[ Pr(T; > aile(al,}-I)a aij)} Pr(Ti < aim lH(aiJm-—l): ai,m:)-
j=1

Because of (2.3.2), this reduces to the earlier likelihood (2.3.1), where U; = aj m;—1
and V; = aym;. !

The probabilities in (2.3.1) and (2.3.2) are conditional on observed covariate val-
ues, but for convenience this is suppressed in the notation. If covariates are time
varying, then values are needed over (a;, -1, a;j]; it is often necessary to estimate or
impute values.

The condition (2.3.2) requires that the process determining aj; is unrelated to
failure information beyond a; j—1. This can be violated if covariates related to both
the observation time and lifetime processes are not included in the lifetime model.

Another potential problem is where an individual last seen at a; j-1 is scheduled
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for abservation at some futire time, but is lost to follow-up; this often happens in
longitudinal surveys and in some clinical studies. The result is that aj; = 00, and the
concern is whethet loss to follow-up hetween the two scheduled observation times is
conditionally independent o T;, This can only be assessed by tracking some of the
individuals lost to follow-up

Another form of interval-:ensoring arises in connection with life tables, where an
individual may fail or be censored between specified observation times; it is known
which occurred, but not the time of occutrence. This is discussed in Section 3.6.

2.3.2 Double Censoring

Other forms of interval censoring can arise, In many applications the lifetime T; is the
time betwecn two events, for example, the time between infection with the human
immunodeficiency virus (HIV) and the diagnosis of AIDS, the time between the
beginning and end of a period of unemployment, or the time between the dppearance

of a crack in a metal specimen and its growth'to a critical size. If the timing of the .

initial event is interval censorsd, then even if the exact time of the fajlure or censoring
event is observed, the exact lifetime or censoring time for 7' is known only to lie in
an interval,

Spcc:ﬁcu”y, let U be the time of the initial event and suppose we observe only
that L} < U} < R} under a scheme satisfying the conditions just specified, Let y;
be an oqu ved censoring or failure time (i.e., time of the second event), measured
on the same scale as U}, Then the failure or censoung time for T; is f; = y; — U, \
and we know only lhat Yi~ R <t <y — L}, This is known as double censoring.
The likelihood function is not given by (2.3, 1) with Uj = y; — R and V; = y; —
L}, in spite of the seeming similarity with standard interval-censoring. To see this,
consider the p.d.f, g; (u) for the distribution of Uf, giventhat U € (LY, RI1. K T;is
independent of U, the likelikood contributions are then given by

R\ll
Priv,8ilUS e (L}, Ry = /‘ g () filyi — w8y — )™V qu. (2.3.3)

Li

A difficulty in this case is the necessity to specify g; (w).

2.3.3  Remarks on Missing Data

Censoring is an example of incomplete or missing data: the exact values of lifetimes
are unavailable foi certain individuals. As such it may be considered in the context
of general formulations for incomplete data (e.g., Little and Rubin 1987). A crucial
issue is whether data are missing at random in some sense; if they are not, then a
model that represents the proc:ss by which data are missing is necessary in order to
obtain appropriate likelihood functions and inference procedures.
A mechanism that leads tc missing data is sometimes completely independent
of the lifetime process, The missing data are then said to be missing completely at
4ndom. or MCAR. Type 1 right censoring (Section 2.2.1.1), random independent
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censoring (Section 2.2.1.2) and interval censoring induced by prescheduled intermit-
tent observation of individuals fall into this category. When data are MCAR we do
not have to consider a model for the “missingness” process in order to obtain tlie
observed likelihood, though it may be challenging to compute the probability distri-
bution of the observed data.

"The MCAR model is too stringent in many settings. A wealer requirement in the
general theory is that data be missing at random (MAR), which means the proba-
bility that data are missing may depend on data that are observed, but not on data
that are unobserved. In this case, it also proves possible to avoid specific modeling
of the missingness process. The general censoring mechanism in Section 2.2.2 and
the interval-censoring mechanism leading to (2.3.2) both satisfy the MAR condition,
since censoring at any time s allowed to depend only on events observed in the past.
Fortunately the observed likelihoods for both the MCAR and MAR censoring pro-
cesses are not hard to obtain and, as we have seen, the observed likelihoods (2.2.3)
and (2.3.1) are the same for the MCAR and MAR processes, It should be noted, how-
ever, that although we can avoid modeling the censoring process for inference based
on the observed likelihood, we need a censoring model to evaluate exact frequency
properties for small samples or for purposes of study design.

Information on censoring times or covariates may also be mmmg A treatment of
this topic is beyond the scope of this book; a few remarks and references are given
in the Bibliographic Notes of Chapters 3, 4, and 7.

2.4 TRUNCATION AND SELECTION EFFECTS

In Section 2.1 we mentioned that in some studies individuals are not randomly
selected and followed prospectively from their time origin (¢t = 0). In this case,
it is necessary to consider the selection mechanism in writing down the likelihood
function for observed data. This section considers some settings that involve selec-

tion effects,

24, I Delayed Entry and Left Truncation

Individuals are sometimesselected and followed prospectlve]y untll failure or cen-

soring, but their current lifetime at selection is not ¢ = 0, but some value 1 > O..

‘The definition of-a prospective study is that lifetime information after the time of
selection forms the response. Selection of an individual at time u; thus requires that
T; > uy, and the observed data forindividual { consist of (u;, t;, 8;, %;), where t; > u;
is a lifetime or censoring time and x; represents covariates. We say that the lifetime
'T; is left truncated (at »;) in this setting.

Let S(t|x) be the survivor function for T given x. The crucial issue affecting

inference is whether the distribution of T given x, i, and the fact that T > u is given

. by the truncated distribution with survivor function S(¢]x)/S (u{x) for r > . More

specifically, in terms of the hazard function we need

Pr(T=tT >t,u,T>ux)=Pr{T =0T >1,X). (2.4.1)
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Il this is the case and the ccnditions on the censoring process described in Sec-
tion 2,2.2 hold, then the likelit-ood function arising from n individuals with indepen-
dent lifetimes is given by (2.2.14) as

_" ORI N
k= ,II [Si(l/i)] [ Si (i) ] '

1t is nol always easy to determine whether (2.4.1) is a plausible assumption, espe-
cially when individuals in a st idy are selecled from an ongoing process that defines
T, Example 2.4.3 provides an illustration. One setting where (2.4.1) is valid is when
observation of a process swilches on at i; in such a way that u; is a stopping lime
with respec( (o the lifetime process (Andersen et al, 1993, Sec. 3.4); this is some-
times referred to as independent delayed entry. If we broaden the definition of ¥;(¢)
in(2.2.12) and (2.2.14) 1o

(2.4.2)

i) =T <t <), (2.4.3)
then (2.2,12) continues Lo hold and the product integral expression in (2.2.14) reduces
directly to (2.4.2). The concep: of independént delayed entry allows it; to depend on
prior lifetime hislory or on coyariates x included in the lifetime model.

The fotlowing examples provide illustrations of delayed entry.

Example 2.4.1. A lifctim: T can be viewed as the time between an initial event
[y and a subsequent event E, for an individual. In many settings the events E|
for different individuals occur at different points in calendar time, and individuals
are selected for a prospective study by randomly choosing from those who have
experienced E| but not E,, For example, E; may refer to the onset of some disease
that is typically fatal, and 3 to death; T is the survival time from disease onset.

The selection mechanism ahd lifetime process are illustrated in Figure 2.2, Indi-
viduals experience %y at calerdar lime X and Ej at time X + T, selection occurs
at calendar time-7 from individuals with X < ¢ and X + 7 > t. The distribution
of T is assumed to depend on y on information observable at t; this could include
the value of X, which would (l.en be included among the covariates x in S(¢[x). The
probability of selection could also depend on X or other covariates, provided they
are included in the model for 7', In this case, the conditions for independent delayed
entry are met, with u; = t — 3 ;, and (2.4.1) holds,

1 E

. 2{ A
A Meco LN | iy .
A A N 1 ] == calendar time
X T X T

Figure 2,2, Selection conditional on survival to calendar time .
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Example 2.4.2. A setup similar to that in the preceding example arose in a study
on the lifetime of automobile brake pads (Kalbfleisch and Lawless;]992). The pads
have a nominal lifetime, which is the number of miles or kilomecters driven before
the pads are reduced to a specified minimum thickness. To study the lifetime distri-
bution, a manufacturer selected a random sample of vehicles sold over the preceding
12 months at a specific group of dealers. Only cars that still had the initial pads were
selected, For each car the brake pad lifetime 4 could have then been observed by
following the cars prospectively. Instead, to save time the current odometer reading
w; (in km) and the remaining pad thickness above the minimum were used in con-
junction with the initial pad thickness to estimate the lifetime 4 (in km); this was
treated as the actual lifetime in the analysis. In any case the selection framework is
similar to that in Figure 2.2, and the lifetime ¢ is left truncated at i,

Table 2.1 gives u; and 4 values (in 1000-km units) for the left front brake pads on
a sample of 98 vehicles.

Table 2.1, Brake Pad Life (#) and Odometer Readings (u) for 98 Cars

13 t U { u f 13 !
22.2 38.7 16.5 69.6 18.4 86.7 10.9 79.5
23.0 49,2 15.7 74.8 18.2 43.8 25.5 55.0
24.0 424 28,0 32.9 15.9 100.6 12.4 46.8
28,6 73.8 13.3 51.5 16.4 67.6 39.9 124.5
21.8 46.7 16.5 31.8 23.6 89.5 17.7 92.5
17.0 44,1 242 71.6 19.2 60.3 26,3 110.0
26.0 61.9 17.6 63.7 233 103.6 14.1 101.2
232 39.3 27.8 83.0 20.4 82.6 21.0 59.4
18.9 49.8 18.3 24.8 20.9 88.0 11.2 27.8
219 46,3 17.7 68.8 28.5 42.4 10.8 33.6
213 56.2 20.0 68.8 23.2 68.9 25.7 69.0
13.8 - 50.5 132 . 891 17.9 95.7. 32.4 75.2
24,0 .54.9 16.9 65.0 - 46.1 78.1 . 13.6 58.4
20.1 540 14.9 65.1 39.3 83.6 19.1 _105.6
15.7 492 . 155 59,3 11.8 18,6 161 56.2
26.8 44.8 7.0 53.9 17.7 92.6 533 55.9
27.9 72.2 15.8 79.4 30.9 42.4 57.3 83.8
15.3 107.8 15.0 474 22.4 343 36.5 1235 -
28,8 81.6 38.3 61.4 45.0 105.6 19.7 69.0
16.0 452 11.2 72.8 18.2 20.8 20.8 101.9
23.6 124.6 382 54,0 30.2 52.0 30.8 87.6
538 640 - 26.7 37.2 21.8 77.2 20.0 38.8
21,7 83.0 17.1 44,2 18.2 68.9 39.6 74.7
28.8 143.6 29.0 50.8 23.0. 78.7

17.0 43.4 18.3 655 212 165.5

Note: Units are 1000 km.
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Example 2.4.3.  Cook et al. (1999) described a clinical trial involving patients
with chronic bronchitis, for -vhom periods of exacerbation of symptoms alternated
with periods of good respiratory health, Persons entering the study had to be under-
going an exacerbation spell a- the time of selection, and were then assigned randomly
{o one of two trealments, A and B. The duration of exacerbation spells was a primary
response for the'comparison of A and B; let us consider the remaining duration of the
initial exacerbation spell. The setup is on the surface similar to that in Figure 2.2, but
because patients have a prior history of exacerbation spells, the selection mechanism
will tend to pick patients with longer exacerbation periods, so the study population is
not representative of the popiilation of all patients; it is what we refer to as a length-
biased sample (sce Problem :..7). .

Because of the randomizazjon, the study populations assigned to treatments A and
B are comparable. One satis factory approach is therefore to compare the distribu-
tions of the times V; from randornization to the end of the initial exacerbation spell.
Assuming that the duration 7J; of the spell at the time of randomization is known,
considering V; given U; is eq livalent to considering T; given U, where T; = Ui +V)
is the tota duration of thc initial spell. However, it would not be appropriate to treat
Ti as a truncated response arising from independent delayed entry at U;. Since treat-
ment is not assigned until time Uj, and since the sample selected is not representative
of the population of all patie its anyway, basing comparisons on the marginal distri-
bution of V; scems the best anproach,

The selection of individuais in the preceding example was not independent of their
lifetimes. We consider some other such selection effects in the following section.

2.4.2  Retrospective Obser vation antl Selection Effects

fn a prospective study of life:imes, individuals are typically followed from the entry
time 1; Lo a failure or censoring time ¢; > u;, In some studies, the observational plan
is retrospective to some degiee. That is, part or all of the observation period (u;, ;)
aceurs chronologically prior Lo the selection of the individual. Such plans are attrac-
“tive when it is not feasible to follow individuals long enough prospectively to obtain
desired information, but they frequently impose conditions on the lifetimes of those
selected. The next two exammles provide illusirations of retrospective observation.

Example 2.4.4, Kalbfle'sch and Lawless (1989) analyzed data on persons
infected with HIV via bloorl transfusion, who were subsequently diagnosed with
AIDS. The data were used t) estimate the dist_ribution of the time T between HIV
infection and AIDS diagnosis.

The way the data were ot tained was retrospective. In particular, the study group
was assembled in 1987 and zonsisted of individuals who had a diagnosis of AIDS
prior to July [, 1986. For each person the date of HIV infection could also be ascer-
tained, because the individuls selected were deemed to have contracted the HIV
through a blood transfusion on a particular date. The condition for being included in

- Ty e e e
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the data set was therefore that T; < v;, where
v; = Time between the individual’s HIV infection and July 1, 1986.

This is referred to as right truncation of the lifetime T;, and the likelihood function
based on n independent individuals is given by ‘

nPr(t:Iv.-,n <) =]‘[ Ji ()

. (2.4.4)
=1 i=1 Fi(00)

Example 2.4.5. Consider the estimation of distributions for the duration of first
marriages. Because of the long duration of many marriages, retrospective ascertain-
ment of data is attractive. One study design would be to sample couples married in
the past, perhaps stratifying on specific time periods. (In any case, the duration of a
marriage is likely related to the year of marriage, so the latter would be considered
a covariate.) If couples were sampled from marriage records, without reference to.
whether the marriage was still intact or even if the individuals were still alive, then

_assuming that it was possible to trace the couples and determine the fate of the

marriages, no selection effect would be present and a likelihood of the form (2.2.14)
would apply. Tracing couples could be difficult and expensive, however, and an alter-
native plan would be to sample randomly individuals or married couples alive at the
present time. By determining the previous history of marriage for such individuals,
data on first marriage duration and related covariates could be obtained, However,
it is a condition of selection that an individual be alive, and there is an association
between duration of life and duration of marriage. Consequently we would expect
that the distribution of marriage durations in the sampled population would not be
exactly the same as in the population consisting of all couples who got married over
the period of interest, In order to deal with this situation, we would need to formulate
a model describing the ways individuals or couples are deleted from the population
used for selection. Such issues take us into the realm of event history analysis (see
Chapter 11).

2.5 INFORMATION AND DESIGN ISSUES

The planning of studies or experiments requires decisions about numbers of indi-
viduals, the duration of the study, the modes of sample selection and observation,
and settings for controllable covariates. The decisions are based on time, resource,
and physical constraints plus an assessment of the information on important param-
etérs or hypotheses that the data will provide. This section contains some general

remarks about information and design; specific applications are consicered in subse-

quent chapters. : _— ‘

- Studies are carried out for a variety of reasons, which may include furthering sci-

entific understanding, the development of models for prediction or decision making,
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and the improvement of processes or systems. Study objectives can ofien be linked
to estimation or hypothesis-te ting problems for specific quantities, which are then
considered during the planning process, Thus, suppose there is a parametric lifetime
distribution f'(f; 8) and that s yme parameter r = g(0) is of interest. For example,
this might he a distribution quantile or survival probability. Putting aside questions
of model adequacy, we considzr the precise estimation or testing of .

The sampling properties of ‘ests or estimation procedures can sometimes be deter-
mined analytically, and in genzral can be examined through simulation. Most of the
procedures in this book are likelihood-based, as described in Section 2,1, and the dis-
cussion in this section focuses on them. Appendix C summarizes likelihood-based
inference and important large-sample results that underlie the following discussion.

Confidence intervals or tests for a scalar ¥ are often based either on (1) the like-
lihood ratio Statistic '

Alyr) = 20(8) — 2£(8(¥)), (2.5.1)

where £(0) is the log-likelihood function, 8 is the m.le, that maximizes £(0), and
0(yr) is the vector # that max'mizes £(0) under the constraint g(0) = , or (2) the
standardized quantity

20 = -0 (2.5.2)

where 1// = g(f)) is the m.Le, ¢f yr and \7';//2 is its standard error, The latter is usually
hased on

Vy = (8Y/860) Vg (3 /30), (2.5.3)
where Vg is an estiiate of the asymptotic covariance matrix for , typically either
I() ! or Z¢6)~}, where I (0 and Z(0) are the observed and-expected information
matrices for 0, respectively, discussed in Section 2,2,3 and Appendix C,

A(y) and Z(yr) are approximate pivotal quantities in standard settings, with
asymptotic X(Zl) and N(0,1) distributions, respectively, Two-sided @ confidence
intervals based on Z are of the form v = zf/'/l,/z, where z is the .5(1 + a) quantile
for N(0, 1); two-sided @ confidence intervals based on A are obtained as the set of
values ¥ such that A(¥) < Xizl);a’ the o quantile of X(21)~

The following example illustrates some important points in the simple context of
an exponential distribution.

Example 2.5.1.  Suppose that in a test environment a piece of equipment has
an exponentially distributed lifetime T, with p.df. f(z; 8) = 6~ exp(~t/8). From
(2.2.5), the log-likelihood funstion for & under a variety of prospective observation
schemes with right-censoring 's

. 1 n )
£(9) = —rlogd — =Y 4, 5.
() = —rlog 9;' (2.5.4)
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where t; denotes a lifetime or censoring time and r = Y &; is the number of 4 that q—}q’

(x 0

are lifetimes. . 9
The m.l.e. from (2.5.4) is @ = ¥_#;/r, and the information is { - /arv
B b
—d -r 2 6,\,"
= e I — —_— 1. 2.5.5
ob;m@ IO="gr =g 5 ; ' (2:55)

The expected information depends on the censoring process, but it turns out that a
simple general expression is available. Since E(d£/d8) = 0 for standard maximum
likelihood (Appendix C), it follows from (2.5.4) that E(_ ;) = OE(r), and from
(2.5.5) we then get

- E(r ' 0%;‘?
(‘,”/“}”"m/ ) = E{I(9)} = _95;_) 8 (2.5.6)

A two-sided approximate .95 confidence interval for @ based on (2.5.2) with Vp =
1(6“)‘l = §2/l' consists of values of § that satisfy |Z(8)| < 1.96, or

. o2
Z@)Y?=r (1 - 5) <3.84. (2.5.7)

The analogous interval based on (2.5.1) consists of values satisfying
AB) =2r [g —-1- log(é/e)-J < 3.84, (2.5.8)

The two intervals can be seen to agree more and more closely as r increases. When
the intervals are not in close agreement, the one based on (2.5.8) is preferred, as
discussed ifi Appendix C and in Section 4.1.1. In either case, 1t is the number of
uncensored lifetimes r that determines the relative precision with which 8 is esti-

' mﬂte’d.’Flo;éxample, the relative width of the .95 confidence interval (i.e., the width

divided by §) based on (2.5.7) is 3.92r /2,

Let us consider design issues. It is possible to design studies where r is fixed;
Type 2 censored life test plans (Section 2.2.1.3) are of this type. However, the dura-
tion of the study is random when r is fixed, and it is more common to nse designs
for which r is a random variable and the study duration is fixed. For example, if
we test each of n items over a specified time period (0, C), then Pr(T; < C) =
| — exp(—C/8), and r has a binomial distribution with

E@)=n(l—e" "), (2.5.9)
This leads to Type 1 censored data (Section 2.2.1.1). The value of E(r) or, equiva-
lently, the expected information (2.5.6), provides an idea of the precision of estima-
tion expected from a stady and can be used for planning purposes, though we also
need a value for @ in order to.evaluate (2.5.9).

The expected information and E(r) increase as n or C increases, Suppose that we
want a .95 confidence interval with a relative width of about 1 when (2.5.7) is used.
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This requires that 3.92r='/* = 1, or that r = 16, By choosing n and C/@ suitably
large we can make E (r) or the probability that r > 16 as large as desired. If we want
to make E(I) = |6, for example, two among an infinity of choices are_(a) n = 25,
C/6=1land(b)n =19,1/8 = Llllg_,_,ﬂrzﬁmg the_trade-off between sample size
and duranon of study, In’ enher “case, we need to provide a value for 6 in order to
detcrn]xwd 0 is what "ve ve are trying to_estimate! The conventional approach is
to use a conservatively large v va]ue of 6.

"Calculations based on expected information provide a rough idea of the number
of individuals (1) and length of study (C) _needed to_achieve the. desired precision

ndividuals |
in the estimation of . In more complex settings it is difficult to get much insight
analytically, and a useful procedure is to simulate data sets under proposed study
plans and provisional values for 8, This allows a comparison of confidence intervals
based on alternatives such as (2.5.7) and (2,5.8), and displays the sampling variation

- inherent in the study process

In studics on lifctimes the censoring process is part of the design. The preceding -

cxample illustrated the effects of censoring and sample size in a very simple set-
ling. Qualitatively similar eff :cts occur in other settings and with parametric models
other than the exponential cistribution, The precision of nonparametric estimates
also depends on the Lype and degree of censoring. For the product-limit estimator
of §(¢) introduced in Chapte- 3, for example, the dependence is explicit in variance
estimates like (3.2.3). Other =onstraints on follow-up (e.g., intermittent observation
that leads to interval censoring), or on the ways in which individuals are selected for
study, are also part of the desi:n and affect the information about parameters. Finally,
the study design affects our ability to assess model assumptions. This is an impor-
tant issue, especially when the nesulls or conclusions from an analysis are highly
model-dependent,

Analogous considerations apply in studies where hypothesis tests are a primary
concern, for example, in con'parisons of the efficacy of two medical treatments or
of the reliability of competin 3 industrial products. The power, or ability of tests to
detect effects ol a specified size, depends upon the same factors as precision of esti-
mation. Two other aspects of study design should also be mentioned, The first con-
cerns experiments with contrellable factors or covariates. In this case, the selection of
(actor levels affects the inforraalion about parameters, and principles of experimen-
tal design may be used Lo construct economic, efficient designs. Second, adaptive or
scquential plans are sometimés useful. For example, in a clinical trial to compare two
treatments, we may wish to terminate the study early if it becomes obvious that one
treatment is markedly superio®, This topic is considered briefly in Section 4,1.4,

BIBLIOGRAPHIC NOTES

Maximum likelthood essentially dates from Fisher (1922), and contributions from
many people have brought likelihood methods to their current position, Appendix C
contains a summary of key theorelical results and important inferential techniques.

P

PROBLEMS AND SUPPLEMENTS 75

Sukhatme (1937), Boag (1949), Epstein and Sobel (1953), and others considered
maximum likelihood in conjunction with censored data. Early discussions of asymp-
totic properties were given by Halperin (1952) and Bartholomew (1957, 1963) for
the cases of Type 2 and Type | censoring, Tespectively. The more general concept of
independent censoring and construction of the likelihood functions as described in
Section 2.2.2 started with Cox (1975), with subsequent contributions by Kalbfleisch
and MacKay (1978) and Kalbfleisch and Prentice (1980, Sec. 5.2). Other discus-
sions of likelihood construction were given by -Efron (1977), Williams and Lagakos
(1977) and Lagakos (1979). The rigorous development of asymptotic likelihood the-
ory under independent censoring was facilitated by the use of martingale theory (e.g.
Aalen 1978a, b, Borgan 1984, Arjas 1989); Arjas and Haara (1984, 1992) discuss
issues associated with observation schemes in both survival and event history anal-
ysis. Andersen et al, (1993, Chs. 2 and 3) is an important source concerning these
areas.

Interval censoring was considered by Peto (1973) and by Turnbull (1976), who -
also discussed general forms of truncation. Huang and Wellner (1997) specify dif-
ferent types of interval- censolmg A discussion of the process by which inspection
.times for event hlslory processes es aré determined is given by Griiger et al. (1991) and
Farewell et al, (2002), Jewell and van der Laan (1997) and J. Sun ( 1997) provide
historical remarks and examples of double censoring.

Truncation was considered by Turnbull (1976) and Hyde (1977). Keiding (1992)
considered independent truncation mechanisms; Andersen et al. (1993} Secs, 3.3 and
3.4) give a detailed mathematical discussion of likelihood construction/ For examples
of left truncation in the social sciences, see Hamerle (1991) and Guo (1993), and in
medicine, Cnaan and Ryan (1989).

Design issues are best considered in specific contexts, However, for an early dis-
cussion of “optimal” design in connection with maximum likelihood estimation, see
Chernoff (1953).

Bayesian methods are based on the likelihoods described here and prior distri-
butions-on unknown parameters. Box and Tiao (1973), Berger (1985), Carlin and
Louis (1996), and Gelman et al, (1995) discuss Bayesian inference; Berger (2000)
provides many additional references. Martz and Waller (1982), Crowder et al. (1991,
Ch. 6), and Meeker and Escobar (1998, Ch. 14) discuss Bayesian methods in reliabil-
ity, and Ibrahim et al, (2001) deal with survival analysis. Gilks et al. (1996) discuss
applications in biostatistics. It is beyond the scope of this book to describe Bayesian
methods in detail, but occasional references will be made.

PROBLEMS AND SUPPLEMENTS

2.1 Consider experiments with the following two censoring mechanisms.

(a) A group of n units is observed from time 0; observation stops at the time of
the rth failure or at time C, whichever occurs first.
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(b) A group of n units is observed from time 0, but each time a unit fails a new
unit instantly replace : it in the experiment. The experiment terminates after
a preassigned time C has clapsed.
Show by direct calculation that in each case the likelihood function is of the form
(2.2.3), assuming that the units have failure times which are i.i.d. with survivor
function S(1) and p.d.f. f(£).
(Section 2,2)

2.2 Supposc that the lifetime T; has hazard function A; (¢) and that C; is a random
- censoring time associated with T;. Define

Prit <Ty <t4+ ATy 2t,Cr 2 1)
At )

)= T
i (1), Aim

(a) Show that the indepeident censoring condition (2.2.11) is equivalent to the
condition /1; (1) = A;(!), assuming that we condition on fixed covariates and
that there are no lime-varying covariates,

(b) Suppose that there exists an unobserved covariale Z; which affects both 7;
and C;. as follows:

Pr(T; = t|Z;) = oxp(—Z;6t), Pr(C; = s|Z;) = exp(—Z; ps),
and 7;, C; are independent, given Z;, Assume further that Z; has a gamma

distribution (1.3.15) with mean [ and variance ¢~!. Show that the joint sur-
vivor function for T;, Z; is

' 1 1 \*
Pr(Ti 21, Gz 8) = (1 + gat +'$,7‘9> i

Obtain /r;(¢) and A; (1) for the model in part (b), and show that A;() <
hi(r) far finite ¢. Thus the censoring mechanism is not independent, but it
approaches independence as ¢ — oo,

~

(¢

(Section 2.2,2)

The effect of grouping. Consider lifetime data that are grouped or rounded off to
some degree. In parlicular. suppose that lifetimes from an exponential distribu-
tion thdt.are recorded as ¢ actually lie in the interval (r — A2, t + A/2). For
simplicity, censoring times.recorded as ¢ will be assumed to be exactly equal to ¢,
Consider a censored sample of n observations inyolving r lifetimes and n — r
censoring times. This gives a likelihood function

. l i

corresponding (o (2.5.4) in the case where A = 0,

Y
%)
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(a) For A > 0, show that the likelihood function for € is
r 1 n
Li(8) = <eA/26 - e—A/ZG) exp <——- Zt,' .
o i=1
(b) Show that the expected information based on L{(8) is
E(r) A
ne =—8(7):

where g(a) = a?e™? /(1 — ¢~®)2. Examine the loss of infoimation entailed

: ; ( : 2
by grouping, noting that the expected information basedfglé(_@;s E(r)ZB .
: (Sections 2.3, 2.5)

m right truncation. Consider the following observational

2.4 Loss of information fro ' nal
A d ing p.d.f. f(t; ) and survivor function

schemes associated with a lifetime T hav

S 0): B o

1. Type 1 censoring occurs at the prespecified time C, giving the likelihood
function

L®) = {ﬂ fus 9)} S(C; 0",

i=1

where f, ..., t, are the observed lifetimes. ‘
2. Only the individuals with 7; < C are known about and observed, giving

the likelihood function ’
R
e F:6) ]
Ll(g)'_il:![F(C;B) . -

.(a) Compare the observed and expected information about @ in cases 1 and 2.

(b) Examine the loss of information numerically as a function of C/6 when
£(; 8) = 6~ exp(—1/6) is an exponential distribution.

(Sections 2.4, 2.5.; Kalbfleisch and Lawless [988b)

2.5 - Random truncation models, Suppose that a lifetime T; has an associated random
left-truncation time U;, as in Section 2.4.1, Let T; have hazard function h; ()
and p.d.f. fi(t), where there are only fixed covariates present.

(a) Show that the condition (2.4.1) holds if T; and Uy are independent, given the
covariate values,

(b) Show that the independence in part (a) can be weakened by. showing that
(2.4.1) holds if the joint p.d.f. of T; and Uj, given U; < Ty, is of the form
Fil)gi(w).

(¢) Extend this treatment to deal with right truncation.
' (Section 2.4.1; Tsai 1990; Wellek 1990)



78 OBSERVATION SCHEMES, CENSORING, AND LIKELIHOOD

2.6 Ruandom effects and left t-uncation. For delayed entry settings as portrayed in
Figure 2.2, it may sometimes be the case that 7; is not independent of U; =
t — X;, as implied in Protlem 2.5. Consider the case where T; is independent of
U;, given an unobserved random effect Z; for individual i. Show that the p.d.f.
of Ty, given U; = wand T; > u, is ‘ '

Nz, '
4 d c=u, T 1) dz,
/.Sl(ulz)g U =u, T; 2 u)dz

where fi(1]z) and Sy (u|z) are the p.d.f. and survivor function of Ty, given Z; =
z,and g*(z|U; = u, Ty 2 u) is the conditional p.d.f. of Z;, given the condition-
ing events, In general, this p.d.f. does not equal f(t)/S(u), where f(¢) and S(¢)
are the p.d.f. and survivor function for T;, Furthermote, the p.d.f. g* cannot in
"general be assumed indep :ndent of . ’

(Section 2.4; Lawless and Fong 1999)

2.7 Sampling renewal proces:es and left truncation. Suppose that we wish to esti-
mate the distribution of time between successive events in a population of
renewal processes (Cox 1762; Ross 1983). If a process is intercepted at time 7,
then Figure 2.2 describes the occurrence times of the two events Ey; and Ey;
that bracket 7, If the renewal process is in equilibrium, then (see Cox 1962 or
Ross 1983) the joint p.d.f. of Uj =t — X; and T; is '

1
gi,)y=—fi(y O=zusy,
A

where f; (1) is the p.d.f. for the time T; between events and u; = E(T;), which
i§ assumed (o exist, :

(a) Show that the marginal distribution of T is tf; () /4;. This is called a length-
.binsed density. Examine its forms relative to f; (t), when f;(¢) is an expo-
nential distribution, aad a Weibull distribution with shape parameter 8.

{(h) Show that the condition (2.4.1) for independent delayed entry holds,

(¢} Consider the case where f;(f) depends on an unobservable random effect
Z;. so that g; (i, 1) does as well. Show that the condition (2.4.1) does not
now hold in general. [nvestigate the case where f;(tiz;) = Az; exp(—Az;t)
is exponential, and Z; has a gamma distribution (1.3.15) with mean ] and
variance ¢~ !, ’

(Section 2.4)

et e

CHAPTER 3

Some Nonparametric
and Graphical Procedures

3.1 INTRODUCTION

Graphs and simple data summaries are important for both description and analysis
of data. They are closely related to nonparametric estimates of distributional charac-
teristics; many graphs are just plots of some estimate. This chapter introduces non-
parametric estimation and procedures for portraying univariate lifetime data,

Tools such as frequency tables and histograms, empirical distribution functions,
probability plots, and data density plots are familiar across different branches of
statistics. For lifetime data, the presence of censoring makes it necessary to modify
the standard methods. To illustrate, let us consider one of the most elementary pro-
cedures in statistics, the formation of a relative-frequency table, Suppose we have
a complete (i.e., uncensored) sample of n lifetimes from some population, Divide
the time axis [0, co) into k + 1 intervals [; = [aj-1, ap),j=1,..k+1 where
O=ag <aj < < ag < ag+ = 00; witha being the upper limit on observation.

- Letd; be the observed number of lifetimes that lie in /;. A frequency table is just a

list of the intetvals and their associated frequencies, dj, or relative fTequencies, dj/n.
A relative-frequency histogram, consisting of rectangles with bases on [a;1, aj) and
areas dj/n (J = 1,...,k); is often drawn to portray this. When Qata are censored,
however, it is generally not possible to form the frequency table, ‘because if a life-
time is censored, we do not know which interval, I}, it lies in. As a result, we cannot
determine the d;. :

Section 3.6 describes how to deal with frequency tables when data are censored;
this is referred to as life table methodology. First, however, we develop methods
for ungrouped data, Section 3.2 discusses nonparametric estimation of distribution,
survivor, or cumulative hazard functions under right censoring. This also forms the
basis for descriptive and diagnostic plots, which are presented in Section 3.3. Sec-
tions 3.4 and 3.5 deal with the estimation of hazard functions and with honparametric
estimation from some other types of incomplete data.
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3.2 NONPARAMETRIC LSTIMATION OF A SURVIVOR FUNCTION
AND QUANTILES

3.2.1 The Product-Limit Estimate

A uscful way of portraying a 1andom sample fy, ..., t is to graph the empirical sur-
vivor function or empirical distribution function. This also provides nonparametric
estimates of the distribution vnder study, If there are no censored observations in a
sample of size i1, the empirical survivor function (ESF) is defined as

S‘(t) - Nurnber of ob:ervations >t (>0, G.2.1)

This is a step function that decreases by 1/n just after each observed lifetime if all
observations are distinct. Morz generally, if there are d lifetimes equal to ¢, the ESF
drops by d/n just past ¢,

When dealing with censored lifetime data, some modification of (3.2.1) is neces-
sary, since the number of lifetimes greater than or equal to ¢ will not generally be
known exactly, The modification described here is called the product-limit (PL) esti-
mate of the survivor function, or the Kaplan-Meier (KM) estimate, after the authors
who first discussed its propert'es (Kaplan and Meier, 1958). Let (t,’, §),i=1,...,n
reprosent a censored random sample of lifetimes, in the notation of Section 2.2. Sup-
pose that there are k& (K = n) distinct times {; < f3 < ++ < # at which deaths
aceur. The possibility of there being more than one death at ¢; is allowed, and we let
dj =Y. 1( = t;, & = 1) rpresent the number of deaths at ¢;. In addition to the

lifetimes #1, ... , ., (here are also censoring times for individuals whose lifetimes are
not observed. The PL estimatc: of S(¢) is defined as
2 lilj —dj :
S = n My (3.2.2)
. nj
Jiy<t

where nj = Y_1(1 = 1;) is the number of individuals at risk at ¢;, that is, the
numbei of individuals alive aid uncensored just prior to ¢y, If a censoring time and
a lifetime ave recorded as equal, we adopt the convention that the censoring time is
infinitesimally larger. Thus any individuals with censoring times recorded as equal
to ¢; are included in the set of n; individuals at risk at ¢;, as are individuals who die
at 1;. This convention is cons stent with assumptions about censoring in Chapter 2,
Another point about (3.2.2) cc ncerns situations in which the largest observed time in
the sample is a censoring time. In this case the PL estimate is defined only up to this
Jast observation, The reason for this is explained later.

The cstimate (3.2.2) is derived below as a nonparametric maximum likelihood
estimate (m.l.e.). but intuitively it can be viewed as arising from the expression
(1.2.8) for the survivor function of a disciete distribution, with the hazard function

hi{ty) = Pr(T = t;|T =z t;) estimated by d;/n;. When there is no censoring,

ny =mnandnj =y ~dj.1 (J =2,....k), and (3.2.2) reduces to the ordinary
ESF (3.2.1). In both the censo-ed and uncensored cases S(¢) is a left-continuous step
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function that equals 1 at ¢ = 0 and drops by a factor (n; —d;)/n; immediately after
each lifetime ¢;. The estimate does not change at censoring times; the effect of the
censoring times is, however, felt in the values of n; and hence in the sizes of the
steps in S, ‘

Before we examine the PL estimate and its properties further, let us use it in an
example, Numerous software packages provide PL estimates, but for illustration its
calculation is described.

Example 3.2.1.- Example 1,1.7 gave remission times for two groups of leukemia
patients, one given the drug 6-MP and the other a placebo, Table 3.1 outlines the cal-
culation of the PL estimates of the survivor functions for remission time distributions
associated with the two groups, and Figure 3.1 shows these on a graph. The PL esti-
mates have $(0) = 1 and have jumps just after each observed lifetime, so in the table
we show the values $(¢;+). The PL estimate is easily calculated recursively, since

§(h+H) = (n, — d1)/ny and
a A n —dy . H
S(lj+)=S(lj-l+)"—"“—j”. ! i=2,...k
i

The PL estimate for the drug 6-MP group is defined only up to r = 35, since the
last observed time for that sample is a censoring time, C = 35. Standard errors,
described below, are also shown for each S(¢;+).

The graph is a very useful representation of the survival experience of the two
grbups and suggests the superiority of the drug 6-MP over the placebo in prolong-
ing survival, Formal methods of testing and estimating differences in two or more
lifetime distributions are discussed in later chapters.

