Weibull Regression¹ STA312 Fall 2023

 $^{^1\}mathrm{See}$ last slide for copyright information.

Background Reading

Section 10.6 in the text, but it refers to a lot of things we have not covered yet.

Overview

① Exponential

Weibull

A multiplicative regression model

Exponential model, just one explanatory variable

Independently for $i = 1, \dots n$,

$$t_i^* = e^{\beta_0 + \beta_1 x_i} \times \epsilon_i$$

where

 t_i^* are failure times, possibly censored.

 β_0 and β_1 are unknown constants (parameters).

 x_1, \ldots, x_n are known, observed constants.

 $\epsilon_1, \ldots, \epsilon_n$ are independent Exponential(1) random variables.

 t_1, \ldots, t_n are observed event times, either failure or censoring.

 $\delta_1, \ldots, \delta_n$ are observed indicators for uncensored.

- These are sometimes called *accelerated failure time* models.
- Because the effect of $x_i \neq 0$ is to multiply the failure time by a constant.

Distribution of
$$t_i^* = e^{\beta_0 + \beta_1 x_i} \times \epsilon_i$$
, with $\epsilon_i \sim \exp(1)$

- If $\epsilon \sim \exp(1)$ and a > 0, $x = a\epsilon$ is also exponential.
- Expected value a (or $\lambda = 1/a$).
- Thus, $E(t_i^*) = e^{\beta_0 + \beta_1 x_i} \Leftrightarrow \log E(t_i^*) = \beta_0 + \beta_1 x_i$.
- We are adopting a linear model for the log of the expected value.
- Or, we can transform the failure times by taking logs.

$$\log t_i^* = \beta_0 + \beta_1 x_i + \log \epsilon_i$$
$$= \beta_0 + \beta_1 x_i + \epsilon_i^*$$

where $\epsilon_i^* = \log \epsilon_i \sim G(0, 1)$.

Meaning of β_1 With $E(t_i^*) = e^{\beta_0 + \beta_1 x_i}$

- Increase x_i by one unit.
- The effect is to multiply $E(t_i^*)$ by a constant.

$$e^{\beta_0 + \beta_1(x_i + 1)} = c e^{\beta_0 + \beta_1 x_i}$$

$$\Leftrightarrow c = \frac{e^{\beta_0 + \beta_1(x_i + 1)}}{e^{\beta_0 + \beta_1 x_i}}$$

$$= \frac{e^{\beta_0 + \beta_1 x_i + \beta_1}}{e^{\beta_0 + \beta_1 x_i}}$$

$$= e^{\beta_1}$$

- So when x_i is increased by one unit, $E(t_i^*)$ is multiplied by e^{β_1} .
- If $\beta_1 > 0$, $E(t_i^*)$ goes up.
- If $\beta_1 < 0$, $E(t_i^*)$ goes down.

Natural extensions

- More than one explanatory variable.
- Centering the quantitative explanatory variables.

$$t_i^* = \exp\{\beta_0 + \beta_1(x_{i,1} - \bar{x}_1) + \ldots + \beta_{p-1}(x_{i,p-1} - \bar{x}_{p-1})\} \cdot \epsilon_i$$

- In this case, e^{β_0} is the expected failure time for average values of all the explanatory variables.
- If there are dummy variables, center only the quantitative variables (covariates).

Equivalent model on the log scale

Starting with $t_i^* = \exp\{\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1}\} \cdot \epsilon_i$

$$\log t_i^* = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1} + \log \epsilon_i$$

= $\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1} + \epsilon_i^*$
= $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \epsilon_i^*$,

where $\epsilon_i^* \sim G(0,1)$.

- Recall, if $Z \sim G(0,1)$, then $\sigma Z + \mu \sim G(\mu, \sigma)$.
- So the model says $\log t_i^* \sim G(\mathbf{x}_i^{\top} \boldsymbol{\beta}, 1)$
- Why should the variance of log survival time be $\frac{\pi^2}{6}$?
- Much more reasonable is $\log t_i^* = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1} + \sigma \epsilon_i^*$
- In this case, $\log t_i^* \sim G(\mathbf{x}_i^\top \boldsymbol{\beta}, \sigma)$.

Switching back to the time scale

From the log time scale

$$\log t_i^* = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_{p-1} x_{i,p-1} + \sigma \epsilon_i^*$$

$$\Leftrightarrow t_i^* = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} e^{\sigma \epsilon_i^*} = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} e^{\sigma \log \epsilon_i} = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} e^{\log(\epsilon_i^{\sigma})}$$

$$\Leftrightarrow t_i^* = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} \epsilon_i^{\sigma}$$

We have arrived at the multiplicative regression model:

$$t_i^* = \exp\{\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1}\} \cdot \epsilon_i^{\sigma}$$

$$t_i^* = \exp\{\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1}\} \cdot \epsilon_i^{\sigma}$$

- It's an accelerated failure time model. Changing one of the x values multiplies t_i^* by something.
- In particular, if $x_{i,k}$ is increased by one unit while holding all other $x_{i,j}$ values constant,
- Then t_i^* is multiplied by e^{β_k} .
- Holding $x_{i,j}$ values constant is the meaning of "controlling" for explanatory variables in Weibull regression.
- Note that if β_k is negative, $e^{\beta_k} < 1$ and t_i^* goes down.
- Call it a "negative relationship" (controlling for the other variables).
- If β_k is positive, $e^{\beta_k} > 1$ and t_i^* goes up.
- Call this a "positive relationship" (controlling for the other variables).

