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Background Reading

Chapter 5 in Applied Survival Analysis Using R by Dirk Moore

2 / 16



Overview

1 Model

2 Estimation and Testing
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Model

Proportional Hazards

Suppose two individuals have different x vectors of explanatory
variable values.

They will have different hazard functions.

But suppose the hazard ratio
h1(t)

h2(t)
does not depend on time t.

Exponential regression and Weibull regression fit this pattern.

Proportional hazards regression is a generalization.
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Model

Proportional Hazards Regression
Also called Cox regression after Sir David Cox

Write the hazard function

hi(t|β) = h0(t)ψi(β)

= h0(t) e
x>
i β, or sometimes

= h0(t) e
β0+x>

i β

h0(t) is called the baseline hazard function.

Baseline because it’s the hazard function when ψi(β) = 1.

Maybe the patient is in the reference category, and the
quantitative explanatory variables are centered.

In theory ψi(β) could be almost anything as long as the resulting
hazard function is positive.

But in practice it’s almost always ex
>
i β, Cox’s original suggestion.
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Model

Exponential and Weibull Regression
hi(t|β) = h0(t)ψi(β) = h0(t) e

x>
i β

Exponential regression: hi(t|β) = λ = e−x
>
i β

h0(t) = 1

ψi(β) = e−x
>
i β

Weibull regression: hi(t|β) = 1
σ exp{− 1

σx
>
i β}t

1
σ
−1

h0(t) = 1
σ t

1
σ−1

ψi(β) = exp{− 1
σx
>
i β}

Are these really special cases of the proportional hazards model,
with ψi(β) = ex

>
i β?

Yes, by a re-parameterization.
βj of proportional hazards = −βj of exponential regression.
βj of proportional hazards = −βj/σ of Weibull regression.
The main implication is that in proportional hazards regression,
the coefficients mean the opposite of what you are used to.
Anything that makes x>i β bigger will increase the hazard, and
make the chances of survival smaller.
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Model

The Hazard Ratio

Form a ratio of hazard functions. In the numerator, increase xi,k by
one unit while holding all other xi,j values constant.

h1(t)

h2(t)
=

h0(t) exp{β0 + β1xi,1 + · · ·+ βk(xi,k + 1) + · · ·+ βp−1xi,p−1}
h0(t) exp{β0 + β1xi,1 + · · ·+ βkxi,k + · · ·+ βp−1xi,p−1}

= eβk

Holding the other xi,j values constant is the meaning of
“controlling” for explanatory variables.

If βk > 0, increasing xi,k increases the hazard.

If βk < 0, increasing xi,k decreases the hazard.
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Model

“Semi-parametric”
hi(t|β) = h0(t) e

x>
i β

The unknown quantities in the model are the vector of regression
parameters β, and the unknown baseline hazard function h0(t).

We can avoid making any assumptions about h0(t).

But because of β, it’s partly parametric.
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Estimation and Testing

Estimation: Using Ideas From Kaplan-Meier

As in the Kaplan-Meier estimate, we focus on the uncensored
observations, for which the failure time is known.

The censored observations will have their influence by
disappearing from the set of individuals at risk.

There are D =
∑n

i=1 δi uncensored observations.

Denote the ordered times at which failures occur by t1, . . . tD.

This notation can be confusing, because the entire set of times,
including censoring times, is usually denoted t1, . . . tn.

Some books (for example Chapter 3 in Applied Survival Analysis
by Hosmer and Lemeshow) use the notation t(1), . . . t(D).

The index set of individuals at risk at failure time tj is Rj .

One of them fails.
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Estimation and Testing

Hazard

The hazard function h(tj) = lim∆→0
P (tj≤T≤