Table 3,1. Computation of Two PL Estimates

Drug 6-MP Placcbo

17} ny dj S‘(fj-{-) se Iy n; (lj S‘(A‘J"I') se¢.
6 21 3 .857 .076 1 21 2 .905 ,064
7 17 1 807 .087 2 19 2 810 .086
10 15 1 753 .096 3 17 1 762 093
13 12 1 .G90 107 4 16 2 .667 -,103
16 i1 { 627 114 5 14 2 571 108
22 7 { 538 128 8 12 4 381 106
23 6 ! 448 135 11 8 2 286 099
12 G 2 190 086
15 4 1 143 076
17 3 1 095 064
22 2 l 048 . 047

23 1 1 .0
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Figure 3,1, PL (Kaplan-Meier) survivor function estimates for remission duration,

3.2.1.1 Variance Estimation
When vsing PL estimates it is desirable to have an estimate of the variance of s(t).
Proceeding along lines descrit ed below, we obtaiit the estimate

dj

nj(nj —dp)’ 32.3)

VS0 = Sm? Y

j:!j =<{

which is ofien referred to as Greenwood's formula, It is easily shown that when
therc is no censoring, (3.%.3) re duces (o the usual variance estimate §(t) [1- S‘(l)]/n..
Standard errors (SE) for S(r) ae given by the square root of (3,2.3). As an illustration
of (3.2.3), we find an estimate of the variance of S(15) for the drug 6-MP group in
Example 3.2.1 to be '

21(18) ~ 17(16) * 15(14) + 12(11)
= 0011403,

\751'[3‘(15)]:.40.6902( 5 .1 ! I )

which -gives an estimated standard deviation of 0.107. This and similar standard
crrors for the Placebo group prvide a clearer picture of the significance of the differ-

T
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ence in survivor functions in Figure 3.1. Confidence intervals for S(t) are considered
: 1

in Section 3.2.4. \
|
3.2.1.2 The PL Estimate as an MLE i
The PL estimate can be derived as a nonparametric m.Le. of the survivor function,
S(¢). This is quite straightforward in the discrete-time setting, 50: we consider this
first. - i :
Assume that independent lifetimes T1, ..., T, have a discrete distribution with
survivor function S(¢) and hazard function h(t), where without loss of generality
we take t = 0, 1,2, .... The key idea in the subsequent development is to consider
the distribution of T through its hazard function h(¢), treating this as the parameter.
Under the assumptions about censoring in Section 2.2.2, the observed likelihood

function takes the form (2.2.12), which when h; (£) = h(t), is

::l
18

L = h(t)dN’(()[l - h(t)lyl(l)(\—le(/))_ (3.2.4)

!

.,
I
=1

i

1l

Recall that with the notation used in (3.2.4), # represents the lifetime or censoring

-time for individual i, 8 = I (4 is a lifetime), ¥; (t) = 1 (t; = 1), anddN;(t) = I1(t; =

t, §; = 1), We can rewrite (3.2.4) as

L =[r®*0 -y, (3.2.5)
=0
where
. n ., . : n
dy =Y dNi(t),m = Z Yit) (3.2.6)
{==1 i=1 .

are the observed number of lifetimes equal to ¢ and the number of individuals at risk

(alive and uncensored) at ¢, respectively.

Considering the vector h = (h(0), (1), ...) as the parameter in the lifetime dis-
tribution, we have the likelihood L(h) from (3.2.5), and easily find that it is maxi-
mized atﬁgt_)_ﬁgl_/nx (t=0,1,...,7), where T = max(t': n; > 0). The relation-
ship (1.2.8) then gives the m.Le. of S(t)fort=0,1,...,vas

t—1
S =TT —hen
5=0
© (327D

which we recognize as identical to (3.2.2) in the discrete-time setting. When n,
equals zero, there are no terms involving h{(t), h(t +1),...1in (3.2.5), and thus there
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is no information about i(s) for § > t. If dr < n, the estimate S(r-l—) > 0, and the
estimatc is undefined beyond £--; this happens when the largest observed 4 is a cen-
soring time, If, however, dr = r¢, then S(t+) =0, and since S(¢) is nonincreasing,
the estimatc of S(r) is 0 forall f > 7,

The variance estimalte (3.2.3) can be obtained from standard maximum like-
lihood large-sample theory of Appendix C, if we assume S(t) = 0 for ¢ >
some vaiue t. The information matrix / (h) is easily seen to have diagonal entries
le(h) = —82log L/dh(r)? = n,/{h(r)[1 = k(r)]} and off-diagonal entries equal
to 0. Straightforward use of th: large-sample result Asvar(ﬁ) =17 (ﬁ)"‘, and the
asymptotic variance formula (B2), then gives

Asvar($()) = §()*Asvar(log S(1))

= §(1)? iA’&‘qruo T
=5(t ar{log[l — ()]}

5=0

P AL} g

ns

(3.2.8)

s=0

which is the same as (3.2.3),

The same development goes *hrough when the data are subject to independent left
truncation; as well as right censoring. In that.case.(2.2.12) still holds, as discussed
in Section 2.4, with Y;(¢) merely redefined by (2.4.3), '_as' Yi() = Iy _<_" t <),
However, [rom (1,2.18) we see that in this case we can estimate only Pr(T > ¢|T =
Hmia)s WHETE ttmin = min(uy, ..., uy). To estimate the unconditional survivor func-
tion S(¢), we must have wyin == 0. Left-truncated data are discussed more fully in
Section 3.5.1.

Continuous time or general cistributions can be handled as a limit of the discrete-
1ime case, as in the development of (2.2.14). We now think of the cumulative hazard
function H(t) as the parameter to be estimated. With dH (¢) as the cumulative haz-
ard function increment over [t, ¢ -+ d¢), the likelihood (2.2.14) becomes the product
integral

L= [ dari@™on - dH 1)V O-IN-0) (3.2.9)
(0,00)

where dN.(t) = Y, dN;() end Y.(¢) = 3_; Y;(r). If we consider (3.2.9) with
respect to the space of all cumuiative hazard functions H (t), it is clear that (3.2.9) is
maximized for a function with jumps at each distinct observed lifetime. If not, then
we would have dH (1) = 0 when dN.(t) > 0 and the value of L would be zero. It
follows by direct comparison with the discrete-time case that L is maximized by the
function H (7) with increments

dN.(1)
Y.(0)

dA() = . 120,7.() >0 (3.2.10)

S

[ AP
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When Y.(t) equals zero, dﬁ(t) is undefined. By (1.2.16) the m.Le. of S(1) in the
general case is then

Sy = ]'][1 —~dAu], (3.2.11)

0.0

which is precisely (3.2.2). As in the previous discrete-time development, the csti-
mates (3.2.10) and (3.2.11) continue to hold when there is independent left truncation
with smin = 0, with ¥; (¢) defined by (2.4.3).

The derivation just given glosses over technical issues concerning the parameter
space, which is a space of functions A (¢). Itis an interesting feature of nonparametric

maximum likelihood that even if we wish fo consider H (1) everywhere continuous,
we are forced to.admit functions with discontinuities in the parameter space, and find

that the m.le. is a discrete distribution. More rigorous discussions are provided by

Johansen (1978) and references cited in the Bibliographic Notes at the end of the

chapter.

We gave a variance estimate (3.2.3) for the PL estimate and motivated it by using
standard maximum likelihood large-sample theory in the discrete-time case to get
(3.2.8). However, nonparametric estimation requires developments beyond the finite
parameter theory of Appendix C, and so arigorous treatment of the asymptotic prop-
erties of S(¢) in the continuous-time case has to be pursued separately. Mathemati-
cally detailed developments are given in several sources; we outline some key ideas
in Section 3.2,4 and provide references to full discussions at the end of the chapter.

3.2.2 The Nelson—Aalen Estimate

The estimate of the cumulative hazard function corresponding to (3.2.10) is given by

the Riemann-Stieltjes integral (1.2.4) as

!
H() =/ dH )
0

/' dN.(u)
I RECK
where we assume that Y.(z) > 0 for 0 < u < ¢. This is sometimes called the
empirical cumulative hazard function, but is more commonly known as the Nelson-

Aalen (NA) estimate, having been proposed by Nelson (1969) and by Aalen in a
1972 thesis. In the notation used for the_ Kaplan-Meier estimate in (3.2.2),

Ao =), —q-j;,

Jiyst nj

(3.2.12)

(3.2.13)

where t1, ..., I represent the distinct times at which failures are observed.
Plots of A (¢) give useful information about the shape of the hazard function; note,
for example, that H (¢) is linear if A (¢) is constant, and convex if A(¢) is monotonic.
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The maximum likelihood dev:lopment leading to (3.2.8) also provides an estimate
of the asymptotic variance for H(r) as

—~ di(n; —d;
Va7 (] = M (3.2.14) .
' fay=t m
An alternative variance estimaie, discussed in Section 3,.2.4, is
— d
VarlA ()= Y ;g S (3.2.15)
Jiyst

There is little to recommend one of (3.2.14) or (3.2.15) over the other, though
(3.2.15) has somewhat smaller bias in small samples. In large samples the two
estimates tend to be very close.

Both S(1) and H (1) are nor-parametric m.l.e.’s, and are connected by the general
relationship (1.2.16) between survivor and cumulative hazard functions. Note that
S(ry and. H (1) are discrete an | do not satisfy the relationship H(t) = —log S(t),
which holds for continuous distributions. An alternative survivor function estimate
S{r) = exp{——f?(l)_} is some imes suggested for the continuous-time case. Con-
versely. an allernative estimate for H (1) would be ~log §(t). Most'prefer I:I(r) and
S(1). though {or probability plots described in Section 3.3 the alternatives are some-
times usc.d/

Example 3.2.2, (Exampl: 3.2.1 continued.) Table 3.2 shows values of the
Nelson-Aalen estimate H (1) #t cach distinct failure time, for the Placebo group in
Example 3.2.1. The values (3.2.13) are easily calculated from the n; and d; given in
Table 3.1. Standard errors, equal to the square root of (3.2.15), are also given.

Figurc 3.2 shows a plot of Ar). The plot is quite close to linear, suggesling
that an exponential lifetime distribution with constant hazard function A () would be
consistent with the data.

Note that H (1) in (3.2.13) is defined s0 it is right continuous, whereas the product
Himit estimate ﬁ(r) in (3.2.2) is left continuous. The latter is consistent with the defi-
nition of S(1), as-Pr(T = 1, and §(/) is correspondiﬁgly obtained in (1.2,16) as the
product integral of d H (1) over the open interval (0, t). Somelimes S(r) is defined

Table 3.2. Nelson-Aalen Estimate for Placebo Group

1; ’:,(I./) e t I‘}(l]) e

| 0.095 0.067 11 1.110 0.301
2 0.201 0.100 12 1.444 0.382
3 0.259 0.116 15 1.694 0.457
4 -0.384 0.146 17 2.027 0.565
5 0.527 0.178 22 2.527 0.755
8 0.860 0.244 23 3.527 1,253

N-A estimate
2
)
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Figure 3.2. Nelson-Aalen cumulative hazard function estimate for Placebo group.

as Pr(T > ) if that is the case, then the product integrals in (1.2.16) and in the
estimate (3.2.11) are over the interval (0, t], and the sums in (3.2.2) and (3.2.3) are

over all times t; <t

3.2.3 Interval Estimation of Survival Probabilities or Quantiles

Nonparametric methods can also be used to construct confidence intervals for l§fe-
time distribution characteristics. In practice, survival probabilitics S(/) and quantiles
tp are of the most interest. The confidence intervals bel.ow are based on th_e same
fypes of approximate pivotal quantities as for parametric models (see Section 2.3

and Appendix C).

3.2.3.1 Confidence Intervals for Survival Probabilities

" Confidence intervals for the survivor function () at a specified value ¢ can be con-

structed from right-censored data in a variety of ways. The most stra}ghtforward
is to use the fact, discussed in Section 3.2.4, that if S(t) is the PL estxmatc_;r, then
ﬁ(g(t) — §(1)) is asymptotically normal under mild conditions. More specifically,

OER0)

= (3.2.16)
as(t)



88 SOME NONPARAMETRIC AND GRAPHICAL PROCEDURES
is approximately N(0, 1), wheve éjr(t)2 = \i';r[ﬁ'(t)] is the Greenwood variance

estimate (3,2.3). We can use Z; as an approximate pivotal quantity and obtain «
confidence intervals by inverting probability statements of the form Pr(a < Z; <
b) = o, The choice b = —a = :5(14+a), Where zp is the pth quantile for the standard
normul distribution, gives the approximate a confidence interval

30 — 25014 (1) < S@) = 8¢ + 2504285 (1), (3.217)

The distribution of Z; may not be well approximated by N(0, 1) when the number
of uncensored lifetimes is small or when S(t) is close to 0 or 1, and (3.2.17) may
even include values outside of the interval (0, 1). A procedure that gives admissible
confidence intervals and coverage probabilities closer to the stated nominal value is
1o consider one-to-one functions (1) = glS(N], which take values on (—00, c0).
The m.Le. of the transformed parameter ¥ (2) is If/(t) = g[S()], and its asymptotic
variance is estimated through the asymptotic variance formula (B4) by

Gy (12 = (g[8 Var{§()). (3.2.18)

There are several choices of fun-tion g(s) for which the approximate pivotal quantity

) =y

7, = 120 3.2.19
2 U\//(t) ( )

is closer lo standard normal than Zj, and gives better performirig confidence
intervals. Two of these that are often used are the logit transformation yr(s) =
fog((! — 5)/s) and the log-log iransformation v (s) = log(— log ). .

Confidence intervals for y({) can be obtained by treating Z3 as standard nor-
mal, and the resulling interval can then be transformed to an interval for S(t). For
example, with the ransformaticn (1) = log[— log S(1)], the inverse transformation
is S(1) = exp(—e¥y and the interval ¢, < ¥ (t) < Yy transforms to

exp.(—-e"’"‘) <8 =< exp(——e‘l’L). (3.2.20)

In parametric models it is of'en found that confidence intervals obtained by using
likelihood ratio statistics have c'ose to nominal coverage in small samples, even when
intervals obtained from Wald statistics (see Appendix C) like (3.2.16) do not. Inter-
estingly, likelihood ratio methcds can also be applied to the current nonparametric
sciting, as shown originally by Thomas and Grunkemeier (1975). This approach is
now often referred to as an empirical likelihood procedure (Owen 2001). For the
discrete-time case, one considers the ratio of the likelihood function (3.2.5) maxi-
mized unconditionally and under Hp : S(¢) = so; this is appropriate for testing Ho
versus My : S(t) # so. From the arguments that follow (3.2.6), the overall maxi-
mized likelihood funciion is

k

" Aty

Ly =[]a-ppUpy™,
j=1

e e i e
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where for convenience we define p; = 1 — ﬁ(tj) = 1—dj/nj, with the £;(j =
1,..., k) representing the distinct observed failure times. To consider the maximum
of the likelihood under Hp, note that S(t) == so in (3.2.5) implies that we must have
Stte+) = 5‘(tc+1) = sg, where £ is such that t € (f¢, te.+1]. This implies thatl to

maximize the likelihood subject to S(¢) = so it is necessary to maximize

. ko
{; nj—d;
L=[Ja-pp%p/",
j=1
subject to the restriction py - -+ pe = 0. To do this we use a Lagrange multiplier A
and. consider :

e k
logL + A (Zlog pi —10gso> = Zdj log(1 — py)+(n; —dj)log pj
j=1

i=1
/4
+ A (Zlog pi — Iog.m) .

fmzl

Setting derivatives with respect to each of pi,..., px equal to zero, we find the

constrained m.l.e.’s under Hp to be

Fi=1-— ) =1, £

Pi nj+A
o

py=1--= j=L41,0k
nj

(3.2.21)
The maximum of the likelihood under Hp : S(1) = so is thus
k ny—d
Ly=[]a-ap5 ™
ol

and the likelihood ratio statistic for testing Mo is

A = —2(log L2 — log L1)
£ pj 1—pj
= -2 L;(n,- —d;)log (37) +d; log<1 — ﬁjﬂ |
Er A : A |
,2;-[”7 log <1+;1-;> —(nj —d;)log (1 +n,~~¢,->] (3.2.22)

i
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An o confidence interval fr S(t) is given by the set of all sg such that A < x(zl)‘a.
This can be obtained by finding the set of all A in (3.2,22) that make A < x(zl)'a and
then obtaining the correspontling sel of so values from (3.2.21). The sets of A values
!zmking A< X(Z,).D, are closad intervals [Ar, Ay] such that A, < 0 < Ay unless
S(1) = 0, in which case 0 = A, < Ay. Because sp in (3.2.21) is an increasing
function of A, the confidence intervals for s = S(¢) are thus of the form [sr, sy,
with 0 < §;, < sy < 1, unlzss S(1) = 0, in which case sy, = 0 < sy < 1. Note
that

(3.2.23)

£ d:
sy = 1 - - .
v n ( ni + lu)

i=]

(3 N
-~ i
§p = | — and
. n( )

Nonparametric boolstrap 1aethodology can also be applied to any of the (approx-
imate) pivotal quantities corsidered here (see Appendix D.2). Bootstrap samples

(1. 89,1 = 1,..., n are genzrated by sampling with replacemenffrom {(4,80),i= |

I,....n). Each bootstrap sariple produces a value for quantities such as (3.2.16) or
(3.2.19), as described in Appendix D.2, and a set of B bootstrap samples can be used
to estimate the distribution of the pivotal quantities. Except possibly for quite small
samples, this doesn't usually improve much on the use of (3.2.19) with a normal
approximation.

Example 3.2.3.  Exampls 1,1.7 gave remission duration times (in weeks) for
(wo groups of leukemia patients in a clinical trial. The data were discussed in
Examples 3.2.1 and 3.2.2, where Kaplan~Meier and Nelson-Aalen estimates were

shown for the two groups. We now oblain confidence limits for the survival function .

at times 0 and 20 weeks; because there is a failure at 10 weeks and a censoring time
at 20 weeks in the treatment (drug 6-MP) group, to avoid ambiguity we will consider
confidence intervals for S(¢t+) fort = 10, 20,

uble 3.3 shows approximate .95 confidence intervals obtained by the following
methods, described earlier; '

Table 3.3. 0,95 Confidence Intervals for S(10+), S(20+)

Group Method S04 5(204)

Placebo Zi(h (.17,.59) - 0, .22)
Z1(2) (.18, .58) (.016, .26)
Z1(3) (.20, .60) (.024, 3D
LR (.20, .59) (.016, .27)
Exact (.18..63) (.012, .30)

Drug 6-MP Z(1) (.56, ,94) (.40, .85)
2Z,(2) (.50, .89) (.37, .81)
Z,(3) (.53, .89) (.39, .82)
LR (.54, .90) (.40, .82)
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1. Formula (3.2.17) with a = .95. To illustrate, from Example 3.2.1 we have for
the Placebo group that $(10+) = .381 and G;(104) = .106; then 3.2.17
with z.975 = 1.96 gives the interval (.17, .59).

2. The approximate pivotal quantity (3.2.19) with (1) = log[— log S(t)] treated
as standard normal. By (3.2.18) the standard error of 1 (¢) is obtained from

Gy (2)?

N 2 _
WO = Bl SOF

and the approximate .95 confidence interval is given by (1) & 1.966y(1). To
illustrate, in the Placebo group we get V¥ (104) = —.0357 and &y (104) =
.288, giving the confidence interval —.601 < ¥ (10+) < —.529. By (3.2.20),
this converts to the interval .18 < S(10+) < .58,

'»3. The approxir;ia’te pivotal (3.2.19) with ¥ (1) = log[S(t)/(1 — SEN].

4. The empirical likelihood ratio procedure based on (3.2.22) and XZI),O.‘JS =

" 3.84. For S(10+) the set of A values satisfying A =< 3.84 is easily found

" by graphing A(A) or by iterative calculation to be —4.83 < A = 10.97. By

(3.2.23) this gives the confidence interval for S(10+) for the Placebo group,
for example, as (0.196, 0.593).

Full results are shown in Table 3.3. A plot of the empirical likelihood ratio statistics
A(so)for so = S(10+) is shown for the two groups in Figure 3.3, This provides
a concise picture of the information about sp, and in particular shows confidence
intervals for any nominal coverage probability,

The Placebo group has no censored observations, and exact confidence limits are
also provided in this case. In general exact limits can be obtained for S(¢) whenever
there are no censored observations by time ¢. (The term “exact” here means that an
exact distribution is used, not that the confidence interval coverage is exactly a.) The
limits are obtained by inverting the hypothesis test Hy : S(t) = so, which is based on
the fact that the number of lifetimes X exceeding ¢ has a binomial (11, sp) distribution
under Hp. A lower a confidence limit for §(¢) is found as the set of all values sp such
that Pr(X > xo; so) = | — a, where xp is the observed value of 'X. The desired set
of values is of the form (s, 1), and it can be shown that :

= %0 (3.2.24)
x4+ (n - X0 + 1)F(2(n—-xg+1).2.rn).rx

SL

by using the relationship between the binomial and F distribution (e.g., Johnson et

al. 1995, Chs. 25 and 27). Upper confidence limits can be found in a similar way; the
upper « limit is ‘ ,
A xp + 1

= . (3.2.25)
(xo + 1) + (n — x0) Fa(n—xq).2x0+2), 1 2t

sy

The sample sizes are small here, and the .95 confidence intervals are correspond-
ingly wide, Except for the iriterval for §(20+) in the Placebo group that is based
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Figure 3,3. Empirical likclihood ratio statistics for S(10+).

on Z. the various intervals agree well, and would not lead to any conflicting con-
clusions, The intervals based on Z3 agree more closely with those based on the LR
melhod than do the intervals besed on Z.

It is somelimes useful to plct Kaplan—Meier estimates S(¢) along with bands that
show “pointwise” confidence intervals for all values of #. Such banrls are parallel
to the estimate S(¢), since both the estimate and the confidence limits described in
this section change values only at observed failure times. The following cxample
illustrates this,

Example 3.2.4. The distribution S(¢) of time to first pulmonary exacerbations
for patients in a randomized clinical trinl was discussed in Example 1.1.8. There
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Figure 3.4, KM estimates of S(¢) and pointwise confidence limits for time to first exacerbation.

were two treatment groups: rhDNase and Placebo. Figure 3.4 shows Kaplan—-Meier
estimates for the two groups along with pointwise .95 confidence intervals for S(1),
obtained using Zz with the log-log transformation in (2) of Example 3.2.3, These
estimates ignore the baseline forced expiratory volume (fev) covariate, but since the

- treatment assignment is random, they provide an unbiased view of the lifetime dis-

tributions in the population of patients that the study represents.

The rhDNase treatment yields a substantially higher probability S(t) of survival
without an exacerbation, though there is some overlap of .95 confidence intervals
with those for the Placebo group: Hypothesis tests of the equality of two survivor
functions are considered in Sections 7.2 and 8.1,

Plots of Kaplan-Meier estimates implicitly show observed lifetimes, since § €3]
drops at each distinct time. Software for Kaplan-Meier estimation usually provides
the option of showing censoring times in the plots. This has been utilized in Fig-

_ ure 3.4; where the symbol + indicates censoring times.

3.2.3.2 Confidence Intervals for Quantiles

Estimation of the mean of a distribution is useful in many contexts, but for lifetime
distributions the quantiles ¢, of the distribution are usually of more interest. The
median, or ?,sg, is often used as a measure of location or “central tendency.” Two
advantages it has over the mean are that it always exists (assuming S(c0) < .5),
whereas the mean may not, and that it is easier to estimate when data are censored,
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Nonparametric point estimates of 1, can be defined in various ways, with an essen-
tial complication being that S@)is aslep functlon so that for some values of p, there
is an interval of t-values satisfying §(t) = 1— p. However, for most values of p there
is onc -valiie (equal to one of the observed failure times), and it is common to take
this as the point estimate 7.

Point estimates of ¢, are usually of less interest than interval estimates. Approxi-
mate o confidence intervals for 1, arc most easily obtained by inverting the relation-
ship $(1,) = 1 ~ p between the survivor function and the quantiles of a distribution.
Thus. if £7,(Data) is a lower confidence limit for ¢,,, we note that

Pr(1,(Data) < 1) = Pr(S(r.(Data)) = 1 ~ p).
Therefore, if we want a lower a confidence limit for ¢, based on observed data, then
we can obtain this hy finding the value 1, such that 1 — p is a lower « confidence limit
for S(11,), based on the data, In other words, if s; (data; ) is a lower « confidence
limit for S(1), then the lower o confidence limit for £, is oblained by finding  such
that s (datay 1) = | — p.

To illustrate the procedure, suppose we want a confidence interval for ¢5. If we
hase confidence intervals for S(r) on the approximate pivotal quantity (3.2.16), then
to get atwo-sided .95 confidernce interval for ¢ 59, we find the set of ¢-values satisfying
-1.96 < Z; < 1.96. where

§(y -5

70 (3.2.26)

Zy =

Because S(/) is a step functicn, there will not in general be a value of 1 making Z;
exactly equal to —1.96 or 1.9, so we take the failure times at which the value of Z;

changes from being outside cf (—1.96, 1.96) to inside (—1.96, 1,96); note that as ¢
varies, Z; changes value only at the observed failure times.

There is a convenient graphical method for determining an « confidence interval

for 1,. Consider the graph of s (¢) along with the bands giving pointwise « confidence
intérvals for S() discussed earlier; these bands are step functions parallel to 50).
To find confidence limits for ¢, we simply find where the bands intersect the line
S(r) = 1 — p; this identifies the failure times that specify the confidence interval
for' 1. To do this we plot the vertical pieces of the step functions for () and the
bands. as shown in Figure 3 4. In the unlikely event that the line S(t) = | — p
coincides witl a horizontal st2p of one of the confidence bands, we use the average
of the failure times at either end of the step as the confidence limit for ;.

Example 3.2.5. Consider confidence intervals for quantiles in the case of the
pulmonary exacerbation time data discussed in Example 3.2.4.

As an illustration, let us cbtain a two-sided .95 confidence interval for the .20
quantile. f20, for the rhDNase and Placebo groups. Examination of Figure 3.4
according (o the graphical method described earlier (with p = .20) indicates that
the confidence intervals for 1 ;9 are approximately (75, 115) days for the rhDNase
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population and (50, 80) days for the P]acebo population, By exammmg the pivotal
quantity (3.2.26) for different ¢-values, we find the exact intervals (o be (73, 112) for
rhDNase and (49, 79) for Placebo.

Note that neither estimate of S(z) drops much below .60, so that confidence inter-
vals for quantiles such as the median are not available.

3.2.4 Asymptotic Properties of Estimators

The PL estimate S(t) and Nelson—Aalen estimate H (f) possess deSlI'Zlb e large-
sample properties under the assumptions about the censoring process made in
Section 2.2.2, among them consistency and asymptotic normality. Similar results
hold under mdependent delayed entry. In the discrete-time setting described in Sec~
tion 3.2.1, it is relatively easy to derive asymptotic results. Early treatments of the
continuous-time setting (e.g., Breslow and Crowley 1974) worked from a random
independent censoring model and a discretization of the time scale, using limiting
arguments to get continuous-time results, Starting with Aalen (1976, 1978a), how-
ever, counting processes and martingale theory were deployed to provide elegant and
more general treatments. Authoritative and very detailed accounts of the theory are
given by Fleming and Harrington (1991) and Andersen et al, (1993). In this section
we outline some of the main ideas; martingales and counting processes are reviewed
in Appendlx F.
‘We use terminology. and notation mtroduced in Section 2.2.2. Let §9(t) =

Pr(Y;(t) > 0) denote the probablhty an individual is alive and uncensored at time

- t; this probability depends on the lifetime distribution and the censoring process. As

earlier, Y.(t) = X_Y;(t), and for convenience we also define J (1) = I(Y.(¢£) > 0)
with the understanding that J()/Y.(¢) = 0 when Y.(¢) = 0. The counting-process—
martingale development uses the fact that, under the assumptions about the censoring
process in Section 2.2.2,

dM;i(t) =dNi(t) = Y1) dH (1)

are martingale ‘incrernents satisfying E{dM;(1)[H(t)} = 0. Looking first at the

Nelson-Aalen estimator (3.2.12) and defining a process
‘ !

H™(t) = f J (1) d H (1),
0

we see that for data based on » independent individuals,

" J(u)

Y.(u) ZdN’(u) Z Yi(u)dH (u)

=]

A@) — H*() =f
0

(3.2.27)

In (3.2.27) we have for convenience defined d A (#) = 0 when Y.(u) = 0.
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The representation (3.2.27) immediately shows that E{I:I(t) — H*()} = 0, and
that

E(7(t) — H()) = E{H*()} — H({1)

!
= / Pr(Y.(u) =0)dH ), (3.2.28)
J0

which = 0 as Pr(Y.(u) = 0) = 0 over (0, t]. Furthermore, standard martingale

calculations give thal

E/ W A H W dH ), (3.2.29)
w0

Var{/al H (1) = H* ()]} = )

where AH (1) = H(u) — H{(u--). This is easily shown directly from (3.2.27) in the
discretc-time setting: the general case (see Appendix F and Fleming and Harrington
1991, p. 92fT) requires some additional machinery. A key ingredient in either devel-
opment is the fact [hdl the d M;tu)’s havé mean 0 and are orthogonal (uncorrelated)
for distinct values u, ',

Under the assumption that F'r(Y;(u) > 0) >
(3.2.28) and (3.2.29) that

Ofor0 < u < ¢, it follows from

ok () = Asvar{ /[l (8) = H@))

/‘ [l —AHw)]

S“( " dH(u).

(3.2,30)

Central Hmit thcory for n.mrting:ﬂes shows tlﬂmt \)ﬁ[ﬁ(l) — H(t)] also has a limiting
normal distribution. Inserting the estimate H (1) in (3.2.30) and estimating 50(u) by
Y.(1)/n, we get the variance estimate

di(n; —d;)
O'NA()___H Z ._j..__j._..__']_

frE T

(3.2.31)

which is the same as (3.2,14), An alternative estimate is frequently used when H (¢)
and S(t) are conhnuous functions, In that case AH(u) = 0 and (3.2.30) can be
rewrit{en as

"dH
ohalt) = ; —SW(SuMT)'

which gives the estimate in (3.2.15),

: d;
(-',%,A(t) =1 2 —%
i

Jay=e

(3.2.32)

e e ey g+ e S e g

v g -
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The Kaplan-Meier (PL) estimate § (¢) can be handled via martingale theory by
noting that, in general,

St)=1—~Pr(T <)

f—
=l—f Su)dH (u)
0
and
e
Sy =1 —f Sw)dH ().
0

This gives a representation of 3'(:) — 8(¢) as a stochastic integral of a martingale
(see Appendix F), to which standard theory can be applied. This leads to a proof of
asymptotic normality and a result analogous to (3.2.30),

U{Z(M(t) = Asvar{s/n[8(t) = S(1)])

f o
s [T 1=dS@)]
’S(t)fo SEHSwW)’

(3.2.33)
where, because S(u) is defined to be right continuous, dS (1) = §(u~+)— S @) if S(u)
jumps at «, When § is inserted for S and Y.(u)/n is inserted for S7(u) in (3.2.33),

we get the variance estimate

]

—_— 3.2.34
nj(n; —dj) ( )

82y () =nS(0)* Y
Jiy<t

This is the same as the Greenwood variance estimate (3.2.3).
Stronger asymptoﬂc results can also be derived. For example, in the continuous- -
time case, if T is a value such that 5%(t) > 0 for 0 < ¢t < t, then the random
processes (VALA ()= H()],0 <t < t}and (VALS@)—5)],0 < t < v} converge
weakly to mean zero Gaussian processes w1th respectwe covariance functlons

’ min(f) ,
onalt, t) =-/0‘ SO( ) —— d H (u) (3.2.35)
and
min(¢,¢/)—- 1
orxm(t,t) = S(t)S(t')-/[; m[——dS(u)]. (3.2.36)

The results concerning Gaussian limit{ng processes enable the construction of
confidence bands for S(¢) or H(t), and estimation of quantities that are functionals
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of §(r). Two such are the mean lifetime, which can be represented as (4 = ‘[0°° S(t) dt
(see Problem 1.1, part (a)), and more generally, . = E{min(T, 1)}, which is called
the mean lifetime restricted (¢ 7. This is given by

i ' T
Jr =f S@) de
0

and can be estimated by replacing S(¢) with tlle PL estimate S’(t). The results con-
cerning the limiting Gaussian process for ./n[S(#) — S(£)] allow it to be shown that
J(fie — ) is asymptotically normal, with variance given by

(3.237)

[ Awrlaso (3:2.38)
s

S S0(r)

where A(?) = f,r_ S(u) du. Tae derivation of this result and an estimate of variance
hased on it are discussed in Problem 3.6.

3.3 DESCRIPTIVE AND JIAGNOSTIC PLOTS

3.3.1  Plots Involving Survivor or Cumulative Hazard Functions

Plots of PL or Nelson—Aalen estimates provide good descriptions of univariate life-
time data. They can also be employed to assess the appropriateness of a parametric
model, as we now discuss. Graphical assessments are subjective but useful; they can
be supplemented with formal goodness-of-fit tests, considered in Chapter 10.

3.3.1.1 Plois of Survivor Frnctions .

Suppose that a parametric mo-le! has survivor function S(¢; @) and distribution func-
tion F(1: 0), and let § be an 2stimate obtained from a specific data set. If the para-
metric family is appropriate, ten S(/; 0) or F(¢; 0) should not differ too much from
nonparametric estimates of §r) or I°(t). The simplest model assessment procedure
is simply to plot $(f; 8) and ‘he PL estimate S(#) on the same graph; alternatively,
the corresponding distribution functions can be plotted. The sampling variability in
the two estimates must be kep: in mind, and nonparametric confidence limits for S
as described in Section 3.2.3 are often a useful addition to the plot.

Example 3.3.1. The data below were given by Thoman et al. (1969), who
atributed them to fests on the endurance of deep-groove ball bearings discussed by
Lieblein and Zelen (1956). Coroni (2002) has noted that they are not the same as the
original data, which involved some censored observations, However, for illustrative
purposes we will treat them a¢ an uncensored sample. The observations are the num-
ber of million revolutions before failure for.each of 23 ball bearings; the individual
bearings were inspected perindically to determine whether “failure” had occurred,
but we treat the failure times #s continuous. The 23 failure times are
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17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93,12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40,

Figure 3.5 shows plots of the Kaplan-Meier estimate of the survivor function,
§(t), along with estimates S(¢; 9) from Weibull and log-normal distributions that
were fitted to the data. With the Weibull model in the form (1.3.6), the m.l.e.’s (see
Section 5.2.1) are % =0.0122, /§ = 2.10; the log-normal model (1.3.10) hz}s m.l.e’s
(see Section 5.3.1) i = 4.15, 6 = 0.522. The plots indicate good agreement between
the nonparametric S(¢) and both the Weibull and log-normal models; the log-normal
fits the data slightly better.

The plot in Example 3.3.1 indicated how well a parametric model fitted the data.
It can be supplemented by formal goodness-of-fit tests, which are described in Chap-
ter 10. Other types of plots are also useful, especially ones that extend easily to mod-
els involving fixed or time-varying covariates. The plots that we describe now also
compare nonparametric and model-based estimates of distributions, but are designed
to be roughly linear when the parametric model is appropriate. These plots are less
directly descriptive of the data, but'emphasize systematic differences between 5(¢)
and S(¢; 9).

3.3.1.2 Probability Plots ~
One-important type of plot is the P-P (probability-probability) plot, which is essen-
tially a plot of points (S(tj; 9), S(t;)), where t| < f3 < +-+ < [ are the ‘distinct
times at which failures occur in the data, Thus the model-based and empirical sur-
vivor functions are compared at the failure times, and if the parametric model is
appropriate the points should lie around a straight line with slope one. A common
variation of this procedure when S(t; ) is continuous in ¢ is to replace S(¢;) with

Weibull Log-normal

0.5

Probability of Survival
o by
wn

Probability of Survival

0.0 1 ’ 0.0

0 50 100 150 0 50 100 150
t L

Figure 3.5, KM and parametric estimates of survival for ball-bearing data.
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the vajue

Sj

= S(I ) + SS(rﬂ -), (3.3.1)

since S(1) is a step function with jumps at the ¢;. This is also a more convenient
choice for other procedires, de:cribed below. '

A very similar procedure is -he Q-Q (quantile-quantile) plot of model-based ver-
sus empirical quantiles. For example, the quantile function (1.3.7) for the Weibull
maodel is

t(pya, B) =a[—-log(l — p)]”ﬂ.

A plot of the points ((py; &, 8),1), i = 1,....k, where p; is given by S'J“ of
(3.3.1), should be roughly linear if the Weibull model is appropriate.

A technique closely related fo P-P and Q-Q plots is used with parametric models
for which the survivor or distribution function can be “linearized.” This means that
some ansform-of S(¢; @) is a linear function of ¢ or of some function of ¢, that is,

ITINE ())] is a linear function cfgz(t) for some functions gl and go. The idea is then”

to plot g1 (S()) versus ga(¢); if the parametric family is'appropriate the result should
be roughly linear, This procedure has the advantage of not requiring an estimate of
thc parameter 0.
Suppose, for example, that the possibility of an underlying exponential distribu-
tion (1.3,2) is being considered. The survivor function satisfies
log S(1) == ~At, 3.3.2)
so a plot of log §(r) versus ¢ stould be close to a straight line through the origin if
(3.3.2) is appropriatc. No estimate of A is needed for this plot. In fact, a “graphical”
estimate of A can be obtained when the plot is roughly linear by fitting a straight line

through the points,
For the Weibull distribution S(¢) of (1.3.6) satisfies

log[— lng S(t)] = Blogt + Blogh.