Distribution of t_i^*

Recall

- We have established that $\log t_i^* \sim G(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma)$.
- Exponential function of Gumbel(μ, σ) is Weibull(α, λ) with $\lambda = e^{-\mu}$ and $\alpha = 1/\sigma$.
- Note that here, $\mu_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$.
- So, t_i^* is Weibull, with $\lambda_i = e^{-\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}$ and $\alpha = 1/\sigma$.
- This means

$$\begin{split} E(t_i^*) &= \frac{\Gamma(1+\frac{1}{\alpha})}{\lambda} = e^{\mathbf{x}_i^\top \boldsymbol{\beta}} \, \Gamma(1+\sigma) \\ \mathrm{Median}(t_i^*) &= \frac{[\log(2)]^{1/\alpha}}{\lambda} = e^{\mathbf{x}_i^\top \boldsymbol{\beta}} \, \log(2)^{\sigma} \\ h(t) &= \alpha \lambda^{\alpha} t^{\alpha-1} = \frac{1}{\sigma} \exp\{-\frac{1}{\sigma} \mathbf{x}^\top \boldsymbol{\beta}\} t^{\frac{1}{\sigma}-1} \end{split}$$

Conclusions

Following from $\log t_i^* \sim G(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma)$

$$E(t_i^*) = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} \Gamma(1 + \sigma)$$

$$\operatorname{Median}(t_i^*) = e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} \log(2)^{\sigma}$$

$$h(t) = \frac{1}{\sigma} \exp\{-\frac{1}{\sigma} \mathbf{x}^{\top} \boldsymbol{\beta}\} t^{\frac{1}{\sigma} - 1}$$

- Increasing value of x_j by c units multiplies the mean and median by $e^{c\beta_j}$.
- Increasing value of x_j by c units multiplies the hazard function by $e^{-\frac{c}{\sigma}\beta_j}$. If β_j is positive, the hazard goes down.
- \bullet Remarkable because the hazard function is a function of time t.
- And the effect is *identical* for every value of t.

Proportional Hazards

$$h(t) = \frac{1}{\sigma} \exp\{-\frac{1}{\sigma} \mathbf{x}^{\top} \boldsymbol{\beta}\} t^{\frac{1}{\sigma} - 1}$$

- \bullet Suppose two individuals have different \mathbf{x} vectors of explanatory variable values.
- They have different hazard functions because their $\lambda_i = e^{-\mathbf{x}_i^{\top} \boldsymbol{\beta}}$ values are different.
- Look at the ratio:

$$\frac{h_1(t)}{h_2(t)} = \frac{\frac{1}{\sigma} \exp\{-\frac{1}{\sigma} \mathbf{x}_1^{\top} \boldsymbol{\beta}\} t^{\frac{1}{\sigma} - 1}}{\frac{1}{\sigma} \exp\{-\frac{1}{\sigma} \mathbf{x}_1^{\top} \boldsymbol{\beta}\} t^{\frac{1}{\sigma} - 1}}$$

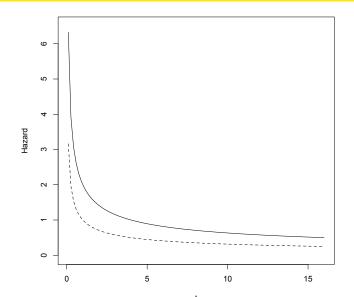
$$= \frac{\exp\{-\frac{1}{\sigma} \mathbf{x}_1^{\top} \boldsymbol{\beta}\}}{\exp\{-\frac{1}{\sigma} \mathbf{x}_2^{\top} \boldsymbol{\beta}\}}$$

$$= \exp\{\frac{1}{\sigma} (\mathbf{x}_2 - \mathbf{x}_1)^{\top} \boldsymbol{\beta}\}$$

The point is that $h_1(t)$ and $h_2(t)$ are always in the same proportion for every value of t.

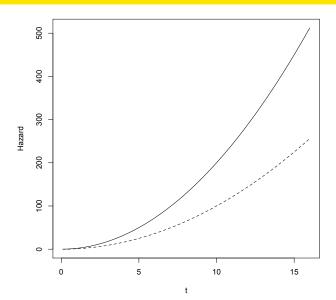
Proportional Hazards

 $h_1(t) = 2 h_2(t)$ with $\sigma = 2$



Proportional Hazards

 $h_1(t) = 2 h_2(t)$ with $\sigma = 1/3$



Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/brunner/oldclass/312f23