Thus a plot of log[— Tog §(1)] versus log ¢ should be roughly linear if a Weibull model
ts appropriate. In addition, whzn the plot is approximately linear, one can obtain
araphical estiniates-of A and g by fitting a straight line to the plot and calculating the
slope and intercept: the slope is an estimate of § and the intercept on the horizontal
(log 1) axis is an estimate of — log A.
The linearization procedure is applicable to models in which some transform ¥ =
2(T) of lifetime has a location-scale. parameter distribution, as in Section 1.3.6, In
,this case Y has a survivor function of the form (assuming ¥ is an increasing function
of T) ’

1
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Pl‘(YZJJ)=Sn(y;u>
= Pr(T > 1) = 8(1),

where ¢ = g“(y) and #(~o0 < u < co) and b > 0 are parameters. Thus

1
Syhs@ =5y - % (3.3.3)

is a linear function of y = g(t), and a plot of §; [S‘(t)] versus g(t) should be
roughly linear if the family of models being consndered is appropriate, The Weibull
and exponential distributions fall into this category. For the Weibull, ¥ = log T has
an extreme value distribution (see Section 1.3.2) with Sp(z) = exp(—e?), which leads
to the plot of log[—log $(#)] versus logt previously suggested. Two approaches are
possible for the exponential distribution: we can plot log § (t) versus ¢, as suggested
by (3.3.2) or, since the exponentlal is the special case of the Weibull distribution
with 8 = 1, we can plot log[— log S(t)] versus log ¢. These plots can be considered
a type of Q-Q plot; note that S‘~ (1 = p) is the pth quantile for the standard vanate,
(Y - u) /b. . .

. The result (33. 3) holds w1th y = log t for all log~locat10n-sca1e models (see Sec-
tion 1.3.6). Besides the Weibull, this covers the log-normal and log-logistic distribu-
tion; the associated distributions of Z = ( Y —u) /b are the extreme value, normal, and
logistic distributions. The forms of Sp(z) for all three distributions are given prior to
(1.3.19) in Section 1 3 6. Graphical estlmates of u and » can be obtained from lines
fitted to plots of S“ [S (t)] versus log ¢; b™! is estimated by the slope and i by the y
(logt) intercept. Models for which Sg(z) involves extra parameters, such as (1.3.20)
in Section 1.3.6, can also be checked using this type of plot, provided that we first
estimate the extra parameters.

Instead of plotting the step function Sy 18(£)], we normally just plot points cor-
responding to the. distinct observed failure times f; < -+ < K, as described for
P-P and Q-Q plots, When Sp(y) is continuous, it is customary, instead of plotting

[S(tj)] to plot the points

(y,,sg;‘(@;)), P=1,k, (3.3.4)
where S* is given by (3.3.1) and y; = logt; or, more generally, yj = g(¢).

The precedmg procedures are all referred to as probability plots, although (3.3.4)
is really a quantile plot. Their main use is for informal model assessment. In many
cases plots indicate reasonable support for a family of models. Graphical estimates of
parameters are sometimes useful for preliminary analysis or as initial values for max-
imum likelihood computation. A probability plot may conversely suggest a departure

" from an assumed model. Plots are subject to sampling variation, however, and one

needs a sense of what constitutes normal variation under a given model. The exami-

_natlon of plots based on SImulated data sets is an excellent way to develop this.
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The following examples illustrate the graphical techniques.

Example 3.3.2. In Example 3.3.1 it was shown that the survivor functions for
Weibull and log-normal distributions fitted to ball-bearing failure time data agreed
closely with the Kaplan-Meier estimate, or empirical survivor function. An alter-
native way to assess visvally the fit of the parametric models is via probability
plots. Figurc 3.6 shows plots based on (3.3.4), utilizing the fact that the Weibull and
log-normal models are both log;-location-scale distributions. For the Weibull model,
Y = log T has an extreme valu= distribution for which Sp(z) = exp(—e?) in (3.3.3).
Therefore S[;“ (p) = log(— log p) and the probability plot consists of the points

(yj, log(—1log &) j=1,...,23,

!

wherc v; = logt; nre the log foilure times and §* is given by (3.3.1). On the vertical
axis of the plots the values (3.3.1) are denoted by K M*. Note that since none of the
n = 23 failure times is censore1, the Kaplan—Meier estimate (3.2.2) gives S (tj+) =
{n — j)/n,sothat 3‘; =1-(—.5/n

The log-normal probability y lot similarly consists of the points (y;, o= (1-8"),
where @ (z) is the standard normal cumulative distribution function (c.d.f.) and its
inverse &~ !¢ p) is the correspoiding quantile function, Figure 3,6 shows both plots
as close to linear, though there is a slight suggestion of a bend in the Weibull plot.
This corresponds to our obsersation in Bxample 3.3.1 that the log-normal model
fittcd the data slightly better, Simulation experiments with probability plots (see
Example 3.3.4) show that this legree of nonlinearity is, however, not unusual with
a correct model and a sample size of 7 = 23, and formal goodness-of-fit tests in
Chapter 10 do not reject the Weibull model.

Graphical cstimates of the er.treme value or normal distribution parameters u and
b can he obtained from the plots. A straight line drawn by eye through the nor-
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Figure 3,6, Weibull and log-normal probability plots for ball-bearing data.
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mal probability plot, for example, gave a slope of approximately 1.9 and a y (log?) -

intercept of approximately 4.2. Since (see (3.3.3)) the slope estimates b~! and the
intercept estimates  in the normal distribution N (1, b2?) for Y, this gives graphical
estimates i = 4.2 and b = 0.53. These are close to the m.l.e.'s that were given in
Example 3.3.1 as i = 4.15 and b = 0.522.

Example 3.3.3. Lin et al, (1999) discussed data on patients treated for colon
cancer (Moertel et al, 1990).' Some of the patients later had a recurrence of the dis-
ease and may subsequently die from it. The patients took part in a randomized clini-
cal trial in which a drug therapy (levamisole plus flourouracil) was compared with the
standard treatment, There were 315 and 304 patients in the Control (standard treat-
ment) and Therapy (drug therapy) groups, respectively. Maximum follow-up time
was over 8 years.

We consider here the distribution of time T to recurrence of colon cancer, mea-
sured from the time of randomization to treatment. By the end of the study, 177
Control patients and 119 Therapy patients had experienced a recurrence, Figure 3.7

" shows Kaplan—Meier estimates for the survivor functions (s.£) S(t) of T in the two

treatment groups..Both a comparison of the two recurrence time distributions and
estimation of the individual S(¢)’s is of interest. It is clear that the Therapy group
tends. to have longer recurrence times and less recurrence; formal significance tests
are considered in Example 4.5.1 and in Section 8.1, The Kaplan-Meier estimates
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Figure 3.7. KM s.f, estimates for time to colon cancer recurrence.
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supgest that the hazard function for recurrence becomes small for large ¢, This may
indicate that some patients are cured and will not experience any disease recurrence;
in that case S(1) > 0 for ¢ large. If one wished to consider parametric models, then
distributions such as the Weibu 1, log-normal, or log-logistic, for which S(t) — 0 as
{ — 00, would then prcsumably be unsuitable, Figure 3.8 shows probability plots of
the data for the Weibull and log -logistic distributions. For the latter the plots consist
of points (3.3.4) with y; = log.; and Sr;"(p) = log((1 — p)/p). The inadequacy of
the two models is confirmed. There is a convex pattern in the plots, indicating that
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Figure 3.8. Weihull and lo :-lagistic probability plots for cancer recurrence data,
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survival times in the right tails of the two distributions are considerably larger than
would be consistent with either parametric family.

In this setting, a parametric mixture model of the form (1.3.27) would perhaps fit
the data, and provide an estimate of the probability of long-term nonrecurrence of
disease. Such models are fitted in Example 4.5.1, and are shown to describe the data
well,

Example 3.3.4. Figure 3.9 provides an indication of the variability in probabil-
ity plots. It shows 15 plots, given in rows of five, Row 1 shows Weibull probability
plots for five pseudorandomly generated Weibull samples of size n = 20; these plots
consist of the points (3.3.4) with Sa‘l(p) = log(— log ), as in Example 3.3.2. The
five panels in row 2 show similar plots for five pseudorandom Weibull samples of
size 40. The third row of panels shows Weibull probability plots for five pseudoran-
dom samples of size 40 from a log-normal distribution. ‘

“The plots for the samples of size 40 are reasonably consistent in‘their patterns.

- Those for row 2 are quite close to linear and none suggest any evideﬁce against the

Weibull model. Those for row 3 exhibit a type of systematic curvature that suggests
inadequacy of the Weibull model. However, for two of the sampleé (the first and
third) the plots ate close to linear and do not indicate any problem with the Weibull
model. The plots in row 1 for the samples of size 20 are much more variable, and
show that what might appear to be systematic departures from linearity are within
ordinary sampling variation for the Weibull distribution.

The message in these plots is consistent with those for probability plots in many
other settings. Plots based on samples of size less than 20 or so are quite variable
and should be interpreted cautiously. Plots based on samples of size 40 or 50 are
more reliable, but may not be very powerful in showing moderate departures from
an assumed model, Censoring in the data further limits the power of such plots; the
number of uncensored times is then analogous to the sample sizes in the plots of '
Figure 3.9, ‘ '

Finally, to indicate the visual effect of the scales on the x- and y-axes in prob-
ability plots, we give in Figure 3,10 P-P plots of the two samples of size 20 rep-
resented in the first two panels of row 1 in Figure 3.9, The plots are of the points
((j —.5)/20, Ej), j = 1,...,20, where

F =1 — exp{—(t(n/@)P),

with (1) < -+« < (20 the ordered failure times for the sample, and &, ﬁ the Weibull
m.le. (see Section 5.2.1), The patterns in Figure 3.10 are similar to those for the first
two panels in row 1 of Figure 3.9, but the compression of the tails of the distribution
in the P-P plot alters the visual effect, In particular, the pattern for sample 2 appears
more severe in the P-P plots than in the quantile plot of Figure 3.9. A point related
to the scaling of the axes is that the pattern of variation as we move from the left to
right tail of the distribution varies according to the type of plot. In particular, for P-P
plots the variation is smaller in the two tails than in the middle of the distribution,
whereas it is usually more stable for Q-Q plots. '
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Figure 3.9. Weibull probability plots for 15 simulated data sets.
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" Figure 3,10. Weibull P-P plots for two simulated data sets,

3.3.1.3 Hazard Plots
The plotting procedures above were described in terms of survivor functions. They

can equally well be described in terms of cumulative hazard functions H (1), in which
case they are often termed hazard plots. For the Weibull distribution, for example,
H(!) = —log S(¢) satisfies

log H(t) = Blogt + 8 log A.

An alternative Lo plottmg log[— log 3'(1)] versus logt would be to plot log H()
versus log t, where H(t) is the nonparametric Nelson—Aalen estimate (3.2,13), As
discussed in Section 3.2.2, H(t) does.not equal —log §(1), so the two plots dif-
fer slightly, primarily for large ¢, We often just plot points corresponding to the
observed failure times and, analogous to (3.3.1), replace H(tj) with the value Hj* =
SH(tj——) + SH(tj) bearing in mind that A@)is right continuous.

Other plotting procedures can often be developed in ad hoc ways. For example,
the linear hazard function model where i(t) = « + Bt has H() = at + ﬂtz/Z

CThus " H(t) = o + Bt/2 is a linear function.of ¢, so approximately linear plots of
. “IH(t) versus ¢ should result if the model is reasonable.

3.3.1.4 Discussion

Plots comparing émpitical and model-based survivor or distribution functions pro-
vide excellent displays and allow visual checks on models. They complement more
formal methods of estimation and testing that are discussed throughout the book.

In cases where probability plots indicate a departure from some parametric model
(manifested through nonlinearity in the plot) it is usually possible to see whether
the lack of fit is primarily in the tails of the distribution or whether it is in the over-
all shape. In the latter case, a plot of either the Nelson—-Aalen estimate 5 (1) or of

‘~log S(t) véisus ¢ is often useful in showing the shape of hazard function needed to
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model (he data, Nonparametric ostimates of A(¢), described in Section 3.4, can also
be considered.

The use of simulation is reccmmended for acquiring a sense of the variability in
plotting procedures, thus avoidiig overinterpretation of features seen in plots. Sim-
ulation bands or “envelopes” (A kinson 1985) are useful with probability plots for a
given data sel. An awareness of the differing variability across values of f or log is
also important; variance estimate:s derived from those for the Kaplan-Meier estimate
§(1) (sec (3.2,3)) provide guidar ce, as do pointwise nonparametric confidence limits
for S(/) or functions of §(r). S muitaneous confidence bands for S(f) can also be
constructed (e.g., Nair 1981, 19t.4), but they are rather complex and, given the infor-
mal nature of visual assessmen , do not offer much practical advantage for model
checking over the pointwise lim'ts,

Finally, we have graphed estiinates and presented probability plots in terms of sur-
vivor functions throughout (his rection. In some applications we may wish to graph
cstimales of’dislributioukfunctimxs, ﬁ(l) =] S‘(t)', this is of course immediate, and
since Var| ﬁ(r)‘l = Var[S(1)}], all of the methods previously considered extend easily
(o estimation of F(1).

3.3.2 Classic Probability Plo‘s

Historically, probability plotting procedures for uncensored or Type 2 censored uni-
variate data were developed in considerable detail and used extensively for analysis
in times when computational pc wer was limited (e.g., Barnett 1975; Nelson 1982),
We give a brief description of this classic methodology.

Probability plots in their most common classic form are used with location-scale
paramcter models. Suppose tha X is a random variable with distribution function
of the form Fpl(x — 11)/b], where b is a scale parameter and 1t a location parameter
(h >0 —00<u< co). Let xipy < X2y <+ < X(m) be the ordered observations
in « random sample of size n fiom the distribution of X. A classic probability plot
is a plot of the x(;y against quantities m; = }'-'0"I (a;), where a; is an expected value
retated o Fol(xqy — w)/b]. If the stated model is reasonable, the plot of the points
(x(iy. m;) should be roughly linzar, In fact, the points should lie fairly near the line
¥ = 1t - i, and thus estimates of # and /> can be obtained from the plot.

The «; are referred to as the plotting positions. The two most popular choices
arc g = (i —.5)/nand a; = */(n + 1). The former is motivated by the fact that.
the empirical distribution funct-on changes from (/ ~ 1)/n to i/n at x¢), so that
one can thifik of xgy as corresponding to something between the (i — 1)/n and { /n
quantiles. Taking (i —.5)/n, which is midway between these two values, and then
equaling x¢) and the (i —.5)/n cuantile of the distribution, we get Fo[(x(y —u)/b] =
(i —.5)/n = a;. The second ch»ice mentioned, a; = £/(n + 1), is motivated by the
fact that E{Fyl(Xjy—u)/bl} = i/ (n+1); this follows from the fact that the variables
Fol(X; — 1)/b] are Uniform(0, 1). Still another choice is a; = E([(X¢ —w)/bl},
provided that these quantities are available for.the distribution in question. For the
extreme value-distribution these were given by White (1969), and for the normal -
distribution by Sarhan and Gree1berg (1962), among others,
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To facilitate probability plots, special probability graph papers were constructed
for the more common distributions. These graph papers had a scale I_Jased on val}xes
of Fy 1(a), but were labeled with an a-scale, so that to effectively plot the points
[x@), Fr;” (a;)], one needed only plot the points (x(), a;). This saved the. tr(?ublfa of
computing Fy !(a). Probability papers for the extreme value and normal distributions
were particularly useful in ea;ly life distribution work; see Nelson (1982). Modern
computer graphics can now of course generate these plots. o .

The classic probability plots are described in terms of the distribution function
Fo(z) rather than the s.f. So(z) = 1 — Fo(z). However, it is easy to see that when th'e
data are uncensored or Type 2 censored, the probability plot of the points (3.3.4) is
precisely the same as 2 classic probability plot with positjons ai = (i‘ —.5)/n. To see
this note that in (3.3.4) we then have x; = X(j) and, as remarked in Example 3.3.2,
S;ld=_ 1= —.5)/n. Since S5 (1 = p) = Fg'(p) for0 < p <1, the stated result
holds.

Historically, there was also considerable discussioln about the pros and f:ons. of
different plotting positions (e.g., Barnett 1975), some of it directed at Fhe estimation
of u and b, There is no generally superior choice of position, and except for very
small samples, the choice has little discernible effect on diagnostic plots. The rnpst ,
comrnon practice is to use the positions a; = (i —.5)/1, which corresponds to using
(3.3.1) for general probability plots. We use these positions for plots throughout the

book,

3.4 ESTIMA'TION OF HAZARD OR DENSITY FUNCTIONS

3.4.1 General Remarks

Plots of the Kaplan—-Meier and Nelson—Aalen estimates of S(1) and H(1) prov?de
some indication of the shapes of the p.d.f. f(£) = —58'(t) and hazard f_unctlon
R(t) = H'(1). Itis sometimes desirable to plot nonparametric estimates f.(t) and
R(t), which give more direct impressions of the density and hazard functions. A
comprehehsive treatment of this area is beyond the scope of the book; some g_enerz.ll
discussion and an illustrative example is provided here. Precise nonparametric esti-
mation of density and hazard functions is inherently difficult, since they .represent
rates of change in probabilities. Nonparametric estimates give an impression of the
shape of f(t) or A (1), but it is usually unwise to infer too much about local curvature,
The estimates of densities or hazard functions are generally based on smoothing, and
various approaches have been considered. These include kernel density esti'mation
(e.g., Tanner and Wong 1983; Ramlau-Hansen 1983), penalized nonparametric max-
imum likelihood (e.g., O’ Sullivan 1988: Green and Silverman (994), local lilcfalihood
(e.g., Hastie and Tibshirani 1990 Loader 1999), and adaptive regression splines fit-
ted by maximum likelihood (e.g., Kooperberg and Stone 1992; Rosenberg 1?9:5).
Additional references to methodology and to software are provided in the Biblio-
graphic Notes and Computational Notes at the end of the chapter.
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+ These and other approache:: effectively take local averages (perhaps weighted)
of observations, discrete estimates, or functions thereof. This involves choices that
affect the degree of smoothing. For example, kernel-density estimates of a hazard
function A(t) based on a censored random sample are often of the form

’—t; bk
5 /1(tj). 3.4.1)

- 1 3
h(t) == E;w (

where, in the nolation of Section 3.2, #{ < -.- < 1 are the distinct observed failure
times in the sample, /;(t;') = ¢/;/n; is the increment in the Nelson—~Aalen estimate
B2 0N atth, h > 0is a specified bandwidth or window parameter, and w(x) is a
fully spccified p.d.f. that equals 0 outside the interval [—1, 1], (This estimate needs a
little modification for ¢ outside “he range (b, £ — b), but for simplicity of discussion
we ignore this,) The estimate (1.4.1) at ! is 4 weighted average of values Iﬂz(t)") for
/l' such that |t — r¥] < b, The smoothness of /1(t) depends on the shape of w(u)
and on b; the bandwidth 4 is m e important, with larger values incorporating more
observations r* iri the local average at 1, thereby giving a smoother /().

The amount of smoothing greatly affects estimates f(©) or i) and the visual
impression created by a plot, but the degree of smoothing to use for a given data set
is rather arbitrary, A low degree of smoothing tends to yield “bumpy” estimates with
considerable variation in local curvature, and such estimates are usually implausi-
ble. On the olher hand, a high degrec of smoothing, giving a smoother estimate, may
miss interesting features sugges-ed by the data. Software implementations often offer
automatic sclection of bandwidth or analogous smoothing parameters, but it is usu-
ally better Lo base decisions about smoothing on subjective notions about the shape

of the underlying /(1) or k(). and to examine estimates with varying degrees of

smoothness.

There are other difficulties vith nonparametric estimation of f () or h(?). Esti-
mation is imprecise in the tails of the distribution, and estimates of S(#) or H (¢)
implied by (1) or i(t) may not agree well with the Kaplan-Meier or Nelson—Aalen
estimates. In finite samples, est'mators f(t) or A(r) can be quite biased, since they
in cffect estimate some weighted average of f(¢) or 1(¢). For example, with b fixed
(3.4.1) does not estimate /1(t) consistently for large samples, but rather

R (1) = 5 u <——,£> h(u) du,
Jo g

Finally. in order to adapt to the : vailable data, it may be necessary to vary the degree
of smoothing for different 7. '

The next scction considers some simple procedures for the estimation of hazard
or density functions, and an illustrative example.
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34.2 Some Simple Procedures and an Example

Nonparametric estimation of f (¢) or h(¢) requires a reasonably large number of fail-
ure times. A simple and effective approach is to break the time axis into intervals,
estimate the hazard or density function at the midpoint of each (finite) interval, and
then smooth the estimates. Such procedures are sometimes criticized because of the
need to choose intervals and because estimates can sometimes be sensitive to the
choice. However, experience suggests that such methods are effective for practical
sample sizes, and one can examine estimates for different choices of intervals.
Consider the standard censored random sample of lifetimes, (4, &), = 1,...,m.
Letap =0 < a; <+ < @y = 0 partition the time nxis, and denote intervals
I =(@j-,aqylforj=1,..., k+1.Let d; and w; be the number of failure times
and censoring times, respectively, that fall into I}, and let n; be the number of ¢ (i.e.,
failure or censoring times) that exceedaj—;. For j =1,..., kletry; = .5(aj-1+aj)

" denote the midpoint of /; and Aj = a; — a1 denote the interval widths. For some

purposes, such as the consideration of frequency properties of estimates, the intervals
should in principle be specified independently of the data, but for purposes of data
description and visual examination there is little harm in choosing intervals with an
eye on the observed data, The number of intervals can depend on the number of
failure times, but it is preferable for each interval to contain at least several times.

In what follows, we focus on estimation of the hazard function 4(¢) for the under-
lying distribution. There are various ways in which one can estimate h(ty;) for
j=1,..., k: we mention three. The first is via

7 N~ H, i
Hyalaj) y Na(a; 1), P=1. ks (3.4.2)

f"(trrxj) =

- where I':INA (¢) is the Nelson—Aalen estimate (3.2.13). The estimate (3.4.2) is simple

and effective when k(¢) is close to linear over (a;—1, a;]. A second estimate, which
is-obtained as an m.l.e. under the assumption that 4 (?) is constant over each interval
j=1,...,kis (see Problem 3.8)

. d;
h(tmj) = : :
" Y (i —aj) +njed

hely

J=1.,k (34.3)

Finally, in some settings we may know the n;, d;, and w; values but not the exact
failure or censoring times; this is the life table setting discussed in Section 3.6,
whete estimation of parameters g; = Pr(T =< aj|T > aj-y) is considered., A
good estimate when censoring times tend to be uniformly distributed across 7; is
§; = dj/(n; — 5wy), and Problem 3.15 indicates that a reasonable estimate of
h(ty;) when (¢) does not vary too much over I; is

—log(l — §)

hi(tmj) = Y =Lk (3.4.4)
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A plot of the points (f, l?lt,,,j)) gives a rough idea of the features of A (¢). If
desired, standard errors or confiilence limits can be shown at each £, 1; standardﬁerrors
arc readily obtained for each of (3.4.2)~(3.4.4), or for functions such as log A (4,
which are preferable for constructing confidence intervals. For example, for (3.4.2) it
{ollows from the development o "the variance estimate (3.2.32) for the Nelson—Aalen
estimator that a variance estimae is

o~ L 8
Var[/ (tu))] = — _—
1| A? ,,g[:j PTAY

(3.4.5)

where 11 (f;) denotes the number of individuals at risk (i.e., alive and uncensored) just
prior to /;. The lﬁr(l,,,./) may be smoothed using some type of scatterplot smoother
(c.g., Hastie and Tibshirani 1991), Ch, 2) or a nonparametric regression fit applied to
the points (fn;, l;(t,,,',-)); this alle ws a smooth estimate /1(¢) to be obtained.

Estimales of f(#) can be ob:ained from estimates of /1(¢) and S(1), via f(¢) =
n(NS(1). Note that a sgmoth ertimate 71(1) produces a corresponding smooth esti-
male 5‘(1) = exp[- [(; h(u) du]. though as we discuss below, these estimates are in
soinc cases not very good. Tt is i1lso possible to estimate f(r) directly. A reasonable
cstimate of f(1,;) when f(¢) is roughly linear over /; is

” l§' o — S‘
f(’mj) = KM((j I)A‘ KM(aj), ,/"—'—-‘ ],‘.,,k
J

and an ad hoc approach to obtairing a smooth estimate f (¢) is to smooth these values
and then rescale the estimaté so it integrates to one.

Example 3.4.1.  The data bclow show the number of cycles to failure for a group
of 60 electrical appliances in a life test. The failure times have been ordered for
convenience.

14 34 39 61 69 80 123 142 165 210
a8 464 479 556 574 839 917 969 991 1064
1088 1091 1174 1270 1275 1355 1397 1477 1578 1649

1702 1893 1932 2001 2161 2292 2326 2337 2628 2785
281H 2886 2993 3122 3248 3715 3790 3857 3912 4100

41006 4116 4315 4510 4584 5267 5299 5583 6065 9701

There arc a substantial number f small failure times, and the data suggest that the
hazard function /() may be relatively high for small times, We will investigate this
by considering nonparametric estimates of i (¢).

_ Figure 3.11 shows a Nelson--Aalen plot of the data. An initial steep increase in
Hy (1) is suggested; but given its scale and short duration, this does not stand out
dramatically, We investigate /(1) by grouping the data as shown in Table 3.4, and
estimating the hazard function at the midpoints of the intervals represented in the
table. The table shows the values of nj, dj, Aj, ty;, and the estimate fl(t,,, i) given
by (3.4.2). The intervals were selected so as to have 5-10 failures in each (except for

g
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Figure 3.11. Nelson—-Aalen c.hi.f. estimate for appliance failure times.

Table 3.4. Grouped Appliance Failure Data and Hazard Function Estimates

i n, d A g 1,000 A(tuy) £,000 se(A(ty))
0-100 60 6 100 50 1.044 0.430
100-500 54 7. 400 300 0.344 0,131

500-1,000 47 6. 500 750 0.270 0.112
1,000-1,500 41 9 500 1,250 0489 0.166
1,500-2,000 32 5 500 1,750 0334 0.152
2,000-3,000 27 10 1,000 2,500 0.452 0,148
3,000-4,000 17 6 1,000 3,500 0.420 0.179
4,000-5,000 11 6 1000 4,500 0.737 0.330
5.000-6,000 5 3 1,000 5500 0.783 0.548
6,000-10,000 2° 2 4000 8000 0.375 —

the last two shown); the fnal interval (10,000, oc) has nb fai]ures and is not shown. ~

- Standard errors for the ﬁ(t,nj)’s are also given, and we note they are rather large;

standard errors for estimates (3.4.3) or (3.4.4) are slightly smaller‘ithan these. The

discussion of shape for h(¢) that follows is therefore necessarily tentative.

Figure 3.12 show the hazard values h(ty;) and some smootlj estimates /(1)
‘obtained from the points (fmj, A(tn;)). The first is a cubic smoothing spline (Green
and Silverman 1994), fitted using weights based on the variance estimates for the log
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Figure 3,12, Smoo h estimates of h(r) for applinnce failure time.

ﬁ(l,,,j)’s: these variance estimates are given by (3.4.5) divided by ﬁ(r,,,j)z, The S-Plus
2000 functioh smooth.spline with automatic selection of smoothing parameter was
used to obtain the estimate; otler scatterplot smoothers tend to give results similar
" {o this. Such procedures are nct able to accommodate the large estimate h(t,,, ) at
the first interval’s midpoint, A procedure that is better able to capture this behavior
is (o it a cubic regression splire. This is a function /(¢) that is smooth and piece-
wise cubic belween cut points, which are called knots; such models are discussed
in Section 4.2,3, Figurc 3.12 shows a “natural” cubic spline with internal knots at
= 100, 300 and 2500, and boandary knots at ¢ = 50 and 5500; the natural spline
is piecewisc cubic everywhere detween the two boundary knots and linear outside
them. The eslimatc portrayed in Figure 3.12 was obtained very simply by a weighted
least-square it to the data (y;, x;) with y; = l;.(t,,,v,-), Xj = tipj and the same weights
nsed for the smoothing spline fil. This procedure approximates the estimales ﬁ(t,,,j)
u)mtdcmhly betler,
" The regression splinc is essenlially a palametnc model, and the knot positions
usett here were chosen so as to capture features in the h(t,,,J) s shown in Figure 3,12,
Adaptive. regression spline procedures can also handle this quite well. Figure 3.12
includes n third estimate /(1) ob'ained by using the logspline software of Kooperberg
and Stone (1992), by way of illustration. This approach uses a selection procedure
for the nnmber of knats, and ut lizes the ungrouped data, It agrees rather well with
the regression spline estimate ¢btained from he grouped data, Kernel smoothing
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Figure 3.13. Smooth estimates and KM estimates of S(¢) for appliance failure time.

methods based on the ungrouped data (e.g., Tanner and Wong 1983) can also be
applied.

Estimates 10 that do not rmmxc the h(t,,. 1) values fairly closely can.yield estl-.

mates

H
§(r) = exp [.. f ) du] |
|

of the s.f. that do not agree well with the Kaplan—Meier estimate, Figure 3.13 shows
the Kaplan—Meier estimate s (t) and smooth estimates S derived from the esti-
mates of #(¢) in Figure 3.12, The smooth estimates mostly lie within pointwise non-
parametric confidence bands for S(¢) obtained from the Kaplan—-Me1e1 estimate, but
the regression spline estimates are considerably closer to S@).

- We conclude by mentioning that in Example 44.2 a mixture of two Weibull dis-
tributions is fitted to the data in this example.

35 METHQDS'FOR TRUNCATED AND INTERVAL CENSORED DATA

As described in Sections 2.3 and 2.4, lifetimes T; are often subject to left or right
truncation, and to interval censoring. This section discusses nonparametric estimates

" of S(t) in these cases.
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3.5.1 Left-Truncated Data

Scitings in which left-truncated lifetimes arise were described in Section 2.4, Follow-
ing the notation there, we assume that for each of  independent individuals a triple
(i, 17, 81) is observed, where u; is the left truncation time, #; 2 u; is a lifetime or
censoring time, and §; = 1(0) if 4 is a lifetime (censoring time). It is assumed further
that truncation is “independent,” so that (2.4.1) holds. Our objective is nonparamet-
ric estimation of S(¢) = Pr(T; = ), but as will become apparent, it is possible to
estimate only

S(1)
S (ttmin)
= SL(t; Hmin)

= Pr(T = t{T = tnin), (3.5.1)

t 2 dmin,

where tyin = min(iy, ..., #a).

The likelihood function bas:d on (i, f, 8), i = 1,....n is given by (2.4.2).
As noted in Section 3.2,1, estimation of the hazard function in the discrete-time
setling is essentially the same as when there is no truncation. The likelihood can
be wrilten in the same form (3.2.4) if we define n; = 3 I(u; <t < #), and the
m.l.e. of the hazard function at time / is then ft(t) = d; /n,, provided n, > 0, There
is. however, an important difference with the untruncated case. Since n; = 0 for
{ < imins (3.2.4) has no infornation about i(t) for r < umin. Consequently, we
canot estimate S(7) unless iy, = 0 (see (1.2,16)), but only S¢(t; tmin) of (3.5.1).
By (1.2.18) the estimalte is

t=1

Sutumin) = ] [1=HRO1. (3.5.2)

E=tmin

In the continuous-time setting we get the estimate

3‘L(t; Umin) = l_I (1 - ﬂ) y (3.5.3)

P ny
iy <t

where ,,',: < 12' < .-« < 1 are “he distinct observed failures times, d; = > I(f; =
r,“ & = 1), andry = 3 I(u = r;‘ < 1), The Greenwood-type variance estimate

dil(nj > dy)

5.
njn; —dj) G4

WY{SLU; Umin)} = -§L (t; Hmin)Z Z

o
j.lj <!

is obtained by the same approach as in Section 3,2.1. For reasons discussed in tie
following, it is necessary o include the factor / (n; > dj) in (3.5.4) and to define
0/0as 0,
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Other issues arise with left-truncated data. The n; are not mionotone decreasing
as they are for untruncated data, and it is possible to have times ¢ between imin
and max(#;) for whichn, =Y I(u; <t <4) =0. Strictly speaking, the likelihood
function has no information about k(¢) or & H (¢) at such points, but it is conventional
to ignore this and define dH(t) = 0, thus allowing estimation of Sy, (¢; #min). It is
also possible to have d; = nj forany j =1,..., k: with untruncated data this can
occur only at ¢}, the largest failure time, But if d; = nj, then dI:I(t}‘) = [, and in
(3.5.3) we have S.(t; umin) = O forallt > t}“. If this occurs for £ small (it is even
possible to have di = ny), then this estimate is usually quite implausible, and is not
very useful, o S : .

This pathological behavior of (3.5.3) is not uncommon when few y; are close to 0.
Often the best option is to recognize that the data have little informaltio'n about H (1)
close to ¢t = 0, and to select a new left truncation time u* > Umiy, Tetaining only
individuals for whom u; > u*. We can then estimate d /7 (¢) for t > u™ and Sg.(t; u*)
nonparametrically; under the independent truncation assumption, this selection of
individuals does not introduce any bias.

Other estimates than (3.5.3) are sometimes suggested, One approach is to adopt
a flexible parametric model such as a regression spline for h(t), or to smooth the
estimates dﬁ(r’.‘) = dj/nj as discussed in Section 3.4. Another is to estimate
Sp.(t: min) through the cumulative hazard function. Defining

!

Hy (¢ timin) = f dH®W), (3.5.5)

tmin

we have from the maximum likelihood development the Nelson—Aalen estimate

~ d;
Hp (45 smin) = Z _j:, (3.5.6)
Jutst fj
with associated variance estimate
— A )
Var{HL(t; umin)} = % (3.5.7)
jupst

An alternative estimate for Sz.(¢; umn) in the continuous-time case may be based on
the fact that Sz (f; tmin) = e€xp[—HL(¢; 4min)] for continuous models, suggesting

51063 wmin) = expl=HL (¢ tmin)]. (3.5.8)

This estimate does not drop to zero when d; = n;. Other alternative estimators
that have been proposed compensate for a lack of information through additional
assumptions. Neither they nor (3.5.8) are satisfactory in some situations, however,
and it is best to adopt the more severe lower limit u* > wmin discussed earlier,
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Confidence intervals for S; (f; tmin) Or Sg(#; u*) can be obtained by using any
of the approaches in Section 3.2, merely replacing S(#) and related estimates by
Sy (¢ umin) and related cstimates.

Probability plots to check parametric models cannot readily be linearized in
the case of truncated data. However, nonparametric and parametric estimates of
SL(f1 i) OF Hy (¢ thmin) are easily compared by plotting them on the same graph.
It is also possible to base probability plots on suitably defined residuals. Both
approaches are considered in the following example.

Example 3.5.1.  Example 2.4.2 presented a set of data on the lifetimes of the
brake pads on 98 automobiles, The lifetimes were actually estimated, and were sub-
ject (o left truncation because of the way the automobiles in the sample were selected.
We ignore (he cffect of estima:ion of lifetimes in this example. Table 2.1 shows the
(cstimated) lifctimes #; and truncation times u; (in thousands of km driven) for the 98
vchicles. Since imin = 7.0 we can estimate Sy, (z; 7.0) nonparametrically, Figure 3.14
shows the estimate (3.5.3) alo g with a parametric estimate based on a Jog-normal
distribution (1.3,10) for the lifztimes 7;; the m.le.’s for this model are 4 = 4.109,
§ = 0.421. It is reasonable tc assume that S(7.0) is effectively one (i.e., no brake
pads wear out before 7000 km Iriven), so 3,, (¢; 7.0) can be assumed to estimate 5(¢)
here. Figure 3.14 is labeled to -eflect this.

1.0

———" Nonparametric
....... Lognormal Model

SW0.5 “\1

0.0 ~

i i T I I
0 ‘ 40 80 120 160

t (kin +1000)

Figure 3,14. Nonparamct-ic tmg] log-normal estimates of S(¢) for brake-pad life.

T
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The log-normal model apparently fits the data well, but let usiconsider a prob-
ability plot anyway, to illustrate how left truncation can be handled. The simplest
approach is to employ a P-P plot by defining uniform residuals {for a parametric
model as

G

g = = i=1,...,n

Sy )
Since S(T}; @)/S(u;; @) is Uniform (0, 1), given u;, if the model S(¢; 6) is correct,
we plot as a model check the points (e(,‘),' (i —.5)/n), where &g is the ith smallest
among (&1, ..., ). The ey can be thought of as theoretical approximate U (0, 1)
quantiles and the values (i — .5)/n as sample uniform quantiles. Figure 3.15 shows

- the P-P plot with 6 = (4, 5) for the log-normal model; there is no evidence to

contradict the model.

Example 3.5.2. To illustrate the pathological behavior that can occur for a non-
parametric estimate of S(¢#) based on truncated data, let us consider the data in
Table 3.5. These consist of left truncation times, u;, and lifetimes, #, for 18 brake
pads similar to those in Example 3.5.1. In this case, the smallest lifetime is £} = 24.5,
with corresponding u; = 19.6. However, since all of the other truncation times u;
exceed 24.5, there is only this single unit at risk at # = 24.5, so in (3.5.3) we have

1.0
o ’
) co'
E ...u
5 05 .
= .
g
[x] .
%] et
004
T 1 T
0.0 0.5 1.0
U(0,1) quantile

Figure 3.15, Log-normal P-P plot for truncated brake-pad life data,
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Table 3.5. Brake-Fad Life () and Odometer Readings
(i) for 18 Cars

u f I t u t
19,6 24.5 44.6 46.9 26.2 59.3
0.7 53.8 48.8 6l.4 47.8 97.8
37.8 58.4 45,9 64,2 48.2 86.2
344 89.5 28,2 45,6 27.9 40.8
374 75.6 48.3 81.9 33,7 93.8
41.1 56.0 42,5 86.3 37.6 77.7

¢ Units are 1000 km,

dy = ny = 1, and the estimate of S,,(1; 19.6) is

2 <
o = ) 1995157
This is an unacceptable estimate. An alternative ad hoc approach, previously dis-
cussed, is Lo drop the first observation in Table 3.5 and to use the remaining 17 to
estimate S,(1; 26.2). The estimatz (3.5.3) for this is sensible, and if we were willing
to estimate $(26.,2) from other information (its value is certainly close to one), then
the unconditional s.t. S(¢) can al io be estimated. Note that in this setting the value
1, = 24.5 is unusvally low, and though we may not wish to consider it an extreme
outlier, estimating S(1) with and +vithout it included makes good sense.

3.52 Right-Truncated Data

Lifctimes T; may also be subject t right truncation, as described in Example 2.4.4.In
this case v; is a lruncation time such that individual { is observed only if T; < vy, Data
on n individuals consist of indeprndent pairs (¢, v;), where ¢ < v; is the observed
lifetime; little additional complication is created if we allow some lifetimes to be

left-censored, but this occurs rarely in practice, so we disregard it for now. We also’

assume that (runcation is indeperdent, so that Pr(T < t|v, T < v) = F@)/F),
where F(1) = Pr(T < t) is the marginal distribution function of T'.

With right-truncated data it is simplest to work with the distribution function of 7',
Qur objective, is to- eslimale F(: nonparametrically, but it is clear that all we can
estimate is

F(1)
———— = Pr(T 2 t|T < Vmax), (3.5.9)
F (Vmax)
=: Fp(t; Ymax) I = Vinax,

where Uy = max(vy, ..., vy). This is analogous to our Being able to cstimate
only (3.5.1) in the casc of left trurcation, In fact, there is a close connection with the
development in Section 3,5.1, because if we reverse the time axis, then lef( truncation
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becomes right-truncation and right censoring becomes left censoring. It follows by
analogy with (3.5.3) that the nonparametric Kaplan—-Meier estimate of F, R} Umax)
should be

Frt; vma) = | | ( *ﬂ>, (3.5.10)

j:t]>r nj

where t} < -+ < #; are the distinct observed failure times, d; = )_ [ (t = t}) and
ny=731(t <t} '< v;), The Greenwood variance estimate for Frit; vmax) 15, by
analogy with (3.5.4),

dil(n; > dj)

, 3.5.11
nj(nj—dj) ( )

Var( Fr(t; vmand} = Fr( vma0)? )
j:t}">!

where we interpret 0/0 as 0.

A direct derivation of (3.5.10) and (3.5.11) along the lines of the discrete-time
development of Section 3.2 is instructive. We define the “reverse time hazard” func-
tion Agr(t). = f(t)/F(t), where t = 0,1,..., and note that for any (¢, v) with
0<t <,

F(1) ~

= 1 —hpr€ 3.5.12

) H]‘L[ RT(0)) (3.5.12)

O ey T] 0= her @l (35.13)
@) =141

The likelihood function from n independent pairs (4, v;) is then

; 1 Fuw)
n Uy
=[]rert) J] (1 =her@®]
{2l €=t/+l
=T 1 hrr %[l = hpr O, (3.5.14)
t=l

where dy = Y I(t = 8),np = 2 It =t < ), and hgr = (hrr(1),...,
kg7 (Vmax)). Maximization of (3.5.14) gives ﬁRT(t) = d,/n,, provided nn; > 0, and
50 (3.5.10) follows from (3.5.12). The variance estimate (3.5.11) follows from max-
imum likelihood large-sample theory, exactly as in Section 3.2. Rigorous treatments
of the estimates in the continuous-time setting can also be given.
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The same remarks concerning; £-values where r; = 0 hold here as in Section 3.5.1.
Also, the same pathological bel avior as in the case of left truncation can appear in
(3.5.10). In particular, if at t’/“ wo have d; = nj, then I:“R (1) Vmax) = O forall t < t;‘.
This phenomenon tends to oectr when the v; are sparse near Umax, and one of the
approaches discussed for left-truncated data should then be considered. In particular,
since the data-are uninformative about d Hgr (f) near vmax., it may be wisest to adopt
a smaller right-truncation limit 1*, and to focus on F()/F(w*) = Fp(t; v*).

In terms of hazard functions, we are able to estimate nonparametrically

Ymax
Hp (15 vmax) =_/ dHgr (1),
f

the Nelson—Aalen estimate beiny

. d

At vaw) = Y =L, (3.5.15)
e ny
J"J >1

For model checking, plots of ﬁR (1 Umax) OF ﬁR(t; Umax) along with parametric esti-
maltes are useful,

Example 3.5.3, Kalbfleiscl and Lawless ( 1989) discussed data on the induc-
tion or latency time for the Acquired Immune Deficiency Syndrome, or AIDS. A
“diagnosis of AIDS follows infection with the human immunodeficiency virus, or
HIV. Brookmeyer and Gail (1994) provide considerable medical and statistical back-
ground on HIV and AIDS but, triefly, AIDS is a condition in humans attributable to
a breakdown of the body’s imm une system, and the HIV is a virus that is believed
to cause ATDS. The time between infection with the HIV and the diagnosis of AIDS
in an individual is called the induction time. It is highly variable, and can exceed 20
years; some infected individuals may indeed never be diagnosed with AIDS.

The definition of AIDS has changed since the first cases in North America were
diagnosed in the early 1980s, and treatments have been developed that can delay the
onset of AIDS. However, consicerable effort was expended in the 1980s on estimat-
ing the induction:time distribution for various types of individuals. This was made
difficult by the fact that for mos! persons infected with the HIV, the time of infection
was unknown. Kalbfleisch and Lawless (1989) considered data that were obtained
from persons diagnosed with AIDS and whose HIV infection came from a blood
transfusion on a known date. Therefore an induction time # and an infection time
x; were available for each indiv.dual, The data were derived from AIDS cases diag-
nosed prior to July 1, 1986, hovever, so this created a right-truncation time v; for
each individual, :

We sel up notation for the data as follows. We take as the time origin January
1. 1978, which is assumed to bt the earliest an HIV infection via blood transfusion
could oceur in North America. Let t represent the time (say in days) from January 1,
1978 to July 1, 1986, let x; reprzsent the time of HIV infection for individual /, and
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let 4; represent the AIDS induction time. Then, because only persons diagnosed with
AIDS by time T are included in the data set, it must be the case that ; < v;, where
v = T — x;, so the induction times are right truncated, as noted in Example 2.4.4.

Kalbfleisch and Lawless (1989) presented data on 295 individuals whose AIDS
cases were reported to the Centers for Disease Control in Atlanta, Georgia. Here
we consider a subset of 124 persons who were infected by December 31, 1985 and
whose ages were between 5 and 59 years at the time of HIV infection, The data
are given in Appendix G. Times were recorded in months, ignoring for conyenience
the fact that months vary in length, and infections were assumed to occur at the
midpoints of months, In the notation of (3.5.9) and.(3.5.10), Vmax = 99,5 months
and the observed induction times tf < ++- < t¥ range from 4 months to 89 mont‘hs.
Figure 3.16 shows the nonparametric estimate (3.5.10) of the distribution function
for induction time T, conditional on T < 09,5 months. Confidence limits are not
shown, but we note that standard errors for Fr (1} 99.5) based on (3.5.1 1) are rather
large, except for small £; for ¢ > 42 months, the standard errors exceed .10,

The unconditional induction probability F(¢) is inestimable from the truncated
data, but an estimate could be obtained for t < 99.5 months if there were an estimate
from other sources of F(99.5). A parametric model fitted to the data here would
also provide an estimate of F(t). This is considered in Example 4.3.3, where it. is
found that the truncation so limits the information about the parameters that precise
estimation is impossible.

1.0

T T T
0 . 30 60 90
t (months)

Figure 3.16. Estimate of conditional c.d.f, for AIDS induction Lime,
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3.5.3 Interval-Censored Data

In Section 2.3 we discussed inte val-censored data in which the responses are inde-
pendent paits (ug, ;). i = 1,,..,n, it being known that u; < Ty < vi. (An exactly
known lifetime is given by takirg u; = v;—.) When the individual lifetimes T; are
identically distributed with c.d.f. F(r), the likelihood function (2.3.1) becomes

== [ JUF () = F Q). (3.5.16)

i=l

This depends on F(¢) only through values at the observation times (u;, v;). To con-
sider this in a slightly different form, let 0 = sp < §1 <+ < §—1 < § = O
denote the distinct values in the set {0, 0o, uj, v; : | = 1,...,n}, with the conven-
tion that an exact observation ¢ is regarded as (¢—, ¢]. Let pj = F(sj) — F(sj-1)
and define a;; == T{{s;-1, 5;]1 € (i, 1]} Then (3,5.16) can be rewritten as

n

k - .
Ly =[] [Z i p,} , (3.5.17).
. —

=1

and to obtain 7 we must apparer tly maximize L(p) subject to the constraints p; > 0
and 3 p; = |, Some of the pjin the maximizer of (3.5,17) may equal 0. In fact,
it can be shown (Turnbull 1976) that #; must be 0 if s;—1 and s; do not correspond
10 somie 11; and vy, respectively. However, other j; may also be zero, Various algo-
rithms for maximizing (3.5.16) or (3.5.17) have been proposed. References are given
in the Bibliographic Notes at the end of the chapter, and the Computational Notes
discuss soltware,

Note (hat the maximizer of (3.5.17) assigns probabilities j; only to intervals
(s)=1, 8] Thus, if #j > 0, the distribution of the probability mass between 5,
and s; is unspecified. It is customary when plotting and summarizing the estimates
F (1) or §(#) to show them as constant over intervals where pj =0, and unspecified
over intervals (sj-1, 5] for which fij > 0, except at s;. Some software packages,
however, extend horizontal piec:s of S0 to produce a step function,

Example 3.5.4. Consider « simple artificial example in which there are five
observations: (0, 4], (3, 6], (8, 101, (9, oo, and [7,7]. Rewriting the ﬁqal, exact
observation as (7, 7] we obtain the intervals {sy_,s;] for j = I,..., 9, where

thus
L(p1y.... po) = (p1 + p2)(p2+ p3)(p7 + ps)(ps + po)ps,
but by the result tliﬁt = 0, unless §j—1 is some left endpoint u; and s is some right

endpoint vy, we have that only £3, s, ps may be nonzero. Maximizing L = P2pspi
- subject to p3 + ps + pg = 1, wz obtain pr=pg=.4 ps=.2

(56,8100, 89) =(0,3, 4, 6,7—,7,8,9, 10, 00). The likelihood function (3.5.17)is
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Table 3.6, Nonparametric Estimate from Interval-
Censored Data

Interval S
(0, 3] 1.0
(3,4] Indeterminate
(4,7] 0.6
(7.9] 0.4
(9,10] Indeterminate
(10, oc] 0.0

The estimate S‘(t) is shown in Table 3.6 and Figure 3.17. §illce the estimate
assigns probability only to the intervals (3, 4], [7, 7] and (9, 10], S(¢)'s value is inde-
terminate except at the endpoints of those intervals,

Asymptotic theory and confidence-interval estimation are problematic in general,
though standard results can be obtained if we assume that the set of interval endpoints
S§1,+.., 5 is finite and fixed as n — oo, Variance estimates and confidence inter-
vals can then be based on the inverse of the observed information matrix obtained
from (3.5,17), When confidence intervals are important an alternative approach is (o
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Figure 3.17. Nonparametric estimate of S(t) from interval-censored data.
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abandon nonparametric estimation and use a flexible parametric model, for which
standard maximum likelihood methods apply. Parametric models are considered in
Chapters 4 and 5.

Current status data, intro-luced in Example 3,2.3, involve the most severe form of
interval censoring. The interval within which T; is known to lie is either (0, C;] or
(C;, 00); such observations arise when each individual i is seen only at time C;, at
which point it is determined whether failure has already occurred (i.e,, T; < Cy) or
not (T; > C;). By the preceding arguments, the nonparametric m.l.e, of F(t) or §{r)
is defined at t = 0, t == oc, and the distinct points §; < §2 < +++ < §g—1, Which
are contained in {Cy,..,, C,}. The estimate in other words assigns probabilities j;
to the intervals (s;1,57], j = I,..., k, where sp = 0 and s = o0, Interestingly,

“there is a closed form for £ (1) in this case (e.g., Huang and Wellner 1997, p. 127):
forj=1,...,k—1 :

U U
F(s;) = max min (Z de/ ch> : (3.5.18) .

C==p e=n

where dp = 3 1(T; = Ci, Ci = s¢) and ng = 3 1(Cy = s¢).

Example 3.5.5. Nelson.(1982) and Meeker and Escobar (1998) give data from -

i study on the time 7 to the initiatlion (appeal'ance) of cracks in metal turbine wheels.
The data in Table 3.7 arc a sl ghtly modified version of the Nelson data, in which each
of 432 wheels was examined once to determine whether a crack had yet appeared.
Thus, for example; 53 wheels were inspected at time 10 (1000 hours), and four had
T < 10, and 49 had T; > (),

Table 3.8 shows the ncnparametric m.].e. for F(r), obtained from (3.5.18)
or, equivalently, maximizat on of (3.5.17). The values of I:“(t) are shown at the

Table 3.7. Current Status Data on Time to Crack .

Initiation
Inspection Number of Number of Wheels
“Time" * Wheels Cracked " Not Cracked- -
4 0 39
10 4 49
14 2 31
18 7 66
22 5 25
20 9 30
30 -9 33
34 6 7
3R 22 12
42 21 19
46 21 15

“In 100 hour uni s,
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Table 3.8, Nonparametric Estimate of F(f) for Wheel-
Crack Initiation

Interval N
(5711 571 by F(s)) se(F(s)))
0, 4] 000 0.000 .000
(4, 10] 070 070 027
(10, 14] .000 070 027
(14, 18] 026 .096 034
(18,22)] 071 167 068
(22, 26] 056 222 046
(26, 30} .000 222 ~ 046
(30, 34] 239 462 138
(34, 38] 120 581 057
(38,42] .000 581 057
(42, 46] .002 ’ 583 082
(46, 00 417 1.000 000

values s, which represent the distinct endpoints for the intervals of the form (0, C;]
or (C;, 00) within which values of T; lie; the estimate is indeterminate between
successive s ;. Note that four of the j5; equal zero, Standard errors are also shown for
each F (s 1); these are obtained from the asymptotic covariance matrix of the interval
probabilities ; based on the likelihood (3.5.17), with py, p3, p‘7 and pjo set equal

1.0 4

o o
= ©
i 1

Proportion Failing
1
£
1

0.2 ~

ot

T T T T T 7
0 10 - 20 30 40 50
Time

Figure 3.18, Nonparametric estimates of c.d.f. and .95 confidence limits for time to crack initiation.
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to 0, The asymptotic covariance matrix is determined from standard likelihood the-
ory as [, where 7(p) = (—8%log L/8pap’). This approach is ad hoc and these
standard errors and approximate .95 confidence intervals F(s;) & 1.96se(F (s)))
for F(s;) should be treated cautiously, Figure 3,18 shows the estimates F (s ) and
approximate .95 confidence :ntervals; the confidence intervals are rather wide.

In some seltings where te lifetime 7' represents the time between two events,
it may happen thut the times of both events are censorcd. This was referred to as
double ¢ensoring in Section 2.3.2, where it was noted that the likelihood function
(2.3.3) depends not just on the distribution of T, but on the distribution of the “initial”
event times. Nonparametric estimation of F(r) is possible in this setting (e.g., J. Sun
1997) and in more complicated settings that also involve truncation, The information
about F(1) is generally very limited, however, and fully nonparametric estimates
often have few points of in:rease and are highly variable. A generally preferable
approach is to usc a weakly varametric model such as described in Section 3,4. The
piccewise exponential (Section 1.3.8) is easy to use when estimates of F(¢) are the
main priority (e.g., Lindsey ind Ryan 1998). Joly et al. (1998) consider spline-based
methods.

3,6 LIFE TABLES

The life tablc is one of the ¢ ldest and most widely used methods of portraying life-
(ime data. The cohort life tasle discussed here has been employed at least since the
beginning of the twenticth c:ntury; population life tables used by demographers and
actuaries have been around « onsiderably longer.

The life table is primarily a device for portraying lifetime data for a sample or
cohart of individuals; in which lifetimes and censoring times are grouped into inter-
vals, In the situations consizlered in this book the cohorl is usually assumed to be
a random sample from som= population, and then the life table also provides esti-
males of the lifetime distribution in the population, The life table is more complex
than ordinary interval censoring, sirice for some individuals it is known that their
lifetimes were censored, but the censoring time is known only to lie in some interval.

There is a standard type of life table methodology, which we will describe first.
This is followed by some urderlying theory and discussion of other approaches.

3.6.1  Standard Life Tabl: Methods

Suppnsgthetimenxis is divided into k41 intervals [ = laj-1,a;),j=1..., k41,

with ag = 0, ax = L, and a; 4 = 00, where L is an upper limit on observation, The ~

definition of the 7; as open on the right and closed on the left is customary in life
{able methodology. For each member of a random sample of n individuals from some
population, suppose that one: observes either a lifetime T or a censoring time C. The
data are, however, grouped so that it is only known in which intervals particular
individuals died or were cersored, and not the exact lifetimes and censoring times,
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The data therefore consist of the numbers of lifetimes and censoring times falling into
each of the k + 1 intervals. In the case of the last interval, Ix4, it can be considered
that only lifetimes are in the interval, since all individuals not dead by time L must:
die sometime in 1. We now define the following quantities:

N; = Number of individuals at risk (i.e., alive and not censored)
attime a;.

Dj = Number of deaths in (i.e., number of lifetimes observed to fall into)
Iy =laj-1,a)) x

W, = Number of withdrawals in (i.e., number of censoring times observed
to fall into) I; = [ay-1, ay). '

The terms “at risk,” “deaths,” and “withdrawals” are commonly used with life tables,
though sometimes other terms are used, such as number of censoring times in [}
instead of number of withdrawals in /. The number of individuals known to be alive
at the start of /; is Ny, and thus Nj = n and

Nj=Nj.1 = Djy1 — Wy J=2,...,k+1.

Let the distribution of lifetimes for the population under study have survivor func-
tion §(z), and define the following quantities: '

P; = 5(a;)
pj = Pr (an individual survives beyond /;| they survive beyond /;.-1)
i,
= Fj——_l 3.6.1)
qy=1-p;

= Pr (an individual dies in ;| they survive beyond /;_1).

In(3.6.1) jrangesover 1,..., k + 1, with Py = 1. Note alsq that Pe+i = 0, gi41 =
1, and that '

L., k+ 1. (3.6.2)

Pi=pipa--py ]

This result, which is analogous to (1.2,8) for discrete lifetime distributions, gives
the probability of surviving past I; as the product of conditional probabilities of
surviving past intervals up to /;, and is the basis for life table methodology. Life table
analysis involves estimating the g; and p; of (3.6.1), and then via (3.6.2) the P;. It
is a precursor of, and the inspiration for, the product-limit estimator of Section 3.2.
The term life table refers to the format in which the estimates are portrayed.

The standard procedure is as follows: if a particular initerval /; has no withdrawals
init (i.e., W; = 0), then a sensible estimate of g; is §; = D‘,-/N‘}, since g; is the con-
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ditional probability of an indiv-dual dying in I}, given that they are alive at the start
of 1;. If, however, the interval has W, > 0 withdrawals, D;/N; might be expected
to'underestimate ¢;, since some of the individuals censored in /; might have died
before the end of /;, had they not been censored first, It is therefore desirable to
make some adjustment for the zensored individuals. The most commonly used pro-
cedure is to estimate g, by the so-called standard life table estimate, which is

g = o = DL (3.6.3)
Nj—W;/2 N

The expression (3.6.3) assumes that N; > 0; when N; = 0, there is no information
about ¢; fori > j. The denomi 1ator N;. = N; —.5W; can be thought of as an effec-
tive number of individuals at r'sk for (he interval /;; this supposes that, in a sense,
-a.withdrawn individual is at rick for half the interval. This adjustment is somewhat
arbitrary, but sensible in many situations, Its appropriateness depends on the failure
and censoring-time process, of course. In some instances other estimates of g; may
be prcferable. For example, if all withdrawals in [ occurred right at the end of /;, the
cstimate §; = D;j/N; would bz appropriate, whereas if all withdrawals occurred at
the beginning of I, §; = Dy /(N; — W;) would be appropriate. Still other estimates
are uscful on certain occasions we return to this point in Section 3.6,2, The present
scetion focuses on the standard life table estimate.

Once estimates §; and p; == | — §; have been calculated, P; can, by virtue of

(3.6.2). be estimatcd by
13j=/3|--~[3j J=1L00kk+ 1

The life table itself is a display of the data and the estimates §; and Isj. It generally
includcs colwmns giving, for eaxch interval, the values of Nj, D;, Wj, g, and ISj.
Additional columns are someti nes included, giving quantities such as N, p;, and,
occasionally, estimates of other characteristics of the underlying distribution. The
general formalt is exemplified in Table 3.9.

Example 3.6.1. Berkson and Gage (1950) gave data describing the survival

times from surgery of a group of 374 patients who underwent operations in connec- -

tion with a type of malignant disease, From these data the Iife table given in Table 3.9
has been formed. The intervals [; used in the table were chosen for convenience.

The estimates ¢;, j3;, and ]~5j are subject to sampling variation. Under suitable
assumptions It is possible to derive estimates of their variances, Details related to
this are discussed in Section 3.6.2; here we present the commonly used estimates,

which were suggested by Greenwood (1926). In this case §; ﬁj/Nj estimates the’

variance of §; (or /i), the 5; are asymptotically uncorrélated, and an approximation

to the variance of P; = fy -+ j; is then derived using Theorem B1 (Appendix B),

giving
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Table 3.9, Life Table Computed from Data in Berkson and Gage (1950)

Interval (7))

in Years Dy W, Ny N g, by P
[0. 1) 90 0 374 374, 0.241 0.759 759
[1,2) 76 0 284 284, 0.268 0.732 556
[2,3) 51 0 208 208. 0.245 0.755 420
3.4 25 12 157 151. 0.166 0.834 .350
[4,5) 20 5 120 117.5 0.170 0830 - .291
[5,6) 7 9 95 90.5 0.077 0.923 .268
[6,7) 4 9 79 74.5 0.054 0.946 254
[7,8) 1 3 66 645 0016 0984 250
[8.9) 3 5 62 59.5 0.050 0.950 237
[9, 10) 2 5 54 51.5 0.039 0.961 228
[10, o0) 47 0 47 47. 1.000 0.000 0

s g i

Var(B)) = P Z} VA (3.6.4)

j= i

In Example 3.6.1, estimates of quantities such as 5-year survival probabilities would
be of interest. In the example this is Ps = .291; the estimated variance of 135 given
by (3.6.4) is .0242. _ :

The estimates P; and variance estimates (3.6.4) have the same form as the
Kaplan—-Meier estimate (3.2.2) and the variance estimate (3.2.3), with N/ taking
the place of n;. Indeed, the Kaplan-Meier (or PL) estimate and (3.2.3) w'cre first
obtained by considering the life table estimates P, in the limit where k becomes
large and interval lengths approach 0. Confidence intervals for P; = S(a;) can be
based on the procedures described for §(¢) in Section 3.2.3, the simplest'approach
being to treat Z; = (Pj — Pj)/\/ar(lsj)l/2 as a standard normal pivotal quantity,

. It can be noted that (3.6.4) gives the usual binomial estimate for the variance of
Pj in the case in which there is no censoring, just as (3.2.3) does. To see this, note

that when there are no withdrawals, N/ =N; = nBi_j and N; p; = npiPiy =nb.
- Therefore (3.6.4) equals
T, . P2
A2 gi J 1= p J I I
=nhoon ; i n ; P P
_B(1-8) |
= (3.6.5)
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In forniing a life table, there is no need to make the intervals of equal length,
though it may be convenient tn do so. The number of intervals used depends on the
amount of data available and on the aims of the analysis. Certain statistical prop-
erties of the estimates are enhinced when the number of intervals is fairly large, as
described in the next section. On the other hand, if an easily comprehended summary
of the data is wanted, it may b: sensible to have as few as 8-10 intervals.

Lifc tables are primarily used with large bodies of data or when lifetimes and
censoring times are available ¢nly in grouped form. If exact times are available, then
cven with large dala scts it is often preferable to summarize data or estimate survival
probabilitics using PL estimatc s, An important point, discussed in the next section, is
that the validity of life table mathods depends on individuals who are censored in an
interval having the same lifeti ne distribution over the interval as those who are not.
‘This is related to carlier discussions concerning interval censoring in Section 2.3.1,
and is a concern in some settit gs.

Let us now consider some underlying theory for life tables.

3.6.2 Theory for Life Table Methodology

The theorctical analysis of life. methodology requires assumptions about the censor-
ing process. The situation is analogous to that for interval censoring, discussed in
Section 2.3.1, With life tables, however, the intervals are usually fixed, but censor-
ing times occurring within intervals is the norm. This makes the censoring process
nonignorable, except in very special circumstances.

Let us start by considering the special case where all censoting or withdrawals
occur at_the ends of intervals /;; this also includes the case where there are no
withdrawals at'all, The obse ved data from a cohort of n individuals consist of
Dy, Wi, ..., D, Wi, with Dy = Npyy =n—=D1—Wi—-- + = Wg. This is formally
the same as the setup-for right censoring in a discrete-time model, discussed in Sec-
tion 2.2.2, and as in (2.2.9) wc have the decomposition of Pr(Dy, Wy, ..., D, Wi)
as

k
T PriHG) PrW Dy HGY), (3.6.6)

J=1

where H(j) = (D), Wi, ..o, Dy Wosg), with (1) empty. To proceed further we
assume that for j = 1,....k

Pr(D;IH(/)) ~ Binomial(N;, g;). 3.6.7)

This is analogous to assumption (2.3.2) plus independence of individuals in the
case of interval censoring, ard it says that the distribution of Dj, conditional on
the deaths and withdrawals up to a;—, is precisely as if there were no censoring
process. The assumption (3.6.7) thus says that the censoring process is independent
and hence-ignorable. It is not reasonable when withdrawals can occur anywhere in
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I; = (aj-1,a;], as we discuss below, but is reasonable under the special scheme
being considered here. :

Maximum likelihood proceeds as for discrete-time models in Section 2.2.2,
If the terms Pr(W;|D;, H(/)) do not include information about the paramelers
g1, ... g then they can be dropped from the likelihood given by (3.6.6) and (3.6.7)
to give

k
N
Lagi....q0) =[] (D{)qj”f(x —gpNi=Ps, (3.6.8)
J=t N

The m.l.e.'s are easily found to be §; = D;/N;, and the information matrix 1(q) is
diagonal with entries :

D N;j—Dj
I(Q)jj='—zj-+“—'—“*( i)

g7 =gp?’

j=1,...,k

The expected information matrix can be obtained by using conditional expectation,

I(q)y; = En, E{L@)IN))
E(Nj)
2 ——— 3.6.
q;i(1-—gqj) 669 :

‘Either 1(§)~! or Z(§)~! with E(N;) estimated by N; gives an estimate of the

asymptotic covariate matrix for § as diagonal with entries

G;(1—-4g;)

Asvar(§)) = (3.6.10)
N
Since P; = (1 —q1) - (1L —gq;), we get
i, -
Cooar( P 5 qi
Asvar(B)) = P?Y — T —— (3.6.11
N=F Y mam :

by straightforward application of the formula (B2) in Appendix B. This is the same
as (3.6.4) in this case. ’

Asymptotics assume that E(N;} — coasn — cofor j = 1,..., k. Some small-
sample calculations are possible, given the withdrawal mechanism; we note only that
E(4)) = qj if Pr(N; > 0) = 1, which follows from the fact that E(G;IN)) = gy
if N; > 0, and that the 4y are uncorrelated. The latter follows from the fact that if
i>¢,

E{(e — qe)(d; — g)] = E[(Ge — qe) E{(G; — g)IH(N)T = 0.

‘Consider now the general case, where withdrawals may occur throughout the
intérvals I;. In this case, withdrawals operate as a competing risk for death, as
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described in Section 1.5, and it is not possible to avoid modeling the withdrawals pro-
cess. The standard life table methods of Section 3.6.1 were developed heuristically,
50 it is of interest to examine their properties under plausible models, In addition,
modeling may be used t» suggest alternative procedures.

Assume that the underlying distribution of lifetime, T, is continuous with s.f.,

S(1), and hazard functicn, &(¢). I an individual is alive and uncensored at aj_1, we
assume that the hazard function for death that operates over (a1, aj] is h(t). This
assumption is unverifiable using only data D,. W; (j = 1,..., k) and must be based
on background knowledge about the censoring process. Even with this assumption,

(3.6.7) does not hold, however, since an individual may be censored in /; before they
can be observed to die. Ve can view this as a competing failure-modes problem (Sec-
tion 1.5), where Lhere is a mode-specific hazard function, /1w (¢), for withdrawal, as
in (1.5.2), We make the ndditional assumption that the death and censoring processes
operate independently o ser 1}, given survival to a;—1, 50 that /2(¢) is the hazard func-
tion for mode death,

Braslow and Crowley (1974) investigated the standard life table methodology
under such a random censorship model. They considered the special case that each
individual 7 = 1,....n has a random censoring or withdrawal time, C;, with
w0, G, with Ty, ..., Ty, Cyy ..., Cy mutually independent, We will outline their
results.

Let rrl."’ be the probability an individual is observed to die in /; and let n'jw be the
probability they arc obsirved to be withdrawn, For example,

n,D = Pr(.n individual dies inlyand is observed to do s0)

=Pr(li2a.Ti £Cp)

a
/ I G(x)|dS(x)|.
J0

We find in general thatfor j = 1,..., k

)
nf = G(x)dS ()]
T

/ a/
n,}! =/ S()|dG (X)),
aj-1

where for generality we use Riemann-Stieltjes integrals, Since D = (D, Wy, ...
Dy, W) is multinomial, it follows that as n — co, the distribution of n"/Z(D
nar) converges to a multivariate normal chstnbutlon with mean 0 and covariance
matrix ) = clidg(zrl S ]H" .. nk ;) — 7’ (e.g., Bishop et al,, 1975, p. 470). The
standard life table estimtes 4; = DJ/(NJ — .5W;) are smooth functions, and hence
the distribution of /r({j — q*) also converges to a multivariate normal distribution
with mean 0 and covarance matrix Zq, say, where § = (G1.....4) and q* =
(¢}, ... qp) is the probability limit for q in large samples. Since

A

/
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i Dj/n
Nj/n—W;/2n
it follows that
4 = ““ff’v‘“
n'j —-Jr, /2
wheren' E(N_,/n) G(aj-1)S(aj-1). Thus
gt = ( / j" G(x)IdS(X)I> / (G(aj—l)S(aj-l)“'% / j’ S(x):dc(xn).
- —t
(3.6.12)

In geneial qj does not equal

_ S(aj-1) — S(aj)
=TS

so the standard life table estimate (3.6.3) is not a consistent estimate of ¢; and
Pj = py .-+ pj is not a consistent estimate of P; = py - -+ p;. Animportant practical
question is whether the asymptotic bias in the estimates is sufficiently small to render
this inconsistency relatively harmless. It appears that this is in fact the case in many
situations, as we shall see momentarily.

The entries in the asymptotic covariance matrix Zq of q can be determined by
a straightforward application of the multivariate delta formula (BS) Using this (also
see Problem 3.16), we find that Z is a diagonal matrix, and hence ¢, and g¢ (/ # £)
are asymptotically uncorrelated, JUSt as in the model with censoring only at interval
endpoints. The asymptotic variance of v/n(§; — q”") turns out to be

. Y=g —-7rW/4)/(7r —n}/2)]
Asvar [ﬁ(q, —q;f] ' i = /21 (3.6.13)
alN —n¥ 2
J i
The life table estimate of Vﬁr(éj) used in (3.6.4) is
Y
— qj —4q;
Var(§)) = 5 L, (3.6.14)
J

and is based on the heuristic replacement of N; with N’ in (3.6.10). If ¢; and q,
are not too different, this tends to overestimate the true v'\nance somewhat, since
N',/n converges in probability to the denominator of (3.6.13), and the term in square
brackets in (3.6.13) is less than unity. If ¢; is small, the second terms in (3.6.13) and
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(3.6.14) are small relative to the first and the agreement between the two formulas is

improved. . - .
The limiling distribution ¢ f the /1 (P; — Pj) is multivariate normal, with means,

variances, and covariances thit can be determined by (B5). LetP = (Py,...s fk) and
Po= (P P, where P o= pypithe limiting distribution of y/n(P — P*)
is multivariate normal with miean 0 and a covariance matrix whose (j, £) term is, for

=

L varl/n@Gi —qt
PI“P("‘Z ar[\/ﬁ(q qr)]‘ (3.615)

—
i=1 (I=g)

Putting j = ¢, using (3.6.14:, and replacing P} and g with B; and §;, we get from
(3.6.15) the estimate

L Gi—gf
Gar(P) = P2y Ll
(P ="F; ,.;(wq,-)w;

1
i=

RS

i
pi

=~JZZN

1

-

which is Greenwood’s formuila (3.6.4).
Broadly speaking, the standard life table estimates are acceptable under random

independent censorship provided that censoring is fairly evenly distributed across.

individual intervals and not 0o heavy, It helps if the intervals are not too wide. Itis
nevertheless wise Lo remember that estimates of survival probabilities are generally
biased; as is the variance estinate (3.6.4). Alternative variance estimates can be based
on (3.6.13), with ¢, N;/n, and W;/n estimating q5 7, and JTJW, respectively.
The guidelines suggestec by the randam-censorship model given earlier should
also be reasonable under broader conditions in which censoring within an interval,
1;. is independent of lifetimes, conditional on being alive and uncensored at the start
of 1;. TF censoring and failure are not more or less uniform over the interval 7, an

estimator othér than (3.6.3) 1nay be preferred; examples are when withdrawals occur.

mainly at the beginning or the end of an interval. If we have some idea of the shapes

of the hazard functions for death and censoring in 1;, then this may provide some.

guidance, following essentizlly the same analysis as for the random censoring model,
Chapler 9 on competing rist s contains further information,
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The PL estimate $(t) of. a survivor function from right-censored data was consid- L
ered in the actuarial literature in the early 1900s, but the modern treatment began

with Kaplan and Meier (1958). They obtained S(z) as a nonparametric m.le. and

gave several fundamental results. Large-sample properties were considered by Efron
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‘ (1967), Breslow and Crowley (Al 974), Meier (1975), Peterson (1977), and Winter et

al. (1978), and discussions of S(¢) as an m.lLe. were given by Aalen and Johansen
(1978), Johansen (1978), and Scholz (1980). ' )

The Nelson-Aalen estimate H (¢) was introduced independently by Nelson (1969)
and Altschuler (1970), the latter for the competing risks setting. Aalen (1976,
1978a,b) introduced the estimate for intensity functions in Markov counting pro-
cess models and began the modern study of H () and S(f) by martingale methods.
Watson and Leadbetter (1964a,b) considered an earlier version of *hazard analysis.”

The early work on S(t) and H@) provided methods of confidence interval esti-
mation based on asymptotic standard errors; methods based on (3.2.19) have been
used for a long time, and empirical studies have been carried out by Link (1984), Bie
et al. (1987), Klein (1991), and others. The idea of using the likelihood ratio statistic
(3.2.22) to obtain confidence intervals for S(¢) is due to Thomas and Grunkemeier
(1975); see also Matthews (1988). Brookmeyer and Crowley (1982) discussed the
method of obtaining confidence intervals for quantiles given in Section 3.2.3. Nair
(1984) and Hollander and Pena (1989) review the construction of confidence bands
for S(z). Estimation of mean lifetimes from censored data is considered by Yang
(1977), Susarla and van Ryzin (1980), and Gill (1983), The use of the nonparametric
bootstrap for right-censored data was introduced by Efron (1981), and this provides
an alternative way to obtain confidence intervals; Davison and Hinkley (1997, Ch.
3) and Strawderman and Wells (1997) review this area. Bayesian nonparametric esti-
mation of survivor and cumulative hazard functions has been considered by Susarla
and van Ryzin (1976), Kalbfleisch (1978), Ferguson and Phadia (1979), and Hjort
(1990b). -

There is by now a large literature on theory associated with the Kaplan-Meier and
Nelson—Aalen estimators, Detailed reviews and references are provided by Fleming
and Harrington (1991) and Andersen et al. (1993).

Probability plots of censored lifetime data were once widely used for estimation
as well as for description and model checking; Barnett (1975), Nelson (1982) and
D’Agostino and Stephens (1986, Ch. 2, p. 11) discuss classic probability plots. Cox
(1978) and Cleveland (1985) consider some general aspects of graphical methods.

© Gentleman and Crowley (1991) discuss various aspects of graphics with censored

data.

Nonparametric estimation of hazard functions using smoothing methodology was
introduced by Watson and Leadbetter (1964a,b) and Rice and Rosenblatt (1976).
They used kernel smoothers, and this work was subsequently extended to handle
censoring by Ramlau-Hansen (1983), Tanner and Wong (1983, 1984, 1987) and Yan-
dell (1983). Andersen et al. (1993, pp. 324-326) survey more recent work on kernel
methods, Penalized maximum likelihood methods featured in Section 3.4 were intro-
duced by Anderson and Senthilselvan (1980); see also O"Sullivan (1988). Regression
spline methods are considered by Kooperberg and Stone (1992), Abrahamowicz et
al. (1992), and Rosenberg (1995). Efron (1988) and Muller et al. (1997) look at

smooth hazard estimates from grouped data. Bacchetti (1990) and Tutz and Pritscher -

(1996) use penalized likelihood and kernel estimation, respectively, for estimation of
discrete-time hazard functions.
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Kaplan and Meier (1958) discussed the extension of the PL estimate to handle
left truncation, and Lynden-Bell (1971) discussed right-truncation, Theoretical prop-
erties were studied subsequently by Woodroofe (1985), Wang et al. (1986), and Kei-
ding and Gill (1990). Tsai (19¢'0) and Kalbfleisch and Lawless (1991) discussed tests
for the independent truncation assumption. Efron and Petrosian (1999) consider data
that are simultaneously left and right truncated. Nonparametric estimation of the
survival function from interval-censored data was considered by Peto (1973) and
Tumbull (1976), who considcred both truncation and interval censoring (see also
Frydman 1994). Groeneboor and Wellner (1992), Gentleman and Geyer (1994),

Bohning et al. (1996), and V/ellner and Zhan (1997) discuss computational pro- -

cedures and propertics of the nonparametric estimator. Huang and Wellner (1997)
review the area, and Lindsey and Ryan (1998) discuss practical matters, including
regression modeling, The special case of current-status data has received consid-
erable additional attention. Jewell and Shiboski (1990), Diamond and McDonald
(1992). Keiding (1991), and Croeneboom and Wellner (1992) discuss examples and
numerous results; Jewell and van der Laan (1997) review this topic. Problems involv-
ing double censoring have beun considered by J. Sun (1995, 1997), Jewell and van
der Laan (1997), and others. Alternatives to strict nonparametric estimation are often
attractive with interval censoring. Approaches such as those mentioned in Section 3.4
have been considered by Tanner and Wong (1987), Bacchetti (1990), Keiding et
al, {1996), Joly et al, (1998), Lindsey and Ryan (1998), Kooperberg and Clarkson
(1997). Betensky ct al. (1999) and Duchesne and Stafford (2002).

In some applications censoring times may be missing for some or all individuals
whosc lifetimes are censored, :n which case there may also be supplementary follow-
up of certain individuals. Suzvki (1985ab, 1995), Kalbfleisch and Lawless (1988ab),
Hu and Lawless (1996), and Hu et al, (1998) discuss this area. See also Problem 3.11.

The life table methods of Section 3.6.1 date from the 1600s, with considerable
theoretical development in the 1900s (see, e.g., Namboodiri and Suchindran 1987).
The variance estimate (3.6.4) for estimators of survival was given by Greenwood
(1926), Theoretical studies in::lude those of Littell (1952), Kuzma (1967), Breslow
and Crowley (1974), and Drolzttc (1975). Alternative estimators, designed to reflect
specilic types of withdrawal patterns within life table intervals have been considered
by Sacher (1956), Elveback (1958), Chiang (1960a,b), and many others. Compar-
isons of methods (e.g., Bland:-Johnson 1977, Johnson 1977) suggest there is little
differcnce among the various estimators unless withdrawals are rather heavy. Elandt-
Johnson and Johnson (1980) provide a detailed treatment and references on life table
methodology,

COMPUTATIONAL NOTE3

Several packages provide inferences and plots based on the Kaplan-Meier and
Nelson—-Aalen estimates; in S-Plus see function survfit and in SAS, the LIFETEST
procedure, S-Plus function kaplanMeier handles interval-censored data, though the
S-Plus 2000 version occasionally returns a point that is not the m.l.e.; this occurs
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with the data in Example 3.5.5. Plots of $(¢) are also portrayed as step functions,
without an indication that the estimate is undefined over certain intervals, Left trun-
cation is not handled by the S-Plus 2000 functions mentioned, but function coxph can
be coerced to handle this, Therneau and Grambsch (2000, Ch. 2 and Appendix A)
and Venables and Ripley (1999, Ch. 12) provide useful information on S-Plus capa-
bilities; the former also discusses survival methods in SAS, Collett (1994, Ch, 11)
provides a review of software for survival analysis.

Software for obtaining smooth estimates of hazard or density functions from cen-
sored data is available on Web sites such as statlib. In addition, S-Plus has a variety
of smoothers and spline functions that can be adapted as in Section 3.4.

PROBLEMS AND SUPPLEMENTS

3.1 The data below are remission times, in weeks, for a group of 30 patients with
leukemia who received similar treatment. Asterisks denote censoring times.

1,1,2,4,4,6,6,6,7,8,9,9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45",
50*, 57, 60, 71*, 85*, 91, '

(a) Obtain and plot the I{aplan;-Meier estimate S(¢) of the survivor function
for remission time.
(b) Obtain approximate .95 confidence intervals for the median remission time
and for the probablllty that remission lasts over 26 weeks.
(c) Plot log(~1log $(£)) and log A (¢) on the same graph, where H (t) is the
Nelson-Aalen estimate. Is there much difference?
(Section 3,2)

3.2 The data below show survival times (in months) of patients with Hodgkin’s dis-
ease who were treated with nitrogen mustards (Bartolucci and Dickey, 1977),
"Group A patients received little or no piior therapy, whereas Group B patients
recetved heavy prior therapy. Starred observations are censoring times,

Group A 1.25, 1.41,4.98, 5.25, 5.38, 6.92, 8.89, 10.98, 11.18, 13.11, 13.21,
16.33, 19:77, 21.08, 21.84*, 22.07, 31.38*, 32,62*, 37.18*, 42.92.

Group B 1.05,2.92,3.61,4.20,4.49,6.72,7.31,9.08,9.11, 14.49", 16.85,
18.82%,26.59*, 30.26%, 41.34*,

(a) Obtain and compare Kaplan-Meier estimates for the two groups. Does
there appear to be a difference in the I-year survival probability for the
two types of patients? Give confidence limits for S(1) and for the median
survival time ¢ 5p for each group.

(b) Use plots of the Nelson~Aalen estlmate H (¢) to examine and compare the
two life distributions.

i
|
|
|
|




&

SOME NONPARAMETRIC AND GRAPHICAL PROCEDURES

(©) Do any parametric models whereby one might compare the two distribu-

tions suggest themselves?
(Sections 3.2, 3.3)

3 Precision of nonparametri : estimation. Consider the random censorship model
and the asymptotic variance formula (3.2.33). Use this to examine the asymp-
totic variance v, (1?2 of \/??[(S‘(t) — S(1))/S ()] when S(¢) = exp(—1) and the
censoring time C is uniformon (1, 3). Plot v, (¢) vs. t for0 <t < 3.

(Section 3.2)

Consider the data given in Example 1.1.5 of Chapter 1 concerning the failure
times of electrical insulation specimens subjected to a constant voltage stress.
Make Weihull probability plots of the data for the experiments run at 28, 30,
and 32 kV, respectively.

" (a) Does the suggestion o°a Weibull failure time distribution for each situation
‘with (he shape parameters, but not the scale parameters, having the same
value in the three cases seem plausible?

() Compute graphical estimates of parameters in the Weibull models and
compare the estimated s.f. from these with the empirical s.f.’s (PL esti-

mates).
(Section 3.3)

Pike (1966) ‘gave results of a laboratory experiment in which 19 female rats
were palnted with the cacinogen DMBA. The number of days T until the
appearance of a carcinorra was of interest, and the data gave the following
limes (asterisks denote censoring limes):

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246,
265,304, 216*, 244" '

(a) It _whs tho'ughl that circinomas could not appear before some threshold

time y > (), so a Weibull model for T/ = T — y was considered. Give

" (wa Weibull probabilizy plots, using (1) the raw data (z-values), and (2) the

values ¢/ =t — 100, Tr: there any strong indication that T — 100 is closer to
Weibull-distributed than is 77 ‘

(b) Obtain a nonparametric .95 confidence interval for the median time to car-

cinoma, 1.s9. Comment on the advantages zmd: disadvantages of this esti-

mate over one based on a Weibull model.
(Sections 3.2, 3.3)

Mean lifetime, Consider the mean lifetime . restricted to 7, defined by
(3.2.37) in Section 3.2.4, »nd the associated estimate Jiz.

{a) Using the results in Seiction 3.2.4, show heuristically that o/n(fir — i) is
asymptotically normal with variance given by (3.2.38).
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(b) Use the result of part (a) to motivate the variance estimate

Ald,
nj (nj— d;) !

Var(ie) =

Jiysr
where
Aj=(tj41 — )80 41) + (a2 — )8 (tjg) +oor (T - )80,

with #,,, being the largest observed lifetime less than or equdl to .
(c) In the special case in which there is no censoring possible, let T — oo and
show that i = [ reduces to £'= 3_t;/n and that (3.2.38) reduces to
o? = Var(;), where it is assumed that Var(t;) exists,
) ’ (Section 3.2; Kaplan and Meier, 1958)

3.7 Mean residual lifetime. Recall the definition of the mean residual life function

m(t), given in Problem 1.1. Its estimation is of interes in areas such as demog-
raphy and insurance.

(a) Show that if E(T) = m(0) exists, then it equals [7° S(¢) dt, and that m(t)
exists for t > 0 if m(0) exists.

(b) Assume that S(¢) = O for ¢ > M, where M is some upper limit on lifetime.
Describe a procedure for nonparametric estimation of m(¢), fora specified
value 1 > 0. Use the results of Problem 3.6 and Section 3.2.4 to provide
confidence intervals. For convenience, assume that if (he largest time in
your sample is a censoring time, then it is always greater than M. ‘

C (Section 3.2)

o 38 ' Piecewise exponential models, Consider the piecewise exponenéial model spec- -
ified by (1.3.25) in Section 1.3.8. i

(a) Write down the likelihood function for the parameters Ay} ..., Am, based
on a sample of failure times and censoring times obtained under an inde-
pendent censoring mechanism. Estimate /(¢) and S(f), showing that the
estimate of An, is given by (3.4.3), What does the estimate of S(¢) tend to
as m increases and the |a; — a;-1} in (1.3.25) become small?

(b) Apply this to the data in Problem 3.1 using intervals of length 5 in (1.3.25),
except with the last interval being [80, co). Compare §(t) graphically with
the Kaplan-Meier estimate. Repeat the procedure using intervals of length
luptot = §0.

(Sections 3.2, 3.4)

3.9 Let Xy be the /th-order statistic in a random sample of size nn from a continu-

ous distribution with p.d.f. f(x) and let x,, denote the pth quantile of the dis-
tribution (0 < p < 1), Letn — co and { — oo in such a way that i/n — p.
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Show that in large samples X¢) can be considered to be approximately nor-
mally distributed with mean xp and variance

pU = p)/ [nf(x,,)z] .

What are the implications > this with regard to variation in classic probability
plots? .

(Section 3.3, Appendix B)
For the pulmonary exaceration data of Example 3.2.4, apply the methods of
Section 3.4 to obtain nonparametric estimates of the hazard functions for the
two (reatment groups, ignoring the fev covariate. See Appendix G to obtain the

data.. -
(Section 3.4)

Missing censoring times. ‘n some applications the censoring times C; for cen-
sored units are missing. That is, we observe T; = 1; if & = L, but (= C)) is
missing if & = 0. Suppore that the independent random censorship model of
Section 2.2.1b holds, so that the likelihood function takes the form

L[] Fan Pren > '™, (3.7.1

=1

(a) Assuming that the s f. G(c) for the C; is known, consider the discrete-
time framework whee T and C can take on values 1,2,3,.... Let cmax =
suple : G(e) > 0] be finite. Show that (3.7.1) is maximized for { f{£),r =
[T (O =3 0} by

coy .
7= o (3.7.2)

where d; = Y It = 1,6 = 1). This also maximizes (3.7.1) subject to
Yo f() < Lif3y S < L.

(h) Motivate (3.7.2) us ¢ moment estimator by considering E (dy). Obtain the
vardance of F(1) = fF(1) + -+ F() by noting that (dy, ..., d) follows

a muitinomial distribution,
(Section 3.2, Hu et al, 1998)

3.12 For the left-truncated data in Table 3.5, estimate and plot the conditional sur-

vivor function S(7|T = 16.2) by dropping the first pair (nj, 1) = (19.6, 24.5)

from the data.
(Section 3.5.1)

3.13 Finkelstein (1986) and l.indsey and Ryan (1998) discussed interval-censored

data from a study of patiznts with breast cancer. The response variable of inter-
est was the fime, T, to cosmetic deterioration of the breast, and whether there
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Table 3.10. Interval Censored Times to Cosmetic Deterioration

Radiotherapy Radiotherapy and Chemotherapy

(45, o0] - (25,37] (37, 00] - (8,12] (0, 51 (30, 34]
(6, 10] . (46, 0] (0, 51 (0,22] (5, 81 (13, 00]
0,7 (26, 40] (18, 00] (24, 31] (12,20] (10, 17]
(46, 00] (46, 0] (24, 00] (17, 27] (11, 00] (8, 21]
(46, 0] (27, 34] (36, 00] (17,23] (33, 40] (4,9]
(7, 16) (36, 441 (5,11] (24,30] (31, 00] (11, 0]
(17, 00] (46, 00] (19, 35] (16, 24] (13,39) . (14,19]
(7, 14] (36, 48] (17, 25] (13, 00] (19, 32] 4, 8]
(37, 44] (37, 00] (24, o0] (11,13] (34, o0l (34, o0l
(0,81 (40, o0] (32, c0] (16, 20] (13, 0] (30, 36)
4,11] (17, 25] (33, c0] (18, 25] (16,24] (18, 24]
(15, 0] (46, 0] (19, 26] (17, 26) (35, 00] (16,60]
(11, 15] (11, 18] (37, 09] (32, 0] (15, 22] (35, 39]
(22, 00 (38, o0] (34, 00] (23, o0} (L, 17 (21, 00]
(46, c0] (5,12] (36, 00] (44, 48] (22, 32] (11, 20]
(46, o0] (14,17] (10, 35] . (48, 00]

i

|

i

]
was a difference in the distribution of T for women who received radiation
therapy alone versus a combination of radiation and chemotherapy. The data
are shown in Table 3.10 for the two groups.

Obtain and compare nonparametric estimates of the survivor function S(¢) for

each group.
(Section 3.5.3)

3.14 The following data are survival times for 121 breast cancer patients treated
over the period 1929-1938, quoted in Boag (1949). Times are in months, and
asterisks denote censoring times.

0.3 0.3* 4.0 5.0 5.6 6.2 6.3 6.6 6.8
7.4* 7.5 8.4 8.4 10.3 11.0 118 122 123
13.5 14.4 14.4 14.8 155 157 162 163 165
16.8 17.2 17.3 17.5 17.9 19.8 204 209 210
21.0 21.1 23.0 23.4* 236 240 240 279 282

29.1 30 31 31 32 35 35 37* 37"
37* 38 38* 38* 39* 39 40 40* 40"
41 41 41* 42 43* 43*%  43% 44 45*

45* 46" 46" 47" 48 49" 51 51 51"

52 54 55* 56 57 58" 59" 60 60"

60* 61* 62* 65* 65" 67" 67" 68* 69*

78 80 83* 88" 89 90 93" 96* 103"
105" 109* 109* 111" 115" 17 125% 126 127"
129* 129* 139* 154*
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(a) Calculate the Kaplan-Mzier estimate of the survivor function. Estimate 1-
and 5:year survival probabilities and give a standard error for these esti-
males.

(b) Group the dala into a lile table with 1-year intervals. Compare the 1- and
5-year survival probability estimates with those obtained in part (a).

(c) Tn the data given by Boag the individuals with censored survival times are
actually known to fall into one of three groups:

(i) Individuals free from signs or symptoms of breast cancer, but who
died from some otk er cause.
(i) Individuals free from signs or symptoms of breast cancer and still
alive at (he time the: data were collected.
(i) Individuals still alive at the time the data were collected, but who were
suffering a persislence or recurrence of the cancer that was unlikely
to yield to further t eatment.

How might you take thi: information into account in analyzing the data?
(Section 3.2, 3.6)

315 Sometimes it is desired to »stimate the hazard function from life table data.
With the notation of Section 3.6.1, let tyy = (@j—1 + a;)/2be the midpoint of
the jthinterval and &; = a; — dj-1 the width (j = 1, ..., k). Two estimates
that have been suggested for h(f,;) are

i) %, (Kimball 1960: Gehan 1969)
) P} e e imba 50: an
1l A1+ pp)

—log b
08 1 (Sacher 1956),

/; 2 (’mj ) =

(a) Motivate these choices of estimates, Compare the estimates by expanding
them in powers of 4.
(h) Give variance estimate: for the two estimates.
(¢) Suggest estimates and 1ssociated variance estimates for the density func-
tion f'(fmj) at t-= tmj,
(Section 3.6)
3.16 Using (B2) and (B5) of Aprendix B, derive expressions (3.6.13) for the asymp-
{otic vatiance of the /7(§; ~ q}') and show that they are asymptotically uncor-
related. :
(Section 3.6)
3.17 Examine the asymptotic bies in the standard lifé table estimate of g, by consid-
ering the random-censoring model leading to (3.6.12) when the lifetime distri-
bution is exponential and the censoring time distribution is (1) exponential and

(2) uniform over {aj-y, a;), respectively.
(Section 3,6)
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3,18 Thompson (1977) suggested a pseudolikelihood function for the g; and p; for
the case of life table data, With the notation of Section 3.6, this is

k ;
D U, Y .
L =[]q (1 —gpi=Pr=¥i (3.7.3)
n l ‘I +
j= :

(a) Show that maximization of L(q) gives the standard life table estimates
(3.6.3).
(b) Show that L(q) can be written in the form

k1 .
l—I[S(aj—l) — S@1P Syt Wis, (3.7.4)
=1 )

where Wiyt = Wig2 = 0.

(¢) Compare (3.7.4) and the likelihood function based on an indepenclent ran-
dom censorship model as in Section 3.6.2, where the survivor function for
censoring times is linear over (0, ax), with the censoring survival probabil-
ity G{ax) much larger than S (a).

(Section 3.6)



CHAPTER 4

Inference Procedures for
Parametric Models

Likelihood methods for lifetime data were introduced in Chapter 2, and some pro-
cedures are summarized in Appendix C. This chapter provides detailed illustrations
of the methodology, while dealing with several important lifetime distributions and
different types of data. In most cases exact distribution theory for testing and esti-
mation is not available, and we resort to approximations, based mainly on maximum
likelihood large-sample theory.

The exponential distribution occupies an important historical position in lifetime
distribution work, and Section 4.1 is devoted to it. Exact distributional results can be
obtained for certain tests and estimation procedures, and these are presented along
with large-sample methods. Section 4.2 provides shorter treatments of the gamma,
inverse Gaussian, and other models. Sections 4.3 to 4.5 consider more complex set-
tings invelving interval censoring, threshold parameters, and mixture models. In
addition to giving procedures for specific models, we show how parametric likeli-
hood methods can be applied generally.

_The most widely used parametric lifetime distribution models are those of log-
location-scale type (Section 1.3.6). Likelihood methods for log-location-scale mod-
els, including the Weibull, log-normal and log-logistic distributions, are discussed in
Chapter 5.

41 INFERENCE PROCEDURES FOR EXPONENTIAL DISTRIBUTIONS

The exponential distribution was the first lifetime model for which statistical meth-
ods were extensively developed. The existence of exact tests and confidence intervals
for certain types of life test experiments was a major factor in the popularity of the
model. It is recognized, however, that the applicability of the exponential distribution
is limitéd to settings where the hazard function is close to constant, and that proce-
dures based on the exponential tend to be nonrobust, It is thus important that the
adequacy of the model in any setting be checked. The following three subsections
discuss estimation and hypothesis tests, and Section 4.1,4 considers the planning of
studies. Goodness-of-fit tests are discussed in Chapter 10,

147
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4.1.1  Methods Based on Large Sample Theory

We consider the exponential distiibution in the form (1.3.3) with density function
J(0) = 9=" exp(—r/0). Under right-censoring processes that satisfy the condi-
tions of Section 2.2.2, the log-likelihood function obtained from the general likeli-
hood (2.2.3).1s

) ] 1
L(@)::-rloge—gi;n, 4.1.1)

where r = 3_ §; is the number of uncensored lifetimes and ¢#; is a lifetime or censor-
ing time. The likelihood equation di/de =0 gives

6 = Zt,-/r, (4.1.2)
i=1

assuming r > 0,107 = 0, the log-likelihood £(6) is bounded but monotone increas-
ing as @ — co, sa docs not yield a finite maximum likelihood estimate (m.l.e.).
In general both )¢ and r are random variables, and the exact distributions of
# and other guantitics considerer! in the following paragraphs are mathematically
intractable.

Maximum likelihood methodo'ogy is easily applied. As discussed in Example 2.5.1,

the observed information ~d?0/6% s
- 2
1(~)=-67+—93-;:,- (4.1.3)

and l(@) = r/éz. Several procerlures can be used to make inferences about & (see
Appendix C). The most straightforward is based on the asymptotic normal approxi-
mation

0= noo (4.1.4)
TORE s v
taking Z as a pivotal quaﬁlity. For example, this gives 6+1.961(F)"/2asan approx-
imate .95 confidence interval for 6. Asymptotic likelihood theory indicales that @
in (4,1.4) can be rgp]uced with / (8), with the expected information Z(8) given by
(2.5.6). or with Z(8). As discussc.d in Example 2.5.1, calculation of Z(8) requires an
cxplicit model for the censoring process, and can be complicated. The use of /(8)
or Z(0) in (4.1.4) also makes the: inversion of intervals such as —1.96 < Z < 1,96
(o get confidence Intervals for 6 more complicated, so in practice (4.1.4) is typically
used, :
The approximation (4.1.4) is not very accurate in small samples. This is associ-
ated with the fact that £(8) lends to be asymmetric and not closely approximable by
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a quadratic when the number of uncensored observations is small. Alternative pro-
cedures that are more accurate are available; we mention two approaches that can be
recommended. .

Method 2:.Sprott (1973) and others have shown that if the parameterization ¢ =
g=1/3 is used, the log-likelihood £1(¢) = £(¢~3) is typically close to quadratic, and
the approximation

é—¢
7= —Let— ~ N(0, 1 4,1.5
I ()12 ©.0 @13

is quite accurate, even for small samples. It is easily found that [ (d?) = 91'/&2.
Confidence intervals or tests for ¢ can be based on (4.1.5), and converted to intervals

- or tests for @ as desired. :

Method 3: The likelihood ratio statistic
A@) = 2¢(8) —20(9) (4.1.6)

is approximately x(zi) in large-samples when @ is the true parameter value, and can be
used as an approximate pivotal quantity for testing or estimation of 8. Approximate
two-sided @ confidence intervals are obtained as the set of values for which A(8) <
X(Zl).a‘ One-sided intervals or tests are usually obtained by treating

Z = [sign(f — 6)1A(8)"/*

as N(0, 1), as described in Appendix C. Refinements that improve the accuracy of
these methods are available, but do not make much difference except in very small
samples. , . ‘

- Tests or confidence intervals ‘for monotone functions of 8 such as §(¢;0) =
exp(—t/6) ot h(t; ) = g~ are easily obtained, For example, if Data = {(4, 8:), i =
1,...,n}and ~ ‘ '

L(Data) < 6 < U(Data)
is (approximately) an c confidence interval for 8, then
exp[—io/L(Data)] < §(1;0) = exp[—to/U(Data)]
is (approximately) an o confidence interval for S(z; 6).
Example 4.1.1. (Example 1.1.6 revisited). The data in Example 1.1.6 con-

cerned the lifetimes of 10 pieces of equipment. The observation scheme gives the
following values for ¢ and & (i =1,..., 10):
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We find r = 7, § = 44.0 (days), 1(f) = 7/44.0% and 1(§)~1/* = 16,6. Using

(4.1.4), we obtain a two-sided .95 confidence interval for 6 as 6 +1.967 (@)%, or

11,5 <6 <76.5. '
The sample size is small aad it is illustrative to compare this result with ones

based on z;lternative methods 2 and 3, as follows,

2, We find ¢ = é-—'/? = 02833, 1;() = 9r/¢* = 784.96, and I;(§)”"/* =
0.0357. An approximate 05 confidence interval for ¢ is ¢ = 1.961;(¢)~'/%,
which gives .2133 < ¢ < .3533. Converting this to an interval for 8 = ¢
we get22.7 < 6 < 103.0, ,

3, The likelihood ratio statistic (4.1.6) reduces here to
AO) = 2r((§/6) — 1 —log(8/8)}.

Sin.ce Pr{x(zl) < 3.84) =: .95, a two-sided approximate ,95 confidence interval
is found. as the set of & values giving A(8) =< 3.84. This yields 22.8 < 0 <
102.5. ST

Methods 2 and 3 agree well, but the interval based on (4.1.4) is rather differ-
ent. Figure 4.1 shows confidence intervals, and the degree of agreement for the
threc methods, Two-sided confidence intervals for each method are based,on find-
ing @ values that satisfy some thing of the form W©) < xZ, .. The W(@)'s are
respectively, - e -

10
8 -
~ ﬁ N /-’/-'
D ‘/'"
gl =
z 7
R ('-“‘/—
4 - -
2 -
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w,(6) = (6 — )2 1(B) for (4.1.4)
Wy @) = @17 = g=1N2r (8~ for (4.1.5)
W1 (0) = 2£(8) — 2£(0) for (4.1.6).

Figure 4.1 shows W;(6) forj =1,2,3. The likelihood ratio statistic W3 (@) is very
asymmetric; the quadratic Wi (9) does not approximate it well, but Wo(6) does. As
a result, confidence intervals based on methods 2 and 3 will agree closely, but differ
from those based on (4.1.4).

Plots like Figure 4.1 are useful for comparing alternative large-sample methods.
They also show confidence intervals with any given confidence coefficient; these
are sometimes referred to as confidence distributions. For example, two-sided .90,
95, Aand .99 intervals consist of & satisfying W(0) =< 2.706, W(8) < 3.841, and
W(8) < 6.635, respectively.

Example 4.1.2. A Small Simulation Study. To indicate the extent to which
the large-sample methods give appropriate coverage properties in small samples,
some results of a small simulation study are presented in Table 4.1. Confidence
intervals were obtained using (4.1.4), (4.1.5), and (4.1.6) in several censored data
settings; resulls are shown for lower a confidence limits on 8. Two sample sizes
1 = 10 and 20, and three single Type 1 censoring patterns are represented. In each
case all individuals had the same censoring time C, with C selected to give values
Q' = exp(—C/8) of .10, 25, and .50. Thus, Q' is the effective censoring fraction,
since each lifetime has a probability Q' of being censored.

There were 2000 samples generated for each (Q; n) combination, The simulations
used 6 = 1, but the results shown are valid whatever the value of 8, since censoring
times are chosen.to be fixed multiples of 6. Table 4.1 shows the observed coverage
proportions for confidence intervals with nominal coverage probabilities .90 and 95.
The methods based on (4.1.5) and (4.1.6) give close to the nominal coverage, espe-
cially for n = 20, but (4.1.4) produces confidence limits that are too low, yielding
coverage probabilities that are too high.

Table 4,1, Proportion of the Time (out of 2000 trials) That Approximate One-Sided .90,
.05 Confidence Intervals Contained 0

Q =.10 Q =.25 Q' =.50
n Method: .90 .95 .90 95 .90 .95
10 (4.1.4) 928 1.000 996 1,000 1.000 1.000
(4.1.5) 913 960 908 951 893. 950
. (4.1.6) 910 960 .905 944 891 945
20 (414 952 993 961 995 981 1.000
(4.1.5) 908 951 903 951 : 892 ,949
(4.1.6) 907 _.950 .901 949 P 893 949

R T N . e
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The approximate methods basd on (4.1.5) and (4,1.6) are satisfactory for the sit-
uations represented in the table, liimulations for problems in which censoring times
are unequal gave similarly good 1esults, When the methods are used to obtain upper
confidence limits, caverage probabilities are not quite as close to the nominal values
as Tor the Jower Timits, but are still broadly acceptable. In many applications lower
confidence limits are called for, so it is important that these turn out to be particularly
aeeuralc,

4,1.2 Texact Methods for Certain Life Tests

Tor certain special Lypes of life tests itis possible to obtain exact confidence intervais
and hypothesis tests; these are described briefly.

4.1.2.1 Type 2 Censored Test Flans

Tn a Type 2 censored plan (Section 2,2.1.3) the life test is terminated when the rth
failure oceurs, where - (1 < r < n) is prespecified. The data consist of the r smallest
order statistics 11y < +++ < Iy, and under an exponential model the joint distribution
of gy, oo Iy 18, from (2.2.0),

11,! " | __,_/9 _,’_/9 n—r
r—:“;{ﬂ@ o LTl

f==

4.1.7)

The log-likelihood function is of the same form as (4.1.1), with b replaced by

,
T= Zl(i) + (1 = )ty

i=|

and 8 = T/r. In life tests T is sometimes called the “total time on test” statistic,
since it is the total of the observed lifetimes or censoring times across the n test
units. As we now show, the distribution of T is easily found. Make the change of
variables

Wy = nyn

W= —i+ Dpy—ta-n) =200 (4.1.8)

Since
I r
T = Z tiy -+ (= 1)ty = Z Wi
fe=1 i=1

and the Jacobian is

W, ... W) _ n!
Are o t)) T =)
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the joint probability density function (p.d.f.) of Wy, ..., Wr is found from (4.1.7) to

be
1 " w;
Fexp(—;?) w; > 0,
We have proved the following result:

THEOREM 4.1.1. Let £y, ..., & be the first » ordered observations of a ran-
dom sample of size n from the exponential distribution (1.3.3). Then the quantities
Wy, ..., W, given by (4.1.8) are independent and identically distributed, also with
p.d.f. (1.3.3).

Since T = Y 1| W;, we also immediately have from Section 1.3.5 the following
result.

COROLLARY 4.1.1.  Under the conditions of Theorem 4.1.1,

T=) tgy+ (n—riten

.
f=1
has a distribution given by 2T/8 ~ x&,,.

Tests and confidence inf@:va.ls for # are easily obtained using the bivotal quantity
2T/6 . For example, to obtain a two-sided 1 — o confidence interval for 6, we take

2T
2 2
Pr (X(Zr),a/Z == X(Zr).l—-a/Z) =1l-a,

where x3,, , is the pth quantile of X&) Then

2T <6< 2T

) )
X(@2r)1~a/2 X(2ry,e/2

is the 1 — « confidence interval for &.

Example 4.1.3.  The first 8 observations in a random sample of 12 lifetimes from

- an assumed exponential distribution are, in hours

31, 58, 157, 185, 300, 470, 497, 673.

Hence n = 12, r = 8, and T = 5063. The m.Le. for & is 6 = 5063/8 = 632.9
hours. To obtain, for example, a two-sided .95 confidence interval for 6, we find
from the x? distribution that Pr(6.91 < 2T/8 < 28.8) = Pr(6.91 = XGe =
28.8) = .95, which gives (27/28.8,27/6.91) as a .95 confidence interval for 8. For
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the sample obsérved, T = 5003, and the realized .95 confidence interval for 6 is
therefore (351.6, 1465.4),

4.1.2,2 Testing with Replacement

When life tests of equipment are conducted using a physical layout that can accom-
modate some maximum number of items, it may be feasible to replace failed items
immediatcly with new ones, This is referred to as testing with replacement, and the
test is Lypically terminated after a fixed length of time (Type 1) or a fixed number of
failures (Type 2),

For either Type 1 or Type 2 testing with replacement, the censoring mechanism
satisfies the conditions of Section 2.2.2, and the log-likelihood function under an
exponential lifetime distribution for the units is given by (4.1.1). However, direct
derivations of L(@) indicate that exact inference procedures are available. The key
point is that the dbserved failure: times in the experiment are the times of occurrence
of events in a homogeneous Poi:son process with intensity 7/6 (e.g., Cox and Lewis
. 1966, Ch. 2). With Type | testing the total time on test, T = ) #, is fixed at the value
n Ly, where Lg is the length of the test, and the number of failures r = 3.5 hasa
Poisson distribution with mean equal to nLy/8. The Poisson probability function
gives the likelihood )

L@y o e=nlore (Lo/8)
ri

8¢ H—I‘_-E_T/ 9,
which is of the general form arising from (2.2.3). Confidence intervals or tests for
A can in this case be obtained nsing standard methods for the Poisson distribution
(e.t., Cox and Lewis 1966, Ch. 2). Since r, or equivalently, 6 = T/r is a minimal
sufficient statistic for 8, we can formulate procedures in terms of § if we wish.

With Type 2 testing the number of failures, r, is fixed and the duration, Lg, of the
test is a random variable. Becautie Lo is the time to the »th event in a Poisson process
with inlensity #7/8, we have nLo/8 ~ Ga(r) or, equivalently, 2nLo/0 = 2r(~3/9 ~
xé” (Cox and Lewis 1966), Th: gamma p.d.f. (1.3.19) produces a log-likelihood of
the form (4.1.1), Lp (or (-5) is a ninimal sufficient statistic, and confidence intervals
or Lests can be based on the pivotal quantity 21'9/9; The procedures are formally the
same as for the case of Type 2 tosting without replacement (i.e., the case of ordinary
Type 2 censoring), discussed ealier.

4.1.3  Comparison ol Distributions

The comparison of two or mote lifetime distributions is often an important goal,
. When the distributions are all exponential, this amounts to a comparison of their
means. Tests and confidence intzrvals for comparison are considered in this section,
based on independent samples f:om the distributions in question,
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4.1.3.1 - Likelihood Ratio Tests
The standard m-sample problem is to test equality of m distributions, which here is
equivalent to testing the hypothesis :

Hy:01 =067 =+ =06.

Based on independent censored samples from the m distributions, the combined like-
lihood function is .

m
1
ACTRRUD) =Ee—{,—e Tilé, : (4.1.9)
where the data from distribution { (i = 1,...,m) consist of {(t;,8:5),] =

1,...,n;),and . |

n; ny ’ !

r1=251j. Ti=ZfU C

J=1 J=1 3

are the observed number of failures and total time on test (or at risk) for the ith
distribution, ;

The likelihood ratio statistic for testing Hg is

A=2801,....0m) — 2061, ....00), (4.1.10)

where £(8y,...,6n) = logL(6,...,0,) and the (31 and 5; are the unrestricted
m.le’s and the m.le’s under the hypothesis Hp, respectively. The unrestricted
m.le’s are (-5; = T;/r;, from previous results. Under Hy the 8; are equal, and it is
easily seen that (4.1.9) is maximized at 6, ...,6,) = @,...,0), where
m m
- é:‘zn/zn. (4.1.11)
i=1

i=1
These results give (4.1.10) as
m . m R
A= (ZZr,' log6 —2) rilogh;. (4.1.12)
i=1 i=1

Asymptotically A has a xZ,_,, distribution if Hy is true, and the x? approximation
is suitable for computing significance levels if the ; are not too small.
In the case where the censoring is of Type 2 for each of the m samples, a refine-

‘ment to the x2 approximation improves its accuracy. The idea is to treat A| = CA

2
a8 Xfp1yr where

] m
-1 . ~1_ -1
CTl =1t s (;§=1 it ) (4.1.13)
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and rr = Y r;, This-was first sug;jested by Bartlett (1937) in connection with tests
for variance estimates. Chao and Ctlaser (1978) and Dyer and Keating (1980) provide
additional results and references for the case of Type 2 censoring,

Example 4.1.4.  As a numerical illustration, suppose that four independent sam-
ples of size 10 each had 7 failures, and gave m.le.’s under the exponential model as
A, = 106, § = 80, §3 = 140, 8y = 158. To test Ho : 61 = 62 = 63 = 64 using
(4.1.12). we find § = '2':;',-(9;/28 = 121, and an observed value of A = 1.87. The
significance level (p=value) for the test is, using the x 2 approximation,

Pr(x%, = 1.87) = .60,

thus providing no evidence against Ho. If the censoring in each sample were of
Type 2, the refined approximatio using (4.1.13) would give C = 0.971 and the
p-value Pr[xé) > (0.971)(1.87). = .61; there is no effect on the conclusions,

4,1.3.2 Confidence Intervals for 61/0;

Confidence intervals for 8) /62 prcvide a natural comparison of two exponential dis-
wibutions and supplement a test of 6 = 6. A very simple procedure is to note
from (4.1.4) that é,- (i =1, 2) can be treated as approximately N (6;, Gizri'l) in large
samples, so that log 0i is approximately N (log6;, r,.'"). Thus

7 - log(d1/62) — 10g(81/62)

(4.1.14)
Gt 12

is approximateiy N(0, 1) and can be used as a pivotal .quanti'ty to get confidence .

intervals for log(6;/62) and thus £{/0;.
Confidence intervals can also be found by inverting the likelihood ratio test for a

hypothesis of the form My : 0 = af, where a > 0 is a constant, The m.l.e.'s of 6} .

and #, under Ho are found by mazimizing L(af3, 62) given by (4.1.9), and are

The likelihood ratio statistic for testing Hp is then

A =206, 62) — 2¢(6y, 62)
=2r log(81/61) + 22 1og(62/62). - (@115)

An « confidence interval for 8 /02 consists of the set of values a for which Hy is .
not contradicted (or rejected) at the | — o level of significance. If the approximation -

A~ x'("“”' is used, this entails finding all values of a for which A < X(21) PR
If the samples from the two distributions are Type 2 censored, then an exact pro-
cedure is available, since 2r;8;/6; (i = 1, 2) are independent X‘(22r1) variables, Thus
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6162/ (6261) has an Far,,2r, distribution and can be used as a pivotal quantity for

01/6a.
The x? approximation for (4.1.15) is slightly more accurate than the normal

"approximation for (4.1,14) with quite small samples, but (4.1.14) is a little easier

to use. Unless the 7; are very small, the two methods tend to agree w{el].
i
1

Exampled.1.5. Suppose that in a small clinical trial to compare the duration
of remission achieved by two drugs used in the treatment of leukemia, two groups
of 20 patients produced r{ = 10, T} = 700 (61 = 70 weeks) and r = 10,
T = 540 (92 = 54 weeks) under a Type 1 censoring scheme and assumed expo-
nential duration distributions, Let us obtain (approximate) .95 confidence intervals
for 81/0>.

The two-sided .95 confidence interval for log(6:/6) based on (4.1.14) is given
by log(61/62) = 1.96¢ 7" -+ r;1)!/2. This yields —0.6170 < log(6)/62) < 1.1360,
which converts to the confidence interval 0.54 < 6;/8; < 3.11. The approach based
on the likelihood ratio statistic (4.1.15) requires that we find values of a (= 81/62)
such that

A = 2010g(0.5 + 0.386a) + 2010g(0.5 -~ 0.648/a)

is less than X(Zl)..95 = 3.841. It is readily found that 0.51 < a < 3.135; this confidence
interval agrees closely with the previous one. :

4,14 Planning Experiments or Life Tests

Section 2.5 discussed some general issues concerning the planning of studies on -
lifetime distributions, with emphasis on the estimation of specific parameters.
Example 2.5.1 considered estimation of the mean ¢ of an exponential distribu-
tion, based on large-sample methods. Analogous results can be obtained for other
procedures described in Sections 4.1.1-4.1.3; we provide two brief examples.

Example 4.1.6. In the case of a Type 2 censored life test (Section 4.1.2) the
distribution of 2+-6 /6 is exactly xér), and gives exact confidence intervals for 6, The
ratio of upper to lower confidence limits (UCL/LCL) for @ is a function of r, and r
can be chosen to make the ratio acceptably small. For example, for a two-sided .90
confidence interval the ratio is

2
UCL _ X@r).95

— = ,
LCL  X&p,0s

" andr = 10 and r = 20 give ratios 2.89 and 2.10; respectively. Note that in choosing

i, we leave open the choice of sample size-n. This may be selected to control the”
duration of the life test; a larger value of n will lead to shorter durations. This point
is discussed in subsection 4.1.4.1.
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Example 4.1.7.  Suppose th at we wish to estimate the ratio 6 /8; of mean life-
times for two exponential distributions, based on studies that involve Type 1 censor-
ing. The approximate pivotal quamtity (4.1.14) gives two-sided a confidence intervals
for Tog(@ /62) of the form

10g (81 /6y) % zi—ap (7t + 172, (4.1.16)

where z,, is the pth quantile for a N(0, 1) variable, The precision can be adjusted
by controlling E(r,") and E(ri") or, equivalently to the first-order level of approx-
imation represented by (4.1.16), by controlling E{r1) and E(r2). For example, for
a .95 confidence interval the width (UCL-LCL) of (4.1.16) is 3,92(7‘,"’ + 7'2"1)‘/2,
and experiments with ry =12 = 10 and ry = ry = 20, respectively, give UCL-LCL
= 1.753 and 1,24, The ratio of vpper to lower confidence limits for 6 /62 is therefore
exp(UCL~LCL), or 5.77 and 3.415 for ry = ry = 10 and r| = rq = 20, respectively.

In soime applications the objective is to carry out a formal test in which a specified
niill hypotheésis Hy is to be accepted or rejected, For example, in industrial or military
applications tests are used to deside whether a batch of items is acceptable or not. In
clinical trials or comparative life tests the objective is to make a decision concern-
ing the distributions of two or more lifetime variables. The Neyman—Pearson theory
of hypothesis testing provides ¢ framework for decision making; the following two
stibscctions outline the main ideas,

4.1.4.1 Tests for a Single Disivibution

Any hypothesis concerning ah ¢xponential distribution can be expressed in terms of
the mean . The most common problem involves testing a specific value 6o against
values less than g, that is,

Hp:€ =0y vs. Hi:0 <6y, 4.1.17)

where Hy and H) are referred to as the null and alternative hypotheses. A formal
hypothesis test is a decision ru.e for either accepting Hp or rejecting it in favor of
H,, on the basis of observed da‘a. The size of the test is ' '

o = Pr(reject Hn; 8 = 6p),
and the power function is defincd by
P(6;) = Pr(reject Hp: 8 = 6)).

Tests are generally designed so (hat the size (i.e., P(6p)) and ihe power P(6;) at
some value Ay < 6 are speciﬁc:l values. .

Let s examine the construction of a test of (4.1,17) for the case of Type 2 cen-
sored data, Tt is plausible and easily seen from general resuits on formal testing
(e.g., Cox and Hinkley 1974; Epstein and Sobel 1953) that for a given r and n the
most powerful tests are to accept Hy iff§ > C, where C is a specified value. Since
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2r6/6 ~ xér) under Type 2 censoring (Section 4.1.2), the power function is then
P@y)=Pr§ <C,6=061)

2C
= Pr (xér) < -—;—;) . 4.1.18)

For any r we get a size o test by choosing C = Cq = ng(zzl,)'a/Zr. The power P (61)
of the test can be increased for 8; < g by increasing r: note that

0
2rC
= Pr (X(zzr) = _9“—5> )

o to make P(8;) = 1 — B, we need

2rCy .2
8, = X@r,1-8

2r6 2r
P@) = Pr (l—’ < ’BC")
1

or

2

X2 )

(a9 ‘ C(4.1.19)
X2ry1-8 90,

‘Hence, to make P(6;). equal to 1 — B; we must choose r such that (4.1.19) is sat-
“isfied. There will not generally be an integral r value that exactly satisfies (4,1.19).

However, it can be seen that for @ < .5 and 8 < .5 the quotient on the left-hand
side of (4.1.19) is an increasing function of r and approaches one from below as

‘r — oo, Since 81/6p < 1, there is a smallest-value rg of r such that the left-hand

side is > 61 /60, and then, for any r = ro, P(81) = 1—8. The choice r = ry therefore
gives a test with the desired size and (approximately) the desired power at 6 = 8.
The larger 1 — 8 is, the larger ro will be. The entire power function for the test can
be calculated from (4.1.18). .

It will be observed that no particular value of r is indicated by the preceding
arguments, Two tests with the same value of r but different values of n have identical
power functions. However, although n does not enter into the power calculations, it
is an important factor, since the larger # is, the less the time generally required to
complete the test. One aspect of this is given in the following result,

LEMMA 4.1.1, Let () be the rth smallest observation in a random sample of

-size n from the exponential distribution with mean 6. Then

R
1

E(tpy) =0 — 4.1.20)

; n—i+1 _
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Proof. By Theorem 411, Wy = ntqyand Wy = (n — i + D(tay — ti-n) i =
2.... . r are independent random variabies all having the same exponential distri-
hution as the original observations. Thus B(W)) =8,i = 1....,7. But #(,y can be
wriften as

Wi W W,

= Tyt I

and henee the stated result follows

Example 4.1.8. A particular :lectronic device has a lifetime distribution ade-
quately modeled by an exponential distribution. In setting up a screening procedure
for consignments of these devices, it is decided to institute a Type 2 censored life test
plan, with 8y = 1000 hours, 8 = 400 hours, & = .03, and 8 = .10, In other words,
(he test is to have only a 5% chance: of rejecting a distribution with mean 1000 hours,
but 2 90% chance of rejecting one with mean 400 hours.

The smallest integer r such that the left side of (4.1.19) exceeds 61/6p = 0.4
is = 11, which gives X2y gs/) &, 00 = 12:338/30.813 = .4004. Then C'o5 =
1000(12.338) /22 = 561. The plan therefore stipulates that we use a Type 2 censored
life test with # = 11 and reject Ho ifd < 561.

To show the effect of 2, the tctal number of items on test, we can use (4.1.20)
to caleulaie expected durations of the test. One finds, for example, that for n =
11, 13.15,and 20, E(11y) = 3.0:0, 1.686, 1.236, and .778, respectively. A decision
as Lo how large n should be can he based on considerations involving the costs of
testing, the amount of time avails ble For the test, and the possibility of departures
from the exponential imodel.

Formal tests can be develope! for other types of life test. It is readily shown
(see Problem 4.4) that for tests with replacement of failed items.as in Section 4.1.2,
the results (4.1,18) and (4.1,19) :till hold; the expected durations of the tests are,
however, smaller than for tests without replacement. For Type 1 censored life tests,
and others for which large-sample methods are used, approximations or simulation
must be uscd to assess power and decide on test parameters. The following example
illustrates how this can be done.

Example 4,19, Consider a test of (4.1.17) based on large-sample methods. The
normal approximation (4.1,5), based on the parameter # = 6~!/3, is considerably
more accurate in small samples than the analogous approximation (4.1.4) based on
0 itsell, We can replace I1(¢) in (+.1.5) with Z) (@) = 9E(r) /®* to the same level of
approximation, so we consider the: approximation

Z =3[EW)]'/? (% - 1) ~ N, ). (4.1.21)

Tests of (4.1.17) are of the form: reject Ho iff 8 < C, or equivalently, reject Hy iff
® = C* By (4.1.21) we find that the power function in terms of ¢ is approximately
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P($1) = Prig = C* ¢ = b1}
.—.—Pr[ZzS[E(r)]I/Z (%—1)] (4.1.22)
1

For a test with size P (¢o) = o and power P(¢1) = | — 8 at a specified value ¢, we
therefore require

3[E@ (% - 1) = Nia

c*
3EEN'? (745—[— - 1) = Nj,

where N, is the pth quantile for the distribution N (0, 1). For given e, 8, o, and ¢
we can choose C* and E(r) to satisfy (approximately) these equalities,

If the primary purpose of an experiment is to provide a decision in favor of Hg
or Hj, then sequential procedures can often be valuable, Discussion of sequential
methods is beyond the scope of this book, but the basic idea is that the life test is
monitored over time, so that the decision to accept or reject Hp can be made as soon
as there is sufficient evidence to reach such a decision. :

Epstein and Sobel (1955) presented a test in which the decision made at time ¢
essentially depends on the inequality

B < (g‘%)rm exp[ (67" - 65") T)] < 4, (4.1.23)

where r(¢) is the number of failures observed by time ¢ and T'(¢) is the total time
on test up to time ¢, that is, the total lifetime lived by all items, failed and unfailed,

‘'up to time ¢, At time ¢ experimentation continues as long as (4.1,23) is satisfied; on

the other hand, if the function in the middle of (4.1.23) is < B, Hy is rejected, and
ifitis > A, Hp is accepted. A slight modification consists of truncating the tests to
avoid very long test times. The constants B and A are selected to give the test size
o and desired power 1 — 8 at 8 = 6y it tums out that to a close approximation
A= (1—p)/o and B = B/(1 — ). Epstein and Sobel (1955) give approximate
formulas for calculating the power function and other characteristics of this test when
testing is with or without replacement.

The main advantage of a sequential plan is that the time needed to reach a decision
about Hg versus Hj can be substantially reduced from that required by a similar non-
sequential plan, If, however, one is not just interested in a decision rule, but also in
estimation, sequential procedures create complications, though it is possible to obtain
conservative confidence limits from them (e.g., Bryant and Schmee, 1979). Another
qualification of the sequential tests is that their properties depend rather heavily on
the exponentiality of the underlying lifetime distribution, and so the possibility of
departures from the model needs to be considered. ‘

References to related work are given in the Bibliographic Notes at chapter’s end.
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4.1.4.2 Tests for Comparing Two Distributions

Many clinjcal trials or life tests are designed to compare two lifetime distributions. In
the very special case where the two distributions are exponential, the test is usually
either

Hy:0, =0, vs. HMHi:6 #} /e

or a test with a one-sided alternazive Hy : 6; > Gyor Hy: 6 < 6s.

As in Example 4.1.9, the crucial factor in the power §Jf a test of Hy is the expected
number of observed failures during the study. An expression analogous to (4.1.22)
can be obtained, leading to a determination of approximate study requirements, as
follows. ‘
~ Suppose independent censored random samples (¢j;, 85¢), | = Looon (j=
1,2) arc obtained in a study on lifetime distributions 1 and 2. Let r; = 38y
denote the number of failures in the two samples j = 1, 2. From Section 4.1.1 and
Exampic 2.5.1, the expected information about &; is Z;(0;) = E(rj)/ef and this
leads to the asymptotic approximation

logh, ~ N(og8, Erp)™"),  j=1.2 (4.1.24)

et 8 = lop(8)/62), so that a test of Hp @ 6; = 6 is equivalent to a test of § = 0.
Consider the approximate pivotal quantity

log(6,/62) — 8

TIEGMTFEMT (4.1.25)

_ noting that if 8 is the true value and E(ry) and E(ry) are computed using &, then Z
is asymptotically N (0, 1) as sample size increases. To test Hy : § = 0 we use the
statistic given by Z withd =0,

Let P(8;) be the power functon of a specific test of Hop : 8 = 0,

P(8)) = Pr(reject Hy; 8 = 8)).

For a two-sided test with specificd size (0) = e, the approximate normal rejection
region is given by |Z] > —Ng/z, based on Z in (4.1.25) with 8 = 0. Suppose now
that the power P(8;) for some specified 8y is to be equal to 1 — 8. Now

P(Sy) = Pr{|Z] > -—No,/z; 3 =14}
= Pr{|log61/62)| > —VYiNyp; 8 = 81,

where V = E(m)"i -+ E(rz)"‘. Assume that V under § = 0 and § = §; are
essentially the same, so that Z is approximately N (81, V) when § = &;. This yields
the approximation '

P(81) = Pr(Zy < Nyjp = 81V™"2) 4 Pr(Zy > ~Najp — 8 V112,
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where Z) ~ N(0, 1). Suppose without loss of generality that §; > 0; then Pr(Zy <
N2 —81V~1/2) = 0 and to make P(8;) = 1~ f, we need approximately — Na/2 —
8 V=12 = Ng, or

V = 8%/(Naz + Np)*. (4.1.26)

If the study is to be designed so that E(r1) = E(r2) = E(r/2), then V = 4/r and
(4.1.26) gives S

E(r) = 4(Naj2 + Np)?/8} 4.127)

as the required expected total number of failures. More generally, if E(ry) = m E €]
and E (r3) = mz E(r) with my + w2 = [, then (4.1.26) gives

E(r) = (Naj2 + Ng)¥/mimad?. (4.1.28)

The expected number of failures depends on the study design which, as discussed
previously, involves the choices of sample size and duration of follow-up. In addition,
it depends upon the unknown parameters 61 and 82, and so in order to select a design
to meet stated power objectives it is necessary to use provisional values of 6; and 6>.
If individuals have fixed censoring times Cj; (j = 1, 2) forindividualsi = 1,...,n;
from distributions 1 and 2, then

2 ny

E(r) = ZZ(I - e—le/G))'

j=ti=l

In special settings such as clinical trials, guidelines for study design have been given,
allowing for factors such as staggered entry of individuals to the study, losses to
follow-up during the study, and the lengths of time available for the accrual of sub-
jects and their follow-up (e.g., Rubinstein et al. 1981; Lachin and Foulkes 1986).

Example 4.1.10. Suppose that a two-sided test of H : 8 = 6, is wanted with
size @ = .05 and power 1 — B = .90 when 8;/8; = 2, that is, when §; = log2 =
.693, By (4.1.28) we then require

EQ() = E(r1) + E(ry) = 27.06/m172, (4.1.29)

where 7ty = E(rj)/E(r). Suppose further that in the study n/2 individuals from
each of distributions 1 and 2 are to be followed for the same length of time C; then

EGp=350—-eC,  j=12 (4.1.30)

If assuined values for 8y and 8; = .56 are considered, then values for n and C,
which satisfy (4.1.30), can be found. For example, suppose that 8 =1 and that it is

|
|
|
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possible to run the study with a maximum follow-up time of C = 1. Then (4.1.29)
and (4.1.30) imply that 1y = 422 = | — 2, and

n 27.06
et ey = 22
2 (4517
giving 1 = 1482, Thus an estimated minimum of 149 individuals is required
to achieve (he desired power of .90 at 8) = log2, It would be sensible in prac-

tice to assume a conscrvatively high value for 6;, because if @1 is larger than
assumed then the values of E(ry) and E(r2) will be smaller, giving less power
than desired.

4,2 INFERENCE PROCEDUEES FOR SOME OTHER MODELS

In this section we provide brief dis cussions of two other distributions that are some-
(imes used as lifetime models: the gamma and inverse Gaussian distributions. In
additian we illustrate how maxim-m likelihood inference and model checking can
be implemented For general univariate models, given right-censored data.

4,2.1 The Gamma Distribution

The two-parameler gamma distribution, discussed in Section 1.3.5, has p.d.f, of the
form

i . ) ] t k-1
'j(t;'a. k) = m:} (E) exp(—t/a) t>0

where o« > 0 and k > 0 are scale and shape parameters, respectively. The survivor
function is

Sty k) =1—1I(k,t/a)

where 1 (k, x) is the scaled incomplete gamma integral (1.3.16),

With uncensored data, some inference procedures have fairly simple exact forms,
as discussed in a number of baoks on mathematical statistics (e.g., Cox and Hinkley
1974). We outline a few results, then consider censored data.

4.2.1.7 Uncensored Daia
The log-likelihood function for £ ¢nd o from a complete random sample 1y, . .., ty 18

ek, @) = Y _log f(tis o k)

i=]

—nkloge -- nlog (k) + n(k —1) logf — nf/e, 4.2.1)

il
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whete

are the arithmetic and geometric means. Setting 8£/8c and 8£/0k equal to 0 and
rearranging slightly, we get the likelihood equations

ka =17, log k — (k) = log(t/D), 4.2.2)

where (k) = T'(k)/ T (k) is the digamma function (see Appendix B), The m.l.es
& and k are easily found by solving (4.2.2); note that the second equation can be
solved to obtain &, and then & = ?//2. Alternatively, we can maximize (4.2.1) using
some other approach, as discussed in Section 4.2.1.2 and Appendix D.

The statistics T and 7 are jointly sufficient for & and k, and provide exact tests
and confidence intervals that have certain optimality properties. In particular, scale-
invariant tests of

Ho:k=ko vs. Hyik>ko

‘can be based on W = /f, whose distribution does not depend on & (e.g., Cox and

Hinkley 1974, Sec. 5.3). It ¢an be shown that large values of W provide evidence
against Ho, so that the p-value (significance level) associated with an observed value
Wops Of W is Pr(W = wobs; k = kg). A1 — p UCL for k is correspondingly
the largest value ko that gives a significance level of p or greater. Engethardt and
Bain (1978a) discuss approximations to the distribution of W that are helpful. A
simple alternative for computing significance levels is to use simulation to estimate
Pr(W = wopss k = ko). To do this we merely need to generate samples from the
gamma distribution with o = 1 and k = kg, and compute w = /. By repeating this
sufficiently many times we can estimate the probability that W = wops as precisely
as desired. '

Uniformly most powerful unbiased tests for & can also be obtained; they are based
on the conditional distribution of W given 7. Engelhardt and Bain (1977, 1978a)
discuss approximations for obtaining p-values or confidence intervals for c.

The parameters k and o are .usually of less direct interest than distribution
quantiles or survival probabilities. An alternative for making inferences about k,
« or other characteristics of the gamma distribution is.to use maximum likeli-
hood methods. Although these involve large-sample approximations, they are easily
implemented, are adaptable. to arbitrary functions of k and «, and can deal with
censored data. Moreover, their accuracy can be improved, if necessary in small
samples, through parametric bootstrap simulations or second-order corrections (see
Appendix C). We now consider likelihood methods for either. censored or uncen-
sored data. Example 4,2.1 compares likelihood inferences and the exact procedures
of this section for some uncensored data.
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4.2.1.2  Likelihood Methods fo- Censored or Uncensored Data

The likelihood function for a possibly censored random sample (¢, 8;), i = 1,.... 1,
as described in Section 2.2, is g'ven by (2.2.3) and the expressions for the gamma
p.d.f, and survivor function (s.f.) as

Loy =T]| —=s (ﬁ i
- —,zl al'(k) \ @ ¢

with 7 (k. &) given by (1.3.16). The corresponding log-likelihood function is

] .
(1= Ik, 4/,

n’ 1]
0k, o) = —rkloge —rlog F(k) + (k= 1) Y 8 logty — Y &ini/e
{=1 f==1"

+ 30 =) logll — 1 (k. 11 /)], (4.2.3)
fe=1

where r == 3 _ &; is the number of uncensored lifetimes.

Standard large-sample procecures are based on the asymptotic normality of the
m..ets (k, &). Asymptotic covariance matrices for (k, &) obtained by inverting
observed or expected information matrices involve second derivatives of incom-
plete gamma integrals (1.3.16) and are somewhat complicated. Since most of the
common software packages do not handle the gamma distribution, the simplest com-
putational approach is o maximize (4.2,3) using optimization software that does
nol require expressions for derivatives (see Appendix D), and gives an estimate of
the asymplotic covariance matrix at’(k, &) obtained by numerical differentiation.
An alternative approach.for tests or confidence intervals about parameters, which
is especially preferable” in’ small samples, is-to use likelihood ratio procedures,
described in Appendix C. We wiil describe these methods in some detail.

A contour plot of the joint relative log-likelihood function rik, @) = L0k, @) —
¢(k, &) provides an informative picture of the information about k, o or functions
of them. In addition, the extent to which contours are approximatély ellipsoidal
(quadratic) indicates whether cenfidence intervals based on large-sample normal
approximations for (k, &) will bs accurate and in agreement with results based on
likeliood ratio procedures, Instead of r(k, @), we can choose to plot the likelihood
ratio statistic =21 (k, o), that is,

Ak, @) = 20¢k, &) — 2Lk, @). (4.2.4)

Approximate joint confidence regions for (k, ) with confidence coefficient p are
given as the set of points (&, @) stisfying A(k, @) < X(ZZ)./)'

Inferences concerning k or o are obtained from their maximized or profile log-
likelihood functions, or equivalert likelihood ratio statistics. For example, to test the
hypothesis Ay @k == ko, we canse the likeliliood ratio statistic

Ay (k) =2 26k, &) — 2€(ko, @(ko)), 4.2.5)
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where & (kg) is the m.l.e. for & when k = ko, obtained by maximizing £(kg, c) with
respect to . In large samples the distribution of Ay (ko) is approximately x(zl) when
& = kg, and it appears this approximation is reasonably accurate even for small-
sample sizes. An approximate two-sided p confidence interval for k is obtained as
the set of values kg satisfying A1(kg) < X(Zl),,,-

Tests and confidence intervals for o are obtained in a similar way by using

Az(eo) = 2£(k, &) — 2£(k(x0), @),

where & (e:p) maximizes £(k, ag).

Getting tests or confidence intervals for quantiles or the gamma distribution’s sur-
vivor function is a little more complicated, since the survivor function has no simple
closed form. Suppose, for example, that a confidence interval for S(fg) is wanted, for
a specified time to. Since S(f) = 1~ 1(k, to/e), we consider hypotheses of the form

Ho: I (k, to/a) = 1 — so. (4.2.6)

v If & and & are the m.l.e.’s qf k and « subject to the constraint (4.2.6), then under Ho

the likelihood ratio statistic

Also) = 28(k, &) = 2L(k, &) : 427

is approximately x(zl). Large values of A provide evidence anginst Mg, and an’

approximate p confidence interval for S(fo) consists of the set of vaiues 5o satisfying
A(s0) < XGy.p- |

Tests ancf confidence intervals for quantiles can be obtained in a similar way.
The yth quantile ¢, satisfies 7 (k, t, /@) = ¥, so for a specified y we consider the

“hypotheses

Ho: I(k, to/a) =y,

which are exactly the same form as (4.2.6). Tests of Hp are therefore carried out as
for (4.2.6). However, to obtain a p confidence interval for ¢, for a specified y, we fix
the value 59 = | — y in (4.2.6) and find the set of values fg such that A (sg) in (4.2.7)
is < x(z, o

To imlglement the likelihood ratio method for quantiles or survival probabilities
we must maximize £(k, @) subject to the constraint (4.2.6), for specified values o

- and sg. This is easily done as follows:

1. Define M(k) = £(k, a(k)), where a(k) is defined implicitly by (4.2.6) for
given k . Note that to find a(k) we can merely solve the equation in (4.2.6)
for 1} = to/ct, and then & = to/tg. The value #y satisfies /(k, 1) =1-—s0
and is simply the | — so quantile Q (L — s¢; k) for the one-parameter gamma
distribution Ga (k) of (1.3.17); standard software gives these values.

2. Use an optimization procedure for M (k) that does not require analytical
derivatives (see Appendix D).
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Example 4.2.1,  The data that follow are survival times in weeks for 20 male rats
that were exposed Lo a high level of radiation. The data are due to Furth et al. (1959)
and have been discussed by Engelhardt and Bain (1977) and others. The times are

152,152, 115, 109, 137,88, 94, 77, 160, 165,
125, 40, 128, 123, 136, 101, 62, 153, 83, 69

The arithmetic and geometriz means of the 20 lifetimes are 7 = 113.45 and
{ = 107.07. The m].e.'s of k anl  are easily found from (4.2.2) or by direct max-
imization of (4.2.1) to be k = 8.80, & = 12.89. The asymptatic covariance matrix
for (k. &) obtained hy inverting ‘he observed information matrix gives the standard
errors (estimated standard deviaiions) se(k) = 2,73, se(@) = 4.12 and estimated
asymplotic correlation corir(k,6) = —.97. We note that k and & are highly corre-
jated; recall from (4.2.2) that k& =T in the case of uncensored data.

Approximate .95 confidence intervals for k and e, obtained as k& =+ 1.96se(/:')
and @ + 1.965¢(&), are 3,45 < .k < 14,15 and 4.82 < o < 20.96. By way of
comparison, (he .95 confidence interval for k obtained by the invariant procedure
hased on W = 7/7 (Engelhardt and Bain 1978a) is 4.03 < k < 14.40, and the
.95 interval for o based on the vniformly most powerful unbiased test (Engelhardt
and Bain 1977) is 6.5 < o < 13.7..The likelihood ratio confidence intervals are
45 <k < 153 and 7.3 < a £ 26.0. The agreement between the three methods is
reasonably good; with the exact sonfidence limits lying between those for the Wald
and likelihood ratio methods.

Let us now consider a confirlence interval for the median lifetime ¢ 5, which
would generally be of more interest than intervals for & or k. Confidence intervais
for the mean p = ke arc also of ‘nterest, and easily obtained, By (4.2.6), ¢5 satisfies
Ik, ts/w) = .50; that is, 15 = aQ(.5, k), where Q(p, k) is the pth quantile for
the one-parameler gamma distribution (1.3.17). The m.l.e. for ¢ 5 is easily obtained
us fs = & Q(.5, &) = 109.2, but computation of a standard error is difficult. There-
fore we use the likelihood ratio procedure described just before this example in order
fo got a confidence interval. Thixs involves the calculation of likelihood ratio statis-
tic values A(r5) for specified values of ¢5; note that A(¢5) ='2£(1€, Q@) — 2k, &),
wherc k. & maximize (k. @) sulject to the restriction @ Q(.5, k) = t5. The approx-
imate .95 confidence interval for £5 consists of values for which A(r5) < 3.84, and
gives 92,9 <15 < 127.2,

To illustrate the censorcd date case, we suppose that the data had been censored
At = 150 weeks; this would result in five censored survival times, all equal to 150.
In this case k = 5.79, & = 21.3, ve(k) = 2.12, se(&) = 8.54, and Wald approximate
.95 confidence intervals for k and @ are 4.63 < k < 9.95 and 4.56 < a < 38.0. The
likelihood ratio .95 confidence intervals are 2.6 < k < [1.1 and 10.7 < a < 52.6,
there being a Fairly big discrepancy between the two confidence intervals for & The
reason for this is the markedly nonquadratic shape of the likelihood ratio statistic
Az(a). which is shown in Figure: 4.2, The agreement between the Wald and likeli-
hood ratio intervals is improved if we use the parameterization i = log . In this
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Figure 4.2. Likelihood ratio statistic for gamma scale parameter a.

case we have ¢ = logé& = 3.059, se(¥) = se(@)/& = 401, and an approximate
95 confidence interval 2,273 < ¢r < 3.845 from v/ = 1.96se(yr). This transforms to
9.71 < o < 46.8, which is fairly close to the likelihood ratio interval. A check of the
likelihood ratio statistic or the profile likelihood for shows it to be approximately

quadratic.

In order to get a confidence interval for ¢ 5 with censored data, it is simplest to use
the likelihood ratio statistic A(ts). Figure 4.3 shows a plot of the statistic; the .95
confidence interval, consisting of values for which A(ts) < 3.84,is 93,1 < t5 =
144.6. The m.Le. is .5 = 116.3 weeks. N

Graphical model checks for the gamma distribution can be based on probability
ar quantile plots, as described in Section 3.3.1. For tAhe former, for example, we plot
the values (3.3.1) agéinst S(ty; k, &) = 1-—1(tj/&, k), where the ¢; are the obseryed
failure times. For the censored data case here, this is the same as a plot of the points
(¢ — 0.5)/20, I(tj'/&, By forj=1,...,15, where i< < s are tbe qrdered,
uncensored survival times. This plot is roughly linear, and provides no indication that
the gamma model is unsatisfactory. .

A second approach is simply to plot the estimated survivor function S(; &, &), and
the Kaplan—Meier estimate $(t) on the same graph; equivalently, we coulfl plot the
corresponding distribution function estimates. The fit of the model is readily appar-
ent, and we have the advantage of an untransformed plot of survival probabilities.
Figure 4.4 in the next section presents such a plot for an inverse Gaussian model.
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Figure 4.3, Likelihoad ratio statistic for the gamma mecian ¢s.

4,2.2 The Inverse Gaussian Distribution

The inverse Gaussion distribution /G (., A) discussed in Section 1.3,7 has p.d.f,
given by (1.3.23) and distribution function by (1.3.24). For the case of an uncen-
sored random sample 1. ..., i, te m.le.’s of 1 and A are easily seen to be

n
L=T, A =71/Z(if’ ~7h,

i={

In addition, it can be shown that A /A ~ x(l,,_]), that £ ~ IG (i, nA), and that 7 and

A are independent. Confidence limiits or tests for A are consequently easily obtained,
and uniformly most powerful unt iased tests and associated confidence limits for p
are also available, Chhikara and Folks (1977, 1989), Jorgensen (1981), and Johnson
etal, (1994, Ch. 15) discuss these and other results for inverse Gaussian models.

We consider here the general case involving possibly censored data (1;, §;), i =
... on. The log-likelihood function for . and A is

i1

LAy =y 8log (1, A + (1= 8) loglL — F (g3 14, A, (4.2.8)

i=]
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where f(t; w, A) and F(t; i, ) are given by (1.3.23) and (1.3.24), respectively.
Derivatives of £(u, k) are messy but straightforward to evaluate, and the log-
likelihood is readily maximized both by optimization software that requires expres-
sions for first and second derivatives and by software that does not. Confidence
intervals or tests for i or A are easy to obtain via likelihood ratio procedures or the
asymptotic normality of (i, 3). Confidence intervals or tests for quantiles or survival
probabilities can be ebtained by likelihood ratio methods with a little effort, given the
form (1.3.24) for the cumulative distribution function (c.d.f.). It is slightly simpler
to use (i, &) and the estimated asymptdtic covariance matrix I(fi, &)~!, evaluating
the latter cither from algebraic expressions or by using optimization software that
evaluates the second derivative matrix at (i, %) by numerical methods.

Example 4.2.2. Whitmore (1983) considered data on the times to failure of 20
aluminum reduction cells. Failure times, in units of 1000 days, are given below with
asterisks denoting a censored observation:

468, .725, .838, .853, 965, 1,139, 1.142, 1.304, 1,317, 1.427,
1,554, 1,658, 1,764, 1,776, 1.990, 2.010, 2.224, 2.279*, 2.244*, 2.286".

General optimization software readily finds m.lLe.’s for 4 and A from (4.2.8) as A=
1.61, A = 5.96, with standard errors se(22) = 0.20, se(A) = 2.06, and estimated
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Figure 4.4. Inverse Gaussian and Kaplan-Meier estimates of S(f) for aluminum reduction cells,
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‘Fable 4.2. Approximate 90% Confidence Intervals for F(.5), F(1.0), and F(1.5)

Methad F(.3) F(1.0) F(1.5)

Wald (1) ' (0, 038) (11,.37) (.40, .69)
Wald (2) (.N02, 082) (.14, .39) (.40, .68)
Bootstrap (3) (0, .033) (.09, 36) (.38, .69)
Bootstrap (4) (.001, 073) (.11,.39) (.40, .70)

asymplotic correlation -0, 15, To assess the fit of the model we plot the estimated
inverse Gaussian survivor functien S(r; &, /\) and the Kaplan—Meier estimate S(t) in
Figure 4,4. There is no indicatior that the mode! is inadequate.

Lel us obtain approximate .90 confidence intervals for failure probabilities F(¢),
given by expression (1.3.24), Tat le 4.2 shows intervals based on four methods:

1. ThehWa]d interval v &= 1.645se(y), where ¢ = F () is given by (1.3.24) and
se(yr) is obtained by a straightforwatd but tedious application of the asymp-
totie variance formula (B2},

2. The Wald interval based on transforming $4:1.645se(8), whele § =log(d/(1—
r//)) and.ve(é) = .ve(z//)/(1/ (1- 1/r)).

3. The nonparametric percen::ile bootstrap method (Efron and Tibshirani 1993,
Ch. 13).

4, The bias-corrected (BC) hootth ap method (Efron and Tibshirani 1993 Ch. 14).

Results are shown in Table 4.2 for F(,5), F(1.0), and F(1.5). Except for F(.5)
there is reasonable agreement acioss the four methods, given the widths of the inter-
vals. In the case of F(.5), the intervals based on methods (2) and (4) are to be pre-

lerred.

4.2.3 Models with Pelynomial-Based Hazard Functions

As discussed in Section 1.3.9, a variely of lifetime models beyond the standard log-
Jocation-scale, gamima, and inverse Gaussian models are sometimes used. Examples
of settings that are not well descri sed by any of the standard models are when the haz-
ard is bathtub-shaped or bimodal, Models in which /(¢) or some transform of it are
Jow-order polynomials sometimes provide a reasonable fit to data in such cases. Tak-
ing log (1) to be of polynomial fiarm is attractive, since no restrictions on the param-

eter values are required, The Goinpertz distribution, for which log A (1) = ap + ai¢,

has closed-form expressions for density and s.f.’s and has been used a good deal.
Models with polynomials of degree two or higher, which can represent nonmono-
tonie hazards, do not give a cloted form for S(¢). This is not in principle a major
impediment to their use, given the availability of numerical integration software for
cvaluation of (1) and S(1).

Modecls for which /i(¢) is polynomial are more easily handled, since H(¢) is also
polynomial in that casc. However, the requirement'/z(r) > 0 means that parameters
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must satisfy certain constraints, Models with fractional powers of ¢, for example,
h(t) = ag + a1t1/? 4 ayt, are also easy to handle. The use of a quadratic model for
h(#) is illustrated in Example 4.3.1 of Section 4.3. More flexible families of models
can be provided by taking k() or log i (¢) to be piecewise polynomial, This leads to
(regression) spline models introduced in Section 1,3.8; we will consider cubic splines
briefly.

A cubic regression spline model for A (¢) is one for which A(r) is piecewise cubic.
Let a; < -+ < a be a sequence of specified cut points or “knots,” and define
ag = 0 and az4.; = oo, the cubic spline then consists of cubic polynomials over the
intervals (a;-.1, ay), which are forced to join smoothly at the knots. In particular, 4(r)
is defined so as to be continuous and have continuous first and second derivatives at
ai, ..., ar. The model can be represented parametrically in various ways; one simple
form is

k
W) =g+t +aat o3’ + ) 6t —a))l, 4.2.9)
J=l

- where a4 denotes max(a, 0). With & = 0, (4.2.9) defines A(¢) as a single cubic

polynomial, and with £ > 1 the hazard function consists of k¥ + 1 cubic pieces, It is
easily seen that if there are £ + 1 pieces, the number of parameters in the model is
k+4, _1'eﬂecting the faqt that h (¢) has the aforementioned continuity restrictions.

Splines are also associated with smoothing procedures discussed in Section 3.4
and were used in Example 3.4.1. Our interest in them here is as patametric models,
and we rarcly want to consider & bigger than two or three, so.that the total number
of parameters is seven or fewer. The parametric form (4.2.9) is usually poor for
computation or estimation, it being preferable to have parameters that are at least
roughly orthogonal. In practice, representations

14
h(ti @) =Y o B(t)
J=1

in terms of known functions B;(¢) are normally used.

Cubic splines with one or two well-chosen knots can provide flexible enough
models for h(r) to fit a wide range of lifetime data. Because a fitted cubic polyno-
mial may extrapolate poorly and is sensitive to changes in the data, the cubic piece
over (ax, o0) is sometimes replaced with a linear function. Various presentations of
spline models have been given in the literature in conjunction with censored data,
Seé Rosenberg (1995) for spline models for /(t); Kooperberg et al. (1995) for spline
models for log /2(¢); Abrahamowicz et al. (1992) for spline models for the p.d.f. f(¢),
and Kooperberg and Stone (1992) for spline models for log f (¢).

The log-likelihood function based on a censored random sample (¢, §;), i
1,...,n, can be written in the form (2.2.17), giving

I

o) = Z[Sz logh(ti; @) — H(ti; )], (4.2.10)
fe=1



174 {NFIiRENCE PROCEDURES FOR PARAMETRIC MODELS

where n1(1: @) and H(1; @) are the hazard and cumulative hazard functions, and o
denotes unknown parameters. If A(r; @) is piecewise polynomial, then so is H (¢ @),
and (4.2.10) has a closed form. More generally, numerical integration is needed to
evaluate ¢(a). It is possible to trzat the cut points or knot positions a;, as parameters,
or to prespecify them. The latter is easier, although when the a; are based on an
inspection of the data, the precicion of estimates is overstated.

Tt should be said that spline models with.even one or two knots have fairly many
parameters, and should not be considered a substitute for parsimonious paramet-
ric models, Their main use is in difficult settings where simpler parametric models
appear inadequate,

4.3 GROUPED, INTERVAL CENSORED, OR TRUNCATED DATA

43,1 Grouped Lifctimes

Girouped lifetime data are imerval-censored data where each individual has the same
potential observation intervals, (n particular, suppose that lifetimes are observed to
lall into k + | intervals [; = [cj-1oa) j = 1,,...,k+1,where0 = ag < a1 <

. < < de=y = oo, Let ¢ be the number of lifetimes in I;, from a random
sample of size n. In seltings where it is possible to see individuals or units only at
the time points ay, ...tk we cften know only the d; and not the exact lifetimes for
each individual.

When lifetimes from a confinuous distribution are grouped, estimation can be

based on the exact muitinomial Tikelihood function for the observed data (di, ..., dk).

Il the underlying distribution of' T has c..f. F(1; 0), then (d1, ..., dy) has a multi-
nomial probability function ’

n! (’] dy _ ke

-(-}I—!:—mﬂ:l "'7Tk TE/(+]_' (43.].)

where m; = Priaj-1 = T <ap)=Flaj; NH—F(aj-1: 0). The likelihood function
for @ can therefore be taken as

k41
L(0) = | JTF(aj; ) = F(aj-1: 017,
j=| ' '

43.2)

Maximization of £(0) = log L(#) can usually be easily achieved with general-
purpose optimization software. The score function and information matrix for 8 are,

respectively,

4.3.3)

aln k-1 « ,
oy S () (0m) 4
)= 5090 T 4 x?\ 30 ) \30') " 7;5600"
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and inferences about @ can be based on the general procedures described in
Appendix C.

- If censoring can occur in intervals other than the last (i.e., there can be with-
drawals in some intervals), the exact likelihood function cannot be written down
without further assumptions. One possibility is that all withdrawals occur at the ends

* of intervals. In this case, if w; represents the number of withdrawals in 7, the like-

lihood function is

k+1 ‘ .
L(8) = [ [[F(as; 6) — F(aj—1; OV S(a;; ).
j=

4.3.4)

If, however, withdrawals occur at unknown times within /;, then some assumption
about the withdrawal mechanism is needed, just as in the case of life table estimation
(see Section 3.6 and Problems 3.17, 3,18). The likelihood (3.7.4) in Problem 3.18 is
often a reasonable adjustment to (4.3.4).

Example 4.3.1. The data given in Table 4.3 are from results concerning the
time to second failure for 104 bus motors (Davis 1952), with time being the num-
ber of thousand miles driven. The data suggest a model with a nonmonotonic haz-
ard function, in particular, with the bathtub shape discussed in Section 1.2.4. One
family of models that might be considered is that with quadratic hazard functions
h(t) = g -+ @t + azt? In this case, the cumulative hazard function is H(t; 0) =
By -+ B2t + 6313, and the. distribution function is F(t; 8) = 1 — exp[—H (t; 0)],
where 8 = ay-1/j (j = 1,2, 3.

Using the likelihood (4.3.2) with k = 6, (a1, ..., as) = (20, 40, 60, 80, 100, 120),
and (dy, ..., d7) = (19, 13, 13, 15, 15, 18, 11), we rewrite the model as H(r; 0) =
6;(t/100) + G.Lﬁ(t/IOO)2 + 64 (1/100)3 for numerical stability. We then find using
general optimization software that the m.l.e. for 8 is o = (1.315, —1.695,1.747),
giving

H(:: 6) = 1.315(t/100) — 1.695(/100) -+ 1.747(¢/100)%,

To‘as‘sess the agreement between the fitted model and the data, we can calculate
expected frequencies

e; = 104[F(a;; 0) = Flaj-n ) j=1,....7.

Table 4.3. Frequency Distribution for Bus Motor Failure Data

Thousands of Miles  0-20  20-40 40-60 60-80

Observed frequency 19 13 13 15 15 18 B
Expected frequency  19.64 12,29 12,44 15.70 17.43 14.47 12.04

80-100  100-120 = 120
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This gives the expected ﬁequencnes shown in Table 4.3, The agreement between
expected and observed f 1equencxes is quite good, The Pearson chi-squared goodness-
of-fit statistic Y- (d; — e,) /ej (nee Section 10.2.3) gives a value of 1.41 and an asso-~
ciated p-value of Pr (x o = 1.41) = .703. indicating no evidence against the family
of mocdels, Further dmcuwon o’ goodness-of-fit tests is provided in Chapter 10.

4.3.2 Interval-Censored Datn

Interval censored data, as descr bed in Sections 2.3.1 and 3.5,3, generate likelihood
functions of the form (2.3.1):

n
L) = [[IF (R 0) = F(Li; 0], (43.5)

i=1
where F(/; ) is the ¢.d.f. for I:fetime and the ith lifetime has been observed to lie
in the interval (L;, R;}. The sco e function and information matrix are, respectively,

8(’ dAF/00
= 43.6
Z AT (43.6)

=020 L1 /8AF;/00\ (dAF /06 3%AF: /3030’
) = ——— = e e - , 4.3.7
@ 4090’ ;’{( Al )( AR ) AT ( )
where £(0) = Iug L(#), and we use the notation AF; = F(Ry; 8) — F(Ly; 6).
The m.le, 0 can be found by solving 8¢/ = 0 or by direct maximization of

(M, and inferences about @ can be based on the methods of Appendix C, Some’

survival analysis software can fandle interval-censored data for log-location-scale
models; sce the Computational Notes at the end of the chapter. More generally, gen-
eral oplimization software desciibed in Appendix D can be used.

Example 4.3.2.  [n Exampl: 3.5.5 we considered some data on the times to the
appearance of cracks in melal trbine wheels, Each of 432 wheels was examined on
a single occasion; the failure times are thus interval censored, with (L;, R;] equal to

either (0, C;] or (C;, 00], where C; is the time ofmspectxon for wheel i. This is often
referred to as cuncnt—slatuq datz,

A nonpmamctnc estimate of the c.d.f. F(r) was obtamed in Example 3.5.5. Here
we oblaina pammemc c:tnnale based on the assumption r.hat

~1'(::a./3)= —exp[—(r/a)f’] £20

is of Weibull form, Sinpe either L; == 0 or Ry = oo for each item, (4.3,5) can be

writlen as -

Lie. ) = [ | 7(Cri . BYN[1 = F(Cii e, B,
=1 .
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Figure 4.5, Weibull and nonparametric estimates of F(¢) for time to crack initiation.

where 8; = I(T; < C;). Maximization of £(x, 8) = log L(a, 8) or the equiVa—
lent log -likelihood for the extreme value parameters u = loge, b = B! gives the
m.le.’s & = 46,78, f = 2.176. Standard errors obtained from the inverse of / (&, B),
as given by (4.3.7), are 2.99 and .271, respectively. Figure 4,5 shows the Weibull
mle. F(t; &, ﬁ) and the nonparametric estimate F(t) obtained in Example 3.5.5,
along with the pointwise approximate .95 confidence limits associated with the non-

‘parametric estimate obtained earlier.

The Weibull model provides a reasonable fit to the data, as evidenced by a com-
parison of the parametric and nonparametric estimates. In many applications there is
a desire to use a parametric model to extrapolate beyond the observed failure times,
but this is naturally risky. As an illustration, we note that a log-logistic model (1.3.12)
also provides a satisfactory fit to the data here. The m.l.e.’s of u and b in (1.3.12) are
i = 3,680 and 5 = 0.394. The Weibull and log-logistic estimates of F(¢) agree

- well up to ¢ = 50, but very different m.Le.’s of .960 and .856 are obtained for F(80) .

under the Weibull and log-logistic models, respectively, The maximum values of the -
log-likelihood under the two models are —189.29 and —189.73; the Weibull model
is slightly favored, but theré is no signiﬁcan; difference between them,

4.3.3 Truncated Data

Left- and right-truncated data have been discussed in Sections 2.4 and 3.5, Lifetimes
may also be subject to more general forms of truncation or selection. A rather general
setting is where a lifetime T; is forced by the observation or selection process to lie
in the interval (i, v7], so that u; is a left-truncation and v; a right-truncation time,



178 INFI:RENCE PROCEDURES FOR PARAMETRIC MODELS

The cases 1; = 0 and v; = oo give ordinary right truncation and left truncation,
respectively. If on independent interval censoring mechanism applies, s0 that 7; is
observed (o lie in the interval (L, Ri]l & (w4, ], then the likelihood function from

n independent individuals is

" ” e I ~ .

Lo =[] FRi; 0) = F(Li:6) (4.3.8)
it Fui; 0) < Fuii 0)

where F(1; 0) is the parametric c.d.f. for an untruncated lifetime.

Maximum likelihood estimation and associated inference procedures can be
implemented using methods dencribed in Appendix D. Some survival analysis soft-
ware handles truncation and interval censoring for log-location-scale models; see
the Computational Notes at the: end of the chapter. It should be noted thal severe
truncation limits the amount of information about model parameters, producing like-
Jihood functions that are Aat in certain regions, and possibly nonelliptical. This can
render maximization of £(8) more difficult, and Jarge-sample inference procedures
innccurate. We consider two examples of truncated data to illustrate the differences
between mild and severe truncation effects.

Example 4,3.3, (Example 3.5.3 revisited), Examples 2.4.4 and 3.5.3 dis-
cussed right-truncated data on “he time T from HIV infection to AIDS for a group
of 124 persons aged 5-59, whose HIV infections resulted from blood transfusions.

The right truncation arose froni the fact that for an individual to be included in the

data set they had to be diagnosed with AIDS by June 30, 1986. The AIDS latency
times, 1;, and truncation times, v, in months, are given in Appendix G.

Figure 3,16 showed the nonparametric m.Le. of Fr(t; Vmax) = F(t)/F(vm,\x),
where F(1) is the c.d.f. for latency time and vmx = 99.5 months is the largest
truncation time in the data set. If a parametric model F(t; 0) is specified, then it is
possibicto estimate the uncond tional (untruncated) distribution of 7. As we will see,
however. such estimates are nct precise, and it is impossible to differentiate among
models that give very different estimates.

Consider 1 Weibull model with ¢.d.f.

e, B)=1-— exp[—(l/a)ﬂ] 1= 0.

The special case of (4,3.8), which corresponds to right-truncation only (u;j = 0),
and exact observation of & (F Ri: 0) — F(Li: 0) o f(4; 0)), gives the likelihood

function

n 3
f o, B)
Lia. =] =—"—7 (4.3.9)
¢ i Fluia, B)
where [(r:a. f3) is the Weibvll p.d.f. (1.3.5) with o = A~!. To make the likeli-
hood more elliptical we emplcy the extreme value parameters v = loga, b = g
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when maximizing (4.3.9), and find estimates and asymptotic standard errors (given

in brackets) from the observed information matrix as &I = 5.40(2.96), b = 48(.06). -

Although the extreme value scale parameter 5 and Weibull shape parameter 8 are
precisely estimated, the parameters u and @ = exp(«) are not. This implies as well
that quantiles of T, given by #, = exp{u +blog(— log(1 ~ p))}, are also imprecisely
estimated, For example, a naive approximate .95 confidence interval for @ == 632 is
given by exp(a & 1.96se(i)}, which yields the interval (.7 months, 73,130 months);
this is both uninformative and nonsensical. ,

Figure 4.6 shows contours of the log-likelihood function £(u, b) = log L(u, b),
from (4.3.9); the maximum value is £(i, b) == —35.05. The lack of information about
the parameter u is clearly indicated.

As a check on the Weibull model, we compare the nonparametric estimate of
F(t)/F(99.5) from Example 3.5.3 with the Weibull estimate F(¢; &, ﬁ)/F(99.5;
&, B) in Figure 4.7, The estimates agree well, bearing in mind the large standard
errors for the nonparametric estimate at larger values of ¢. ‘

The truncation in this problem is severe; it is known from other HIV-AIDS studies
where truncation of latency times was not an issue that median latency times for the
types of individuals represented here are of the order of 10 years. Thus, the data

. here represent only the lower end of the distribution. Nonparametrically we cannot

estimate unconditional probabilities, F(t), or quantiles, ¢, at all, as discussed in
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Figure 4.6, Contours of log-likelihood &(u, b) for right-truncated AIDS latency-time dnta.
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Figure 4.7, Weibull and nonparaietric cstimates of F(/F (99.5) for AIDS latency times.

Example 3.5.3, but even with th: assumption of a parametric model there is little
information about such quanlities. '

Example 4.3.4. (Cxample 3.5.1 revisited). Left-truncated data on the life-
times 7 (in thousands of km driven) of automobile brake pads were discussed
in Examples 2,42 and 3.5.1. A nonparametric estimate of the conditional s.f,
S tmin) = S(E)/S(tmin), wat obtained in Example 3.5.1, where S(¢) represents
the unconditional s.f. for T and wpjn = 7.0 km is the minimum truncation time
across the 98 vehicles represente 1 in the data set. Analysis using several parametric
models indicated that a log-noriral distribution fits the data well; a plot of the non-
parameiric and log-normal estimates of 5(t)/S{umin) was given in Figure 3,14, We
comment bricfly herc on the log-normal model, which was fitted by using the likeli-
hood Function (4.3.8) corresponciing to left truncation at u;, with exact observation

of ;. This gives

H
fti; py 0)
L, = S
() ,U, S(uis o)
where“/'(t; i, o) and S(; 4, 00 are the log-normal p.d.f. and survivor functions
given by (1.3.10) and (1.3.11), rspectively, Maximization of L(, o) gives m.le.’s
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and standard errors (in brackets), as i = 4.109(.045), & = .421(.033); both 1
and o are precisely estimated, It is known that almost no brake pads have life-
times less than 7.0 thousand km. Under the log-normal model the unconditional
probability Smin; fbn &) is Over 99999, so the estimated truncation effect is neg-
ligible. Consequently, the log-likelihood function and information about parame-
ters 4 and o is essentially the same as for a complete, untruncated sample of size
n = 98, .
i

|
4.4 MIXTURE MODELS

Mixture models were introduced in Section 1.3.10. Continuous mixtures, in which
the survivor function for T is of the form (1.3.29), are in principle easy to deal with,
provided the model parameters are well identified. In this section we focus on dis-
crete mixtures, where S(¢) is of the form (1.3.26). Only models with two components
are considered; mixtures with more components are encountered rather infrequently
in lifetime distribution applications, ‘

Maximum likelihood estimation with parametric mixture models can be imple-
mented with general optimization software, as described in Appendix D. Depending
on the extent to which the component distributions in a mixture overlap, the like-
lihood function may be flat in certain regions and preclude precise estimation of
individual parameters, Determining the m.l.e. may also be difficult in some cases.
Discrete mixtures are most conveniently used in settings where the data suggest there
are two or more well-separated components to f(¢) or h(t). We consider a pair of
examples in which this is the case,

Example 4.4.1, (Example 3.3.3 revisited). Colon cancer recurrence times

- were discussed in Example 3.3.3 for two groups of patients: a Drug Therapy and a

Control group. Times to recurrence, T, are measurcd in days from treatment, Non-
parametric Kaplan—Meier estimates of the survivor functions S() for each group .
suggest that the hazard function for recurrence drops to a low value by some point,
perhaps because some fraction of patients are cured and will never experience dis-
ease recurrence. It was noted in Example 3.3.3 that standard distributions for which
S(t) — 0 for ¢t large, such as the Weibull and log-logistic, do not fit these data.

Plausible models are ones for which a fraction 1 = p of patients is assumed to
have no chance of disease recurrence. These are sometimes referred to as cure-rate
models, and have s.f.’s of the form (1.3,29);

S@) =pSa(®) +1~p, 4.4.1)

where 0 < p < 1 and Sp(¢) is a s.f, with §(0) = 1 and S(o0) = 0, We consider first
a model where Sp() is of log-lqgistic form (1.3.13),

So(t) = {1+ /)Pyt =0 (4.4.2)
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The p.d.f. corresponding to (4.4.1) is then TpS(’)(t), or

p(B/e)(t/e)P~!
{1+ (1/)f}2

f@ e B)=

The likelihood function from a censored sample of recurrence times is
1
-5
Lia. B, p) = | £t B, ) S, B )17,
i=1 ;

where S(t; @, 8, p) is given by 4.4.1) and (4.4.2). Parameter estimates and standard
errors (in brackets) for the Control and Therapy groups are obtained with no difficulty
by standard optimization proce:lures, and are as follows:

= 0.608(0.032)
p = 0.426(0.032).

Control ;

§ = 419.5(39 8), /3 = 1.58(0.13),
Thcmpy : B

& = 479.0(51 1), = 1.68(0.17),

A plot of the s.f, estimates S('; &, B, p) is shown in Figure 4.8 as Model (1) for
each of the treatment groups, alng with the Kaplan-Meier estimates for each group;

S
- — KM
------- Madel (1)
- — = Model (2)
o | .
[=1
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™3
o
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Figure 4,8, Parsmetric mixture and Kaplan-Meier estimates of S(#) for colon cancer recurrence.
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Figure 4.9, Likelihood ratio statistic for the proportion of patients, p, who expericnce cancer recurience.

the parametric model fits well, Parametric estimates of S(¢) based on (4.4.1) with a
Weibull distribution Sp(t) = exp{—(¢t/@)f} in place of (4.4.2) are also plotted as
Model (2). The Weibull mixture model fits well, too, though slightly less so than the
log-logistic mixture,

The mixture models provide estimates 1 — j of the fraction of the population
who are long-term survivors (i.e., have no cancer recurrence). In settings where cen-
soring is heavy there may be high correlations among the m.l.e.’s, and an imprecise
estimate of p. That is not the case here, because follow-up of individuals was long

" and very few failures with large values of ¢ were seen, Confidence intervals for p

or 1 — p by the naive Wald method and by the likelihood ratio statistic A(p) =
2(a, ﬂ p) — 2e(@(p), B(p), p) agree quite closely. For example, A (p) is plotted
for the Therapy group and the log-logistic model in Figure 4.9, and is seen to be

" approximately quadratic. Approximate .95 confidence intervals p == 1.965e(p) and

{p: A(p) < 3.84} for the Therapy group both give approximately .36 < p < .49.
The corresponding confidence interval for the Control group is .55 <.p < .67,
indicating a clear difference in the propomon of long-term survivors under the two

treatments

Example 4.4.2. (Example 3.4,1 revfsited). Example 3.4.1 discussed data on
the times to failure for 60 electrical appliances subjected to a life test. Exploration
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of the data there suggested that the hazard function might have two componc':nts.
one consisting of a fairly smatl portion of the distribution and giving.small failure
(imes. and one giving a wide range of larger failure times. A discre'te mlxtt_lre may be
plausible physically, with the left.most component representing {tems with defects
that make them liable to fail early. and so we explore this possibility.

Examination of the data and cf the Nelson—Aalen and Kaplan—Meier estimates
can suggest plausible vatues for p, and parametric models for the components S (£,
§2(1) of a mixture with survivor function

S(1y = pSi(®) + (1 = p)S2(1) (4.4.3)

and corresponding p.c.f.
) = pfin) + 1 = p)fa). (4.4.4)

For example, the Kaplan-Meier sstimate Sg p(t) shown in Figure 4,10 suggests a

value of p in the . 1-2 or .B-9 range; a plotof —log Sk M @) or of the Nelson-Aalen

estimate Hya(t) sugge

functions may be suitable. Conse juently, we will consider a mixture of two Weibull

sts that models for 51(t) and S2(¢) with monotone hazard

------- Model Estimate

1.0 - -
\ ———  Kaplan-Meier Estimate

0,5 -

S(n

0.0

0 3000 6000 9000

Figure 4,10, Parametric mixturc and ¥.aplan-Meicr estimates of S§(t) for electrical appliance failures,

THRESHOLD PARAMETERS 185

components, with §; (#) and S2(¢) in (4.4.3) given by
Sj) =expl—(t/ap)P]  j=12 (@.4.5)

The log-likelihood function based on the 60 failure times fi, ..., 60 given in
Example 3.4.1 is of the form

GO
£(ai, B1, oz, B2, p) = ) _log f (i @1, f1, @2, Ba, P), (4.4.6)
f==1

with f(¢) given by (4.4.4) with f;(t) = —Sf,(t), j = 1,2 Thq model (4.4.4)
and (4.4.5) with the two parameter vectors («, 8, &', p’, p) and (&, B, B, 1—p)
are the saime, so without loss of generality we make the restriction 0 < p < .5.
The m.l.e.'s are then readily found by using general optimization software to maxi-
mize (4.4.6); estimates and standard errors (in brackets) are @) = 95.4(25.8), ﬁ; =
1.66(.49), &; = 2774.5(314.2), B2 = 1.40(.18), p = .137(.051). Asymptotic corre-
lations of the m.l.e.’s are all under 46, Initial estimates for the optimization procedure
are suggested by examination of S‘KM(I) and the data: p = .15 and values for | and
oz (which are the ,632 quantiles for St (t) and S2(¢)) of approximately 100 and 2800
seem reasonable. Initial values for 8; and B, of 1 are often effective, and used here,
though plots developed from the Kaplan-Meier or Nelson—Aalen estimates can also
be used to suggest estimates. -
Figure 4.10 shows plots of the estimated survivor function

§0) = p expl—(t/&)P] + (1 — p) expl—(t/82)"]

and of the Kaplan-Meier estimate. The Weibull mixture clearly agrees with the

observed data,

4.5 THRESHOLD PARAMETERS

As mentioned in Section 1.3, threshold parameters are occasionally introduced into
models; these are values y > 0 such that lifetimes must satisfy the restriction T > y.
For example, the three-parameter Weibull distribution includes a threshold parameter
y and has p.d.f, :

' BT _\B
f(t;y,a,ﬂ)=§<-t—;1> GXP[—-<tay>J tzvy. (4.5.1)

‘The existence of a time y before which failure is impossible is sometimes plausible,

but data aré often quite uninformative concerning its value. In addition, nonstandard
behavior can oceur when maximum likelihood methods are applied to such models.
We will consider these issues briefly, then examine Weibull and exponential distri-
butions with threshold parameters.
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4.5.1 General Remarks

If a model has p.d.f. of the form
f;0,:) = fat—y:6) t=zvy (4.5.2)

and il (1,8, 1 = 1,....nisa censored random sample of lifetimes, then the
parameler y must salisfy y < 1q)y = min(y), since we require f{y;0,y). = 0
and 0 < §(1;: 0, y) < | foreach t;. Peculiarities in the likelihood function

L0,y = [ [ folti = s )% Sotu - : )™ 453)
i=1

can arise. For example, for the three-parameter log-normal distribution where
log(T — y) is N(u, o) it cn be seen (see Problem 4.20) that L(u,0,¥) is
unbounded as 3 approaches (1) from below. The same behavior occurs for the
three-parameter Weibull model (4.5.1) if B < 1, since in that case f(¢) —> o0 as
{ =» 4. This behavior can be avoided if we recognize that there is a finite degree
ol precision within which a continuous variate can be measured, and replace values
for the p.d.f. f () in the likelihood function with Pr(t; — & < T; =t + A) =
F(1 + A) = F(t; — A), where: A represents the precision of measurement, If A is
small, then F(; + A) — F(t; - A) is typically very close to 2Af(#;) and there is
no need for this adjustment, but in the case of #(1) it keeps the likelihood finite and
restricls ¥ to be < f(y — A. An alternative approach, due to Cheng and lles (1987),
is to leave the restriction as ¥ < 41y, but replace f (¢(y)) in the likelihood function
with F(ry + A) — Fltn),

Estimation of y is also generally nonregular for certain values of @ in a model
(4.5,2); this is discussed.for th: Weibull model in Section 4.5.2, In practice a con-
venient and satisfactory approzch is to estimate # and to examine the fit of models
(4.5.2) with ¥ assumed known. This is easy to do, since when y is known we simply
consider abservations s; = t; -- y for the lifetime distribution fo(si; 0), for which
estimation is typically regular. Plausible values for y can be determined from the
profile likelihood function :

Ly(y) = LB, ¥)

where L (8, y) is given by (4.5.3) and '(”)(y)‘ is the m.le. for @ when y is known.
A plot of L,(y) shows plausible values for y, and in some cases it is possible to
calibrate L, (y) by reference to a x(zl) distribution for an associated likelihood ratio
statistic. The fit of models for fixed values of y can be assessed informally through
plots or more formally through the methods in Chapter 10, Unboundedness of the
likelihood funciion (4.5.3) mar ifests itself in the profile L, (y). This is usually nota
problem, but if necessary we can replace [ (7(1y; 0, y) with either F (t(y+4: 6, 7)—
F(tgy — 8 0,9) or F(rgy + 410, y) — F(Quy, 0,y), as described earlier, This
makes the lkelihood function (4.5.3) and L,(y) bounded. The details associated

THRESHOLD FARAMETERS 187

with different models vary slightly, but the discussion in the next subsection for the
Weibull distribution deals with the crucial points.

Some authors allow the parameter y to take on any real value, whereas we insist
that ¥ > 0. Although there are certain mathematical advantages to leaving y arbi-
trary, it is naturally nonnegative in lifetime models. Sometimes an estimation proce-
dure may produce a negative confidence limit for y; in that case we replace the limit
with 0. Cox and Hinkley (1974, pp. 224-226) provide discussion on tﬁls point.

The log-likelihood function from a censored random sample (#;,8:), i = 1,...,n
arising from (4.5.1) is, from (4.5.3),

4.5.2 The Three-Parameter Weibull Distribution

n n - B
be. o) = rlogp-rflogect(8-1) Y togu-p-3_ (12X ), 454
i=1 f=1

o

where r = 3 §; is the number of uncensored lifetimes. This function is unbounded,
since for any 8 < 1, £(a, B, ¥) — oo as y — {1y—. Consequently, a solution to
the likelihood equations 8¢/8c = 0, 3£/38 = 0, 8£/8y = 0 does not produce

a global maximum for the likelihood. It appears from empirical investigation (e.g.,’

Pike 1966; Rockette et al. 1974; Lockhart and Stephens 1994) that the likelihood
equations must have two or fewer solutions. It has been proven that when e, B,7)
has a local maximum, there is also a second solution to the likelihood equations that
gives a saddle point. A ‘

Situations in which the Weibull distribution is used with a threshold parameter
typically have 8 = 1, and we restrict attention to this case. With the restriction
B = 1, the likelihood functio'g is bounded and it may have a local maximum at a
point (&, 8,7) with & > 0, 8 > 1, § < ty. When there is no local maximum,
£(w, B, v) is maximized over the region witha > 0, 8 > 1, ¥ < 1) by

¥ =ty .

1 ~
f=1, &:Zt‘ Y (4.5.5)
f=1

This can also give the global maximum of £(c, 8, y) when a local maximum exists,
s0 it is necessary to compare the likelihood function values at (4.5.5) and at the local
maximum in order to determine the global maximum. In this way, maximization of
£(x, B, ¥) gives essentially the same estimate as does maximization of the likelihood
obtained by adjusting £ (¢1); , 8, y) as described in the preceding section, assuming
the restriction 8 > 1 is retained.

A good way to obtain the m.Le. and determine plausible values for y is to compute
the profile log-likelihood function £, (y) = £(@(y), ﬁ(y), y), where &(y) and ﬁ(y)
are the m.l.e.'s of & and 8, with y held fixed, These estimates are easily found by
treating the values 5; = t; — y as a censored sample from the two-parameter Weibull
distribution, As described in Section 5.2, estimates are provided by many software
packages. A graph of £,(y) shows plausible values of y and in most cases allows y
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{0 be accurately determined; note Lhat only values y < (1) are considered and that we
restrict attention to values 8 > 1. When the m.lLe, (&, ﬁ, 7) has been obtained, the
Jog relative profile likelihood or the corresponding likelihood ratio statistic A(y) =
20(&, B, ) — 2L, (y) can also be ralculated. Asymptotic theory shows that ifg > 2,
then A(yy) has a limiting x(zl) distribution when y > 0 is the true value of v,

though the adequacy of the X(Z;) approximation in moderate-size samples has not
been thoroughly investigated. If B < 2, then the ]i}'niting distribution of A () is not
x:—,). In the case where it is known that 8 =1, we'have a two-parameter exponential

model, and it is noted in the next section that A (yo) is then asymptotically x(zz). For
practical purposes a conservative guideline is to think of plausible values for y as
ones with A(y) < 5.99, which is the 95 quantile for x(zz), If plausible values for B

appear Lo be greater than 2, then we can use insteTad the x(zl) quantile 3.84. In most
cases the log-likelihood function £(a, B, y) is very flat near the m.le. and there is a
wide range of plausible values for y. ' .

The threshold parameter has ¢ different function than o or B in (4.5.1). Interval
estimation and tests ahout distriution characteristics are best carried out with y
treated as known; the sensitivity of inferences to variation in y can be examined.
Point estimates and confidence intervals for o and p often vary widely as y is varied;
this reflects the Tact that the likelihood function £(x, 8, ¥) is flat near the m.l.e., and
that the m.l.c.’s are highly corre’ated. The data are informative only about certain
functions ol «, A, and ¥ and not the individual parameters. As illustrated in the
example below, estimates of quantiles tp = y + a[—log(l — p)]l/ﬁ are often quite
stable as ) varies, and it would then be reasonable to quote confidence limits for ¢,
with y assumed equal (o P,

Example 4.5.1, Pike (1966) gave some data from a laboratory investigation in
which the vaginas of rats were painted with the carcinogen DMBA, and the number
of days T until a carcinoma appeared was tecorded. The data below are for a group
of 19 rats (Group | in Pike’s paper); the two observations with asterisks are censoring

times,

143, 164, 188, 188, 190, 192, 206.209!213, 216, 220, 227, 230,
234,246, 265, 304, 216*, 244*

These data-were given in Proble'n 3.5, where it was suggested that probability plots
for Weibull distributions with and without a threshold parameter be considered. We
will fit the three-parameter model to the data here.’

Table 4.4 shows estimates &(y), ﬁ(y), nd associated values of the profile
log-likelihood £,(3). The estimates &(y), ﬁ(y), and log-likelihood values are
obtained by maximizing (4.5.4) with y fixed, which is the two-parameter Weibull
log-likelihood function (see Section 5.2), with 1; replaced by 1 —y. From this we see
that a local maximum of £(a, B, ) occurs at about P o=122,a = 108.4, B =2.712,
though the log-likelihood is very flat in the region of this point. Values of the pro-

file relative likelihood function Rply) = L,,(y)/L,,()"/) and of the likelihood ratio

THRESHOLD PARAMETERS 139

Table 4.4. m.l.e.’s and Profile Relative Likelihood for -y

¥ E1%) ;1)) A R, (v) A)
0 234.3 6.08 -88.233 403 1.818
60 173.2 4,49 —87.831 602 1,015
100 131.8 3,38 —~87.467 .867 285
110 121.2 3.08 —87.381 945 113
120 110.6 2.78 —87.327 998 004
122 108.4 271 —~87.324 1,000 000
125 105.2 2.61 —87.330 994 012
130 99,7 2.44 —-87.382 944 15
135 94,0 2.24 87,542 804 436
140 88.0 1.99 —88.064 477 1,480
142 85.2 1.80 ~88.773 235 2.896

143 81.1 1.00 -91,718 012 8.846

statistic A(y) = —2log Rp(y) = 28(e, ﬁ, 7) — 2£,(y) are also given in Table 4.4,
Figure 4.11 shows plots of these two functions; although the relative likelihood
function is equivalent to the likelihood ratio statistic, which we normally plot, we
show Rp(y) here as well to emphasize the shape of the profile likelihood function
for y. It is seen that no values of y in (0,143) are particularly implausible except for
those very close to 143. Note that we have restricted 8 to be > 1; if we allow values
B < 1, there is a local minimum of £, (y) very close to #1) = 143, and both £, (y)
and £(a, 8, y) become zu;bitrzu'ily large as y — 143.

Note that &(y) and B(y) vary considerably with y. Unless we are willing to
restrict ¥ to a narrow range, precise estimation of @ or § is not possible. How-
ever, estimates of quantiles or survival probabilities are quite stable as y varies, For

~ example, the m.l.e, for the pth quantile with a given value of y is

)=y +a@)[—log(l — p)]l/ﬁ(y)'

Estimates for p = .10, .50, .90 at y = 60, 100, 140 are as follows:

£10(60) = 164.9 £50(60) = 219.6 £ 90(60) = 268.6
t40(100) = 167.7 t50(100) = 218.2 t90(100) = 268.7
t10(140) = 168.3 t50(140) = 213.2 tgn(140) = 274.0.

One would expect these estimates to be stable, because Weibull plots of the data with
the different y values indicate an adequate fit to the data in each instance,

The value ¥ = 0.is of special interest because it corresponds to the absence
of a threshold for failure. With these data y = 0 is clearly plausible, and there is no
need to consider a formal test. If a test were of interest, it would be satisfactory to use
A(y) as a test statistic, with a p-value computed with the approximation Pr(A(0) =
Agbs) = .SPr(x(zl) > Agps). This is because, whereas A (yp) is asymptotically xz_
when g > 2 and yp > 0, the likelihood ratio statistic A (0) has a limiting distributi(()Ir)l
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Figure 4.1L, Relative likelihood Tunc jon and fikelihood ratio statistic for Weibull threshold parameter
(time to vaginal cancer data),

when p = 0 with Pr(A(0) = 0) = .5and Pr(A(0) > x) = .SPr(x(Z,) > x) for
¥ > 0, Alternatively, if we allow y and thus ¥ to be negative, then A(0) has a X(21)
limiting distribution when = 0; a one-sided test of ¥ = 0 against alternatives with
¥ > 0 then gives the same p-vlue as for the case with restriction y > 0.

4.5.3 The Two-Parameter Exponential Distribution

The Lwo-parameter exponentia’ distribution has p.d.f.
: ]

1
JU6 =gt 2y, (4.5.6)

Although there seem to be relatively few documented applications of this model
to real dala, it is rather easy to deal with and has received considerable theoretical
attention. It is also of interest as a special case of the Weibull model in the preceding
section, A few results are suminarized here.
The log-tikelihood Function from a censored random sample (¢, 8;),i =1,...,n
is
i

L@,y =—rlogh -y (l—'é‘-"—) 4.5.7)
i=1
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where » = Y_ ; is the number of uncensored lifetimes. Bearing in mind that y < t(1),
the smallest observed time, it is easy to see that for any 6 > 0, £(8, y) is maximized
aty = t(1y. Since £(6, t1y)'is maximized at S (4 —t1y)/ r, the m.Le. based on 4.5.7)
is

n
P = Z(l‘( — )/, 7 =1. (4.5.8)
i=1

As elsewhere, it is tacitly assumed that » > O; when r = 0, the likelihood does not
possess a finite maximum.

Tests and interval estimates for § are readily obtained, and are essentially the same
as procedures for 6 in the one-parameter exponential model, given in Section 4.4.1,
with #; — (1) used in place of #;, For example, the likelihood ratio statistic for 8 is

A(8) =28(8, p) - 2£(6,7(6))

6 6\

and we can use the limiting x(zl) distribution of A (@) in order to obtain tests or con-
fidence intervals. ~ :

Inferences about y via its likelihood ratio statistic are also straightforward, though
the limiting distribution for A(y) turns out to be x(zz) rather than the regular x(zl)

(Hogg 1956). The likelihood ratio statistic is A(y) = 2€(4, §) = 20(6(y), y), and

since é(y) =3t — y)/r, we find from (4.5.7) that

A(y) = 2rlog [1 + 59’—%9'-’2} , 4.5.10)
”

In the case of Type 2 censored data, discussed in Section 2.2, 1, exact distributional
results are available. In this case the #; values with §; = 1 are z1) < -+ < f(), the
first r order statistics, and those with § = 0 are equal to t(; the m.Le’s are as
given in (4.5.8), It is readily seen that 6 and 7 are jointly sufficient for 8 and y; their
distributions are given in the following theorem.

THEOREM 4.5,1. Letd and 7 be the m.l.e.’s based on a Type 2 censored sample
consisting of the r smallest observations in a random sample of n from the dis-
tribution (4.5.6). Then 6 and p are independent, and 2n(9 — y)/@ and 2rG/0 are
distributed as x%, and Xy, Tespectively.

Proof. The random variables T(1) — ¥, ..., T() — y are the first r order statistics in
a random sample of size n from the one-parameter exponential distribution (1.3.3).
By Theorem 4,1.1, the quantities Wy = n(Zq) — ) and

'Wi-.::(n—-i+1)(T(,‘)—T(;_x)) i=2,...,r
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are independent and have one-parameter exponential distributions. Hence Wy —
10 = 2W /0 ~ x&y and ‘

r j L Wi 2
T ~ X@r-2)

by the same arguments as in Theorem 4.1.1,

Confidence intervals or tests for 8 or y are easily obtained from the results of the
thearem, Inferences for @ can be based on the pivotal quantity 2r6/0 ~ X(zzl-—z)v and
inferences for y can be based on thz pivotal

1= 1 (P =V
n( éy V) Faw-a- @511
!

That this has an F distribution follows directly from the results of Theorem 4.5.1,
Quantiles for Fe,20-2) have a close:d form: the pth quantile is

F(Z.Zr—?.).p = (r — Dl — IJ)—V("“) —-1]. (4'5‘12)

It is rather easy to show (see Prob:em 4.18) that when r becomes large, confidence
limits for 0 and y based on these privotal guantities become the same as those based
on the likelihood ratio statistics (4 5.9) and (4.5.10), used in conjunction with a x(zl)
and x(zz') distribution, respectively.

Confidence intervals for quanti'es 1, or for S(t) are awkwatd to obtain via stan-
dard large-sample methods in the general case of censored data, For Type 2 censored
Jdata. however, confidence. intervals for t, = ¥ -+ g[— log(l — p)] can be based on
the pivotal quantity

Yy~ Ip (4.5.13)

Zp=—"%"":

6

This is readily seen to be pivotal by the results of Theorem 4.5.1; see (4.5.14). If
apq 18 the gth quantile of Zj, then P — Zp.qf is alowerg confidence limit for #p.
Confidence intervals for §(£) can also be obtained from (4.5.13). To get a lower g
confidence timit for S(fo) for a spe cified 1o, we determine j7 such that ¥ —z,,.q@ = 0}
see the discussion in Section 3.2.3 concerning the relationship between confidence
intervals Tor quantiles and survival probabilities.

The distribution of (4.5.13) hat. been studied b)" various authors; an exact formula
and an approximation that can be nsed to get confidence limits are given below. How-
ever. Zp, has a simple representation in terms of independent x? random variables:
by simple manipulation of (4.5.17) and Theorem 4.5.1, we have that

rv 2r[—log(l -
! og(l = p)]

P ] 45.14
P pv, Va ( )
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v'vhere Vi~ x(zz) and Vp ~ x(22r._2) are independent. Quantiles or survival probabili-

ties for Z, are easily obtained to any desired degree of accuracy by simulation.
'Engelhardt and Bain (1978b) gave expressions that can be used instead of simu-

lation, If p and g are such that (1 — p)" = 1 — g, then the lower g confidence limit

for 1, has closed form
g i
o (1= p) 1/(r=1) :

The g lower confidence limit on S(tp) in the same case is

n(tg — )"
(- Q" [1 - T] . . (4.5.16)

I*jor.the case where (1 — p)" < 1 — g, there is no exact expression for the confidence
lxmlts: Engelhardt and Bain give the following approximations and show they are

:ufﬁmently accurate for virtually all practical purposes. The lower g confidence limit
or tp is ‘

4

. m?(p) 1\

b=

where m('p)'= ['1 +nlog(1— p)}/(r —2.5) and N, is the g quantile for the standard
normal distribution. The corresponding lower ¢ confidence limit for S(f) is

1 r(r—25 N, ! ‘
exp [—;+———-—-——2 <Y~—;‘L<rY2+a) /2)], (4.5.18)

an

- where ¥ = n( —tg)/6 and a = r}(1 — Ng/r).

Although (4.5,13) is not an exact pivotal quantity in the case of arbitrarily cen-
sored data, it is approximately pivotal in large samples. A reasonable approach to
confidence interval estimation or tests in that case is to use the nonparametric boot-
{;trap (see Appendix D.2) to estimate the distribution of Z,. A satisfactory approach
is to select n o'bservati?ns i, §;) from the observed data, with reElacement, then
t:) compute estlmaEes 7* and §* and the value z}, = (V" — fp)/6*, where i, =
7 +[—log(1— p)10 is the m.Le. from the observed data. Repeating this B times (say
B = 1000), we consider the z}, as a random sample from the distribution of Z,, and
use it to estimate quantiles or survival probabilities. "

'Example 4.5.2. Engejlhardt and Bain (1978b) and others considered data on the
mileages at which 19 milltary personnel carriers failed in service. There is no cen-



194 INFERENCE PROCEDURES FOR PARAMETRIC MODELS

soring, and the mileages are

162, 200, 271, 320, 393, 508, 539, 629, 706, 777,
884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880.-

Since there is no censoring, Theorem 4.1.1 tells us that if model (4.5.6) is cor-
rect, then conditional on Tyjy = (1), the variables T — (1) (i =2,...,19) have
the distribution of the order statistics of a sample of size 18 from a one-parameter
exponential distribution with mean 6. A probability plot of the values ) — (1), as
described in Section 3.3.1, indicites that an exponential model is consistent with the
data. : :
Maximum likelihood estimat=s of 6 and y from (4.5.8) are y = 162,§ = 835,2.
Confidence intervals for y can be: obtained from the fact that 18(p —¥)/8 ~ F2,36)
by (4.5.11) withr = n = 19, Tor example, since Pr(F(2,36 = 3.254) = .95, we
get the .95 confidence interval 3 = ¥ — 3.254@/]8, or 11,0 < y(< 162), which is
very wide. For a two-sided .95 confidence interval for 8, we use 389/6 ~ xéﬁ) and
Pr(21.38 < X(z%) < 54.40) = .05 to get 583.4 < g < 1484,

Let us also obtain a lower .90 confidence limit for the quantile 1,10 of the distribu-
tion, We can use (4.5.15) in this case, or determine the distribution of Z 1o in (4.5.13)
by simulation. We use the forme- since it is exact; this gives the interval 1,10 = 114.6.

4,6 PREDICTION INTERVALS
' |
Some applications involve the prediction of future observations in a population or
‘process, based on exisling data, For example, one may wish to predict the number
of parts that will need to be rep‘aced in a system over the next three months, or the
time to platelet recovery for a leukemia patient who has received a bone marrow
transplant. Prediction is different than estimation of a distributional characteristic
because we are interested in a fitite number (perhaps only one) of individuals rather
than the eritire conceptual population that the distribution represents. :
Suppose that a future obse-vation is represented by the random variable Y,
with c.d.l. f(i ). If 0 is knewn, then the quantities (@), satisfying Pr(Y <
yo(8); 8) = a, provide prediction limits for Y. The so-called plug-in method of
setting prediction limits with @ unknown is to replace 6 with an estimate, 8, based
o existing data. The nominal ¢z upper prediction limit y» (@) does not in this case
satisty either Pr(¥Y = ya(())lh; 0) = « or Pz;(Y < yu(0); 0) = a, where we
consider both ¥ and @ as randym variables. If 6 is based on a large sample then,
assuming it is a consistent estirator of 6, the preceding probabilities will typically
be close to o, With small data sets it is sensible to recognize the uncertainty inherent
in . This leads to the concept ¢ f prediction intervals, which we now discuss briefly.
. To start, let ¥y, ..., Y, be a random sample from a distribution F(y; 8) in
some parametric family, and “et Y’ represent an independent “future” observa-
tion from the same distributicn, It is assumed that @ is unknown, but can be
estimated from Yy..... Y,. Ar a prediction interval for ¥’ is a random interval
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[A(Yy, ..., Vo), B(Y1, ..., Ya)] such that

PriA(Yy, ..., Y <Y < B(Y;,..,,.Y,,)] =a. (4.6.1)

Such “exact” prediction intervals can be obtained only in certain situations, but if
there exists a pivotal random variable -

U=gt,....%Y) (4.6.2)
whose distribution is free of 8, and if probability statements
Pra<lU<b =« 4.6.3)

can be inverted into the form (4.6.1), then exact prediction intervals exist. The inter-
val [A(1y.... ¥n), B(y1, ..., y,)] based on observed data (y1, ..., yn) is a realized
prediction interval and has a similar interpretation to a confidence interval.

- Example 4.6.1, Let ¥1,..., Y, be a random sample from the exponential dis-
tribution (1.3.3) with c.d.f. F(y; 8) = 1-— exp(—y/6), and let Y’ be an independent
future observation from the same distribution. By Corollary 4.1.1 of Theorem 4.1.1,
it follows that 2Y'/6 ~ x%, and 23°7_; Yi/6,~ x&,, and therefore that

.-
n |
U=nY'/ Z Yi ~ Faan z (4.6.4)

i=1

is a pivotal quantity. :I’hus, letting F(2,20),« be the o quantile for the 2,21 distribu-
tion and noting that & = Y is the m.Le. of 8, we have Pr(U < Fi,my.0) = @, and
50

Pr(Y’ < GFgame) = . (4.6.5)
Thus 6 Fz,2m,e is an « upper prediction limit for the future observation Y’. For
examAple, if n = 10, then F.20),.95 = 3.49 and the .95 upper prediction limit is
3.499.

By comparison, y95(0) = 3.009 for the exponential distribution, so the plug-in
.95 prediction limit would be 3.006. The unconditional probability PrY' < 3.009)
is substantially less than .95 in this case. As n increases, the proper .95 prediction
limit & F(2,21y,.95 approaches 3.009, reflecting the fact that 6 converges to the true
valueof @ as n — 00, Forn = ZiO and n = 60, for example, the .95 limits obtained
from (4.6.5) are 3.150 and 3.078, For n = 60 there would be little harm in simply
using the plug-in limit.

The preceding example is special in yielding exact prediction intervals, If there
had beven a Type 1 censored random sample (4, &;),i = 1,..., n, for example, then
exact intervals would no longer exist, This is analogous to the situation concerning



196 INFERENCE PROCEDURES FOR PARAMETRIC MODELS

confidence intervals for @, wherc exact intervals are unavailable with Type 1 cen-
sored data, If the random variable Y represcnts potential observed data, then, as with
confidence intervals, we can look for prediction intervals [A(Y), B(Y)] for which

PriA(Y) = Y < BY)] = « (4.6.6)

as the sample size n — o0o. If the probability on the left approaches « sufficiently
fast as i increases, then for sufficintly large 1 the interval may reasonably be termed
an approximate « prediction intcx'V"ﬁl for the future observation ¥,

Plug-in limits based on consi stent estimators of 0 provide intervals satisfying
(4.6.6). In particular, if v ,(#) is the pth quantile for ¥’ and b = G(Y) is consis-
tent, then for oy, ay such llmt o) + a3 = 1 — d the interval [y,,’(O) y,_uz(())] is
an approximate a prediction interval, However, with small or moderate sample sizes
the actual coverage probability Fr{A(Y) < < B(Y)] may not be as close to o
as desired. Two approaches are of ‘en used to improve coverage probability accuracy.
The first is to Took for approximate pivotal quantities U = g(Y, ¥') whose distribu-
tion depends very liltle on @, evea for small sample sizes, and to obtain prediction

intervals by inverting probabilitly :tatements (4,6.3). The second approach is termed -

calibration, and consists of determining (usually by simulation) the actual coverage
probability o’ (0) associated with : plug-in prediction interval with nominal coverage
«. It desired, the value of @ can tlen be adjusted so as to make o’ (0) greater than or
cquul to some nominal value. In p -actice, what is usually done is to adjust o to make
o' () equal to some desired coveage probability, where @ is the m.Le. for B based
on the observed data y.

It F(v: 0) is the c.d.F. for continuous ¥’, then F(Y’; #) is a Uniform(0, 1) random
variable and appealing approxima‘e pivotal quantities for prediction are

U= F’s () 4.6.7)

or monotonic functions of U. Tte distribution of U can be estimated by simula-
tion for any value of @ by generating independent data ¥’ and Y. This is usually
done for the value @ = 0 only, here 0 = f)(y) is the m.l.e. for @ based on the
observed data, This procedure is sometimes referred to as a parametrit bootstrap
(see Appendix D.2).

It will not.be possible to simvlate censored data Y under the estimated model
with @ = 0 unless the censoring process is known, One can if necessary generate Y
and B(Y) using nonparametric bootstrap sampling (see Appendix D.2), Two general
noles of caution are Lhat large numbers of simulations may be needed-to estimate
the distribution of pivotals or to ct librate plug-in prediction limits well, and that the
accuracy of approximate methods has been studied only in a few special settings.

Example 4.6.2, Consider the zxponential model of Example 4.6.1 and a Type 1
censored random sample y; = (4.68;), i = 1,...,n, which arises as follows. Each
individual has a lifetime 7; from t1e exponential distribution and a known potential
censoring time, C;, and we observ:s f; = min(T;, C;) and §; = I (¢; = T;). The m.l.e.
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of 8 is 6 = Yt/ Y. 8; and the approximate pivotal (4.6.7) is U = 1 — exp(—Y¥"'/8).
If we can closely approximate the distribution of U/ or a monotonic function of U,
such as W = Y’/8, then prediction intervals can be given. In P"lrtlcular, ifaand b are
such that Pr(a < W < b) = «, then [A(G) B(G)] = (ab, b0) is an (approxxmatc) o
prediction interval for Y.

The calibration approach is essentially the same, For 51mpllclly suppose we want
an upper prediction limit B(Y) for Y’. Since yg(8) = —Glog(l - a) is the ath
quantile for Y’ the plug-in o upper prediction limit is ya(G) = -0 log(l — ).
However, the true coverage probability associated with the predictlon limit is

h(@) = Pr(Y’ < yo(6): 61, ' (4.6.8)

where we suppress notationally that /() also depends on 6. The process of calibra-
tion consists of determining the function 4 (e). Once this is done we can obtain a pre-

-diction interval with the desired coverage. For example, for a .95 interval we use the

plug-in limit yo(8) with & chosen so that k(a) = .95, Since y,(8) = —6 log(l — )
in the present setting, (4.6.8) implies that

h(a) = PriW < —log(l — a); 8],

where W = Y'/8, Thus calibration is here equivalent to determining the distribution
of W.

To illustrate the use of simulation for calibration or determination of the distribu-
tion of W, let us consider the following artificial example involving an uncensored
sample of size n = 10, as in Example 4.6.1. In this case W = Y’ /8 is distributed
exactly as F(2,20) so the accuracy of approximations obtained via simulation can be
examined, Suppose the 10 observed lifetimes are 0.695, 0.148, 0.911, 0.344, 1,034,
0.718, 0.296, 1.178, 0.802, 0.825, giving 6 = 0.695. Table 4.5 shows the exact ,05

"and .95 quantiles of W along with parametric and nonparametric bootstrap estimates,

obtained, respectively, as follows,
1. Independent pseudorandom observations y’ and yf,..., yj; are generated

from Exp(.695), giving a value w* = y’/¥*, This is repeated B times, giving
values wy, ..., wj.

Table 4.5. Exact and Simulated Quantiles of W

Exact Parametric Nonparametric
Quantile Value Bootstrap Bootstrap
w5 .051 B =12,000 ‘ 060 054
B = 10,000 045 .051
B = 50,000 051 .049
Wes 3.493 B=2,000 - 3.517 3.084
B = 10,000 3418 3.051
B = 50,000 3.507 3.079




198 INFERENCE PROCEDURES FOR PARAMETRIC MODELS
|
§

2. A value y' is generated from Exp(.695) and a nonparametric bootstrap sample
(VF. o Vi) s generated by sampling 10 values, with replacement, from the
observed lifetimes. This gives w™ = y'/¥"*, and the process is.repeated B times
o give w, ... Wh

In each casc the .05 and .95 quantiles of W can be estimated as w5 gy and W{gsp)-

The parameiric bootstrap estimates are very accurate if the value of B is suf-
ficiently large. The nonparametric estimates do not change much as B increases
beyond 2000 for the small sample size (n = 10) here; the .05 quantile of W is esti-
mated well, but not the .95 quantile, These results should be viewed in:the context
that the exact .05 and .95 quantiles of W = Y’/6 are .051 and 3.493. The nonpara-
metric bootstrap here improves only slightly on the plug-in method, which gives the
95 quantile as 2.996.

The discussion so far has dealt *vith the prediction of a single independent obser-
vation ¥ from the distribution under consideration. Predictions for functions of two
or more random variables may alse be of interest, say

V=g, 1)

For example, V might be the sum - ¥/ or the rth order statistic Y, ',;), which are
both of interest in reliahility contxts. If the c.df. Fy(v: @) is available in closed
form, then it may be possible to use U= Fy(V; f)) as an approximate (or in some
special cases, exact) pivotal quantity from which prediction intervals for V can be
obtained. I most such cases, it will be necessary to estimate the distribution of U
by simulation, as illustrated in ‘Example 4.6,2, The calibration approach can also
be used and is equivalent to the pivotal method, This involves calibrating plug-in
prediction Hmits e (0) Tor V, where Fy[va(0); 0] = o, and can be done using
simulation. In.some applications '/ may not be independent of Y and 6. This does
not complicate matters substantially provided that the joint distribution of V and 0
can be approximated by simulatio:.

Prediction of discrete random variables can also be of interest, for example, V =
Yo I(Y/ > yo), the number of life:imes among future Y7, ..., ¥, that exceed some
stated value yo. In this case, intervals with exact nominal coverage probabilities such
as .95 or .99 usually don’t exist evn if @ is known, but intervals with approximately
such coverage can be sought. The best approach is calibration of plug-in prediction
fimits, The following example involves a discrete variable V' that is also not indepen-
dentof 0,

Example 4.6.3, The lifetimes T of certain electromechanical units can be
assumed to follow a distributior F (11 6). Suppose that n umits enter service at
Ihe same time and that after a time: T has elapsed, » < n of the units have failed. It is
wished to obtain prediction limits for the number of remaining units V that will fail
in the time interval (z, 7).
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Given r, V has a Binomial(m, p(8)) distribution, where m = n — r and

F(t';0) — F(t; 6)
1—F(x; 0)

p(B) =

If @ were known, we could determine, say, an @ upper prediction limit By (0, ) as
the smallest integer such that

PrV < Ba(8,1)|r; 01 > c. (469

The plug-in prediction limit is B,,(é, r), where 0 is the m.le. of @ based on the
data y observed up to time 7; this consists of r and information about the times of
the r failures over (0, 7). The calibration approach is then to estimate the uncondi-
tional coverage probability h(e) = Pr[V* =< B, (8*, r*); 0], where (V*, 8%, r*) are
random variables representing the data over (0, T) and the number of failures over
(7, T). This is done by assuming that 0 = 0(y), the m.l.e. based on the observed

data. The probability h(c:) can be estimated by simulation. Noticing that
h(@) = E(PrIV* < Ba(8*, 118", "1},

and that the probability inside the expectation is given by the distribution Bino-
mial(n — r*, p(6)), allows us to avoid simulating values V*.

In many prediction problems the distribution of ¥ may be analytically intractable,
necessitating the calculation of even plug-in limits by simulation. Calibration is then

. more computation-intensive. If the data set on which the plug-in limits are based is

moderately large, it is usually safe to forgo calibration. Since it is generally advisable

‘to assess the effects of model variation on’prediction, one can replace calibration

with a sensitivity analysis on the effects of changes in 6 and the model on plug-in
prediction limits. ,

We conclude by mentioning that Bayesian methods of prediction are attractive.
Let 77 (0) be a prior distribution for @ and let

L8 y)m(6)
PO = 776, y)m(8)d0

be the posterior distribution for 8, given observed data y that provide the likelihood
function L(®; y). The Bayesian predictive distribution for the independent future
observation, V, given y, then has probability density or mass function

Jwly) = f fv(; o) p(Bly) d0, (4.6.10)

where fv (v; 0) is the p.d.f. or probability mass function for V when 0 is known. If

V and Y are not independent, then fv (v; ) is replaced by fv(vly: 8) in (4.6.10).
Bayesian prediction is readily implemented in many problems using numericai

methods or simulation. As the sample size giving y increases; Bayesian a-probability
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prediction tnlervals converge (o plug-in « prediction intervals. Aitchison and Duns-
more (1975) and Geisser (1993) provide overviews of the Bayesian approach.

BIBLIOGRAPHIC NOTES

The exponential distribution was featured in many early papers on lifetime distribu-
tions, particnlarly with reference: to industrial life testing; see, for example Sukhatme
(1937), Epstein and Sobel (1952, 1954, 1955), Epstein (1954), Bartholomew (1957),
Mendenhall (1958) and.Govindarajulu (1964). Johnson, Kotz, and Balakrishnan
(1994, Ch, 19) provide a more extensive list of references. Anscombe (1964) and
Sprott (1973) emphasized the ure of parameter transformations to improve the accu-
racy of large-sample procedures as in Section 4.1.

Industrial life test plans under exponential distributions have been thoroughly
studied in the early rcferences just cited, and later by Aroian (1976), Bryant and
Schmee (1979). Kao et al. (197¢), and others. Life test acceptance plans published in
various reliability standards (see. Blischke and Murthy 2000, pp. 697-701) have been
based or this work: a note of caution is that these plans are sensitive to departures
from the assumed exponential model (e.g., Zelen and Dannemiller 1961; Harter and
Moore 1976; Fryer and Holt [976). Plans for comparative experiments have been
studied in the context of clinical trials and other areas, Early examples are found
in Armitage (1975), Breslow and Haug (1972), and Louis (1977), where sequen-
tial plans are emphasized. Berr stein and Lagakos (1978), Rubinstein et al. (1981),
Lachin and Foulkes (1986), and others provide detailed cxaminations. Books on clin-
ical trials (e.g., Whitehead 199%; Piantadosi 1997) discuss the planning of compara-
tive experiments nnder various ' ypes of assumptions.

Inference for the gamma model has been considered by Engelhardt and Bain
(1978a), Chao and Glaser (1978) and others for the complete data case. The inverse
Gaussian model has been consiclered by Chhikara and Folks (1977, 1989), Jorgensen
(19813, and Whitmore (1975, 1983). Johnson et al, (1994, Chs, 17, 15) provide
numerous references for the gainma and inverse Gaussian models.

Madels with polynomial hazard functions were considered by Bain (1974), Can-
fietd and ‘Borgman‘(1975), and Gaver and Acar (1979). The Gompertz model with
log /1(1) linear has been widel: studied, and Gehan-and. Siddiqui (1973) consider
models for which some transform of A(t) is linear in the parameters. The use of
piecewise polynomial functions, especially splines that are everywhere smooth, has
received a’'great deal of recent attention. In addition to the preceding references, see,
for example, Etazadi-Amoli anrl Ciampi (1987) and, for a discrete-time application,
Efron (1988), Additional references are given in the Bibliographic Notes for Chap-
ter 3.

Silvapulle and Burridge (1986) discuss unimodality properties of likelihood
functions based on grouped data; Heitjan (1989) provides a review of inference
procedures, Lindsey (1998} discusses inference based on interval-censored data for
parametric models, and Lindsey and Ryan (1998) discuss models with piecewise
polynomial hazard functions. The parametric treatment of truncated data is similarly
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straightforward in principle, but if truncation is severe, one may encounter likelihood
functions that are uninformative about certain parameters. Kalbfleisch and Lawless
(1988b, 1989) consider applications where this is the case.

In some applications censoring times may be missing for censored individuals; for
example, see Suzuki (1985a,b, 1995), Kalbfleisch and Lawless (1988a, b), Hu and
Lawless (1996), and Hu et al. (1998). This book does not address this topic except in
Problem 3.11, and likewise does not deal with missing data on covariates. Lawless
et al, (1999) provide some general discussion and references on these topics.

There is a substantial literature on discrete mixtures of paramnetric models (e.g..
Titterington et al. 1985; Bbhning 2000), with mixtures of normal (Folkes 1979;
Aitkin and Wilson 1980; Johnson et al, 1994, Sec. 13.10.2), exponential (Johnson et
al. 1994, Sec. 19.9), and Weibull (Kao 1959; Falls 1970) distributions among well-
studied models. Maller and Zhou (1996) consider cure-rate models as in Example
4.4.1,. Meeker and Escobar (1998, Sec.11.5) consider similar models in reliability
applications, For examples of continuous mixture models, see Whitmore (1986).

Inferences about threshold parameters have been studied a good deal, in part
because of the possibility of nonregular asymptotic behavior for certain parameter
values, Cheng and Traylor (1995) provide a survey of the area; see also Smith (1985,
1995). Estimation for the three-parameter Weibull model has been studied exten-
sively (g.g., Pike 1966; Rockette et al. 1974; Lemon 1975; Lockhart and Stephens
1994; Smith 1995). The two-parameter exponential distribution has also been widely
studied, particularly for the case of complete or Type 2 censored data (e.g., see Engel-
hardt and Bain 1978b; Pierce 1973 and references therein). Johnson et al. (1994) con-
tains many additional references on Weibull and exponential models with threshold
parameters,

Prediction problems are considered by Aitchison and Dunsmore (1975), Hahn and
Meeker (1991), Geisser (1993), and Meeker and Escobar (1998, Ch, 12; 1999), who
all give numerous references and examples of applications, Beran (1990) and Hall
et al. (1999) consider calibration using bootstrap simulations. Barndorff-Nielsen and
Cox (1994, Sec. 9.4; 1996) discuss different approaches to prediction, and asymp-
totic coverage properties for prediction intervals. Aitchison and Dunsmore (1975),
Geisser (1993), and Meeker and Escobar (1998, Ch. 14) discuss Bayesian prediction
intervals. For Bayesian point prediction, see Skouras and Dawid (1998).

COMPUTATIONAL NOTES

The gamma, inverse Gaussian and polynomial hazard function models of Section 4.2
are not included in major statistical software packages, but it is relatively easy to
implement maximum likelihood methods using standard optimization software, as
discussed in Appendix D. Interval censoring and truncation for data from the com-
mon log-location-scale models (Weibull, log-normal, log-logistic) are handled by
several packages, including S-Plus. Software for fitting discrete parametric mixtures
to censored data is discussed by Béhning (2000). With censored data we can use opti-
mization software, with care taken to explore the shape of the likelihood function for
models with several parameters.
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PROBLEMS AND SUPPLEMENTS

4,1 The following data are times ¢y, ..., f; between successive failures of air con-
dxlzomng equipment in a Boeing 720 airplane (Proschan, 1963): 74, 57, 48, 29,
502, 12, 70, 21, 29, 386, =9, 27, 153, 26, and 326. Assuming that the data come
from an exponential dist ibution with mean 8, compare confidence intervals
{or 6 obtaincd by using he approximate pwolwls below with exact intervals
obtained by using the fact that 2y /8 ~ x(z,,) (n f(@ 0)/9 ~ N(0,1);
(2) 3/~ — ¢) ~ N(0, 1), where ¢ = 0~ 1/3: (3) the likelihood ratio
statistic,

(Section 4.1)

4,2 Consider the likelihood function L (@) obtained in the case of Type 1 censored
sampling from the exponential distribution and let ¢ = g(@) be an arbitrary
one-to-one transformation. Show that (3° log L/3¢3),,, = 0 if and only if ¢ x
0 ~'/3_(The likelihood fuction for ¢ thus looks more “normal” than that for
and suggests that treating @ as normally distributed is preferable to treating 6

as nonm'l]ly distr ibuted in obtaining confidence intervals.)
(Section 4.1; Anscombe 1964; Sprott 1973)

4.3 The following data are remission times, in weeks, for a group of 30 leukemia
pauems in a certain type of therapy; starred observations are censoring times:
J1.2.4,4,6,6,6,7.8,9,9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45%,

5()". 57,60, 71", 85%,91,

(a) Estimate the median Temission time by three methods: (1) by using the
nonparametric methed of Section 3.2.4; (2) by assuming that the underly-
ing distribution of reraission times is exponential; and (3) by assuming that
the distribution of remission times is gamma. Compare confidence inter-
vals based on the three methods.

(b) Similarly compare estimates of S(26), the probability a remission lasts
more than 26 weeks, using the nonparametric Kaplan-Meier estimate and
the two purametric models, respectively.

(¢) Is there any evidence against either of the parametric models?

: (Scctions 4.1, 4.2)
4.4 Suppose that an acceplance plan is desired which, under the one-parameter
exponential model, will reject' Hy 6 = 1000 with probability .10 when

i = 1000 hours, and with probability .95 when 8 = 300 hours. Obtain Type 2

censored plans, both with and without replacement of failed units, and graph

the power functions for t! e plans,
(Section 4.1)
4.3 Sensitivity of exponential distribution tests to model departures.
(a) Letry,....1, be acomplete random sample from an exponential distribu-
tion with mean @, Cc nsider life test plans that test Hp : 6 = 1000 versus
.Hy : 8 < 1000 and have size 0.10. Graph the power functions of the tests
for samp!c sizes n = 10 and n = 20.
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(b) Suppose that 11, ..., actually come from a Weibull distribution with
p.d.f (B/a)(t)a)P~ exp[—(t/a)P], t > O, where B = 1.5 and & =
8/T(1 + 1/1.5); this distribution also has mean @ It can be shown that
the distribution of 3" #; /a is well approximated by a 'x? distribution,

n t
! 2
2~ oyl

where ¢ and b are selected so that ¢ x(b) has the same mean and variance
as Y t;/a. Show that this yields the values ¢ = [I"(1 + 2/1.5) = T'(1 +
1/1, 5)2]/2r(1 +1/1.5) and b = nc™T(1 + 1/1.5),

(c) Use the x 2 approximation of part (b) to examine the power functlon of the
tests in part (a) when the underlying distribution is a Weibull distribution
with 8 = 1,5 rather than an exponential distribution,

(Remark: A one-sided size .05 test of 8 = | vs. 8 > 1 in a Weibull mode! has

power at 8 = 1.5 approximately equal to .4 and .7 forn = 10 and n = 20, s0

this degree of nonexponentiality is not certain to be detected.)
(Section 4.1)

4.6 Predicting the duration of a life test, Sometimes it is desired to predict the
total duration of a life test on the basis of early results in the test. Suppose, for
example, that a test is to terminate at the time 1(,) of the rth failure, If the sth
failure has just occurred (1 < s < r), we can predict £().

(a) If the data came from a one-parameter exponential distribution with mean
6, prove that t(y — t(sy and

5
= Zt(i) + (n — 8t
I==1

are independent, and that U = () — t))/ T} is pivotal, with distribution
function
(n—sH!
(r—s—Din-r)
r—s—1

3 ('—i - 1)(—1Y/(n——r+i +1)

i=0
(=7 +i+ D]

PrilU<st)y=1~

Show how U can be used to obtain prediction intervals for ¢, based on’

{OTERNON
(b) Descrlbe how simulation can mstead be used to obtain the distribution
of U.

(Section 4.1; Lawless 1971) .
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(b) Outline how the precision of the Kaplan—Meier estimate 3‘(1) could be
compared with the exponential m.l.e. of S(¢) under general Type 1 cen-
soring (Section 2.2.1).

4,7 The following observations are failure times (in minutes) for a sampie of 15
clectronic components in an accelerated life test:

1.4,5.1,€.3,10.8, 12,1, 18.5,19.7, 22.2, (Sections 3.2, 4.1; Miller 1983)

23.0.30.¢, 37.3, 46,3, 53.9, 59.8, 66.2 4.10 Loss aof information under grouping. Consider settings where n individuals
are inspected at specified times ay, ..., ay so that only the numbers of deaths
between successive inspection times are observed. That is, we observe d; =
number of lifetimes in (a1, ay]for j =1,..., k4 1, whereap = 0 < a; <

c < A < Q] = 00,

('1) Assuming that lifetimes follow an exponential distribution with mean @,

(a) Assuming that the data came from a gamma distribution, obtain the m.Le.’s
k and & of the shape and scale parameters,
(b) Let Qp(k, @) represent the pth quantile of the two-parameter gamma dis- !

tribution, given k and «. That is, O (k, &) satisfies i
| obtain the information 7 (8) and asymptotic variance of Jn (9 — 6) under
0, 3 both the observation scheme just given and under observation of exact fail-
I (/c, —a’—> =p, ' i ' . ure times, but with Type 1 censoring at time ag.
\ . (b) Assume further that g; = ja for j = 1,..., k, and evaluate the expected

information Z(8) under both observation schemes. Make a numerical com-
parison of grouped and exact observation for the values k =1, ..., 5 when
ay, corresponds to the .50 quantile of thé underlying exponential distribu-
A . : tion. Repeat the comparison if a; corresponds to the .90 quantile,
[Q(i—..’)/ll(kxa)rt(i)} 1= l! "wnv (Sections 4.1'4'3)

where / (k, x) is the incomplete gamma integral (1.3.16). Examine the ade-
quacy of the gamma mcdel by plotting the points

4.11 Loss of information under current status observation. Consider n = km indi-
viduals, where & and m are positive integers, and suppose that m individuals
are observed at each of k times Cj, ..., Cg, it being determined in each case

where f(; i$ the 7th smallest observation in the sample of 7.
(Sections 3,3, 4.2; Wilk et al. 1962)

4.8 Chh“(ﬂl"d and Folks (]977) zave the data below on 1'epai1' times (iﬂ hOl]I'S) for whether their lifetime exceeds the FCSPCCﬁVC Cj or not. SUPPOSC that Cj cor-
46 Failures of an airborne communications receiver. ' responds to the (j — .5)/k quantile of the underlying lifetime distribution; we
could of course only approximate this in practice, since the quantile values
02 03 05 o5 05 05 06 06 07 07 would be unknown.
?; ?g (1)2 ')8 ;8 ég ég é; ;3 ég ] i (a) Assuming that the underlying lifetime distribution is exponential with
‘1:3 _ ?:? 46 ;1.0 45 47 5:0 54 54 70 e mean &, compare the information J (9) and asymptotic variance of J_(B -
:/ < 8 8 90 103 220 24.5 : 8) for current-status data with each of & = 1, 2, 4, 8 and with exact obser-
" : : - oo o : vation of the lifetimes. i

(b) Outline a numerical study to compare the precision wifh which the pth

(a) Treating the (imes as ex«ct continuous observations, fit an inverse Gaussian
quantile, ¢, of an underlying log-logistic distribution (1.3.12) would be

distribution to the data, L
B) Inf . the f: of i del. U fat h ‘ » estimated, under exact observation of lifetimes and under current-status
(h) Informally assess the it of the model, Use simulation or other means to ' observation with each of k = 1,2, 4, 8.
LOI]SIC[G] whether the tw~o largest repair times seem consistent with an i f ' (Section 4 3)
inversc Gaussian model. : :
o (Section 4.2,2) . . 4.12 The life table data in Table 4.6 are from a study involving 112 patients with
. ) o lasma cell myeloma treated at the National Cancer Institute (Carbone et al.
4.9 Parametric vs. nonparamet jc estimates. Consider a study where all units still ?9 67) y (Car ta

alive al time ¢ are withdrawr,, so that their lifetimes are right censored. Suppose

it is wished to cstimate S(f,, where 0 < fp < ¢,

(a) Compare the precision »f (he nonparametric estimate 3‘(:0) = (n—-r)/n,
where r is the number ¢ f units failing by time fg, with that of the m.lL.e. of
5(r) when the underlyir g distribution is exponential.

(a) Use plots of empirical estimates of the survivor and hazard functions to
suggest possible models.

(b) Fit Weibull and Gompertz models to these data, using maximum like-
lihood. Compare results using the likelihood function (4.3.4), which
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Table 4.6. §arvival Times for Patients with Plasma Cell
Myeloma 7

Number at Risk Number of

Interval (Months) at Start% () Withdrawals (w;)
10. 5.5) Il 1
[5.5, 10.5) 9 1
[10.5,15.5) 7€ 3
115.5,20.5) 55 0
[20.5, 25.5) 45 0
{25.5, 30.5) 34 1
{30.5.40.5) 25 2
[40.5, 50.5) 10 3
[50.5, 60.5) 3 2
{60.5, 00) 0 0

assumes withdrawals occurs at the ends of intervals, with those using
the likelihood (3.7.4) in Problem 3.17. Informally assess the fit of each

model.

(¢) Compare the est mates in part (b) with the m.L.e.’s obtained by assuming
that failure times or censoring times in an interval are all equal to the inter-
val miilpo’int.

(d) Compare also th: variance estimates based on the approaches in part (b)

and the approximation of part (c). What do you conclude?
(Section 4.3)

4.13 Consider the interval .censored data on breast cosmesis given in Problem 3.13.

(a) Fit Weibull and log-logistic distributions to the data from each of the two
treatment group:. Plot estimates of the s.f.'s S(t) under the two models,
along with the nonparametric estimates obtained from Problem 3.13.

(1) Fit models with « 1) a cubic hazard function with 1(0) = 0, and (2) a cubic
spline hazard function with a single knot at 18 months for each treatment
group. Compare the estimates of S(¢) with those of part (a).

(Sections 4.2, 4.3; Lindsey and qun 1998; Lindsey 1998)

4,14 Miviures with known components, Suppose that ¥ has p.d.f.

FGn p)y=phe)+ A= p) ()

where 0 < p < Land fy and f2 are completely specified p.d.f’s,
(a) Show that the ex rected information from a complete sample of size n from
the distribution is

1) = Md)

n ( _
plt = p) Jooa f(yip)
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Note that this reduces to the binomial information n[p(1 — 17! when fi
and f do not overlap.

b) If

—y2/2

1
Gy T and

1
fQ) = L) = WG

evaluate 7 (.5) numerically for several values of 1, Comment on the preci-
sion with which one can estimate p as a function of 4,
(Section 4.4; Hill 1963)

4.15 Consider the mixture model (4.4.1) with long-term survivors in the case where

4.16

417

4.18

the survivor function is
S(ty=1—p+ pe'/? t >0,

(a) Data from a study on 100 subjects who were followed for half a year gave

22 failure times # with )_#4 = 4.41 years and 78 censoring times, each * ;

equal to 0.5 year. Plot contours of the log-likelihoo;d function
£(6, p) =2210g(p/6) — 4.41/6 + T81log(L = p + pe™/%)

and consider interval estimation of p.

(b) After 3.0 years of follow-up thgre were 49 failures observed, with )¢ =
31.10, and 51 censoring times, each equal to 3.0, Plot contours of the log-
likelihood funtion £(8, p) in this case, and consider estimation of p.

(Section 4.4)

Using general optimization' software, fit a mixture of two log-logistic distri-
butions to the data in Example 4.4.2 using maximum' likelihood, Compare the
estimate of S(¢) under this model with the estimates shown in Figure 4.10.

: (Section 4.4) -

Consider the data in Example 4.5.1, to which a three-parameter Weibull niodel
(4.5.1) was fitted. Obtain m.Le.’s of &, 8, and y using the alternative likelihood
function discussed in Section 4.5.1, in which f(¢(; @, 8, v) is replaced with
F(10y+A)—F(1q)—A), where F(2) is the c.d.f. corresponding to (4.5.1) and A
is a small value; use A = .5, Compare the estimates with those in the example,
and also compare the profile log-likélihood function £(&(y), B, y) with that
in Table 4.4,

(Section 4.5,2)

Prove the assertion made immediately following (4.5.12). Note that as r — co,
an Fy,,) random variables converges in distribution to .5 x(zz)‘

(Section 4.5.3)
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4.19 The data below represent failure times, in minutes, for two types of electrical
insulation in an experimenrt in which the insulation was subjected to a continu-
ously increasing voltage stress.

Type A 2193 794 860 1502 217 185
1219 405 147.1 351 423 487

TypeB 218 70,7 244 138.6 1519 75.3
23 955 981 432 28.6 469

Examine graphically whe:her the two sets of data might be considered to be
rundom samples from dif‘erent two-parameter exponential distributions (see
Example 4.5.2). If this apjiears reasonable, compare the two distributions and,
in particular, test that they have the same threshold parameter value.

(Section 4,5.3)

420 The three-parameter log-normal distribution. For the three-parameter log-.

normal distribution, log(i" — y) is normally distributed with mean 4 and

variance a2, where T > y and y = 0 is a threshold parameter,

(a) 1f ¥ is known, deteriiine the m.Le.’s f(y) and &(y) of u and o from
a complete samplc of size 1. Thus obtain the profile likelihood function
Lomax (7). Show that

lim Lmax(y) = co.
=i

Consider the ramifications of this for maximum likelihood estiration,

(b) Considerthe rat-tumot data of Example 4.5.1 as having arisen from a three-
parameter log=normal listribution, Compute and examine the profile likeli-
hood function Lyax (). Obtain the value i that gives a local maximum of
Ly (7). Treating thi: as the m.le,, estimate all three parameters. Deter-
mine a range of plausible values for ¥ and examine the effect of ¥y on
estimates of distribution quantiles,

(€) Compare Lyyx () and 7 in part (b) with those obtained by using the mod-
ified likelihood lunction described in Problem 4,17,

(Section 4.5; Griffiths 1980)

4.21 Discase remission times T for patients undergoing a certain type of treatment
are well described by an’ :xponential distribution. A set of 50 patients gave
>t = 61.5 years and (ke m.le. 6 = 1.23 years for the mean duration of
remission. In a future set of 100 patients let V denote the number whose remis-
sion time exceeds 1 year, Obtain a lower .95 prediction limit A(6) for V using
the plug-in method and then determine by simulation the unconditional cover-
age probability PriV > A(é)] for this procedure,

(Seclion 4.6)

AT et £ ey e e

[

PROBLEMS AND SUPPLEMENTS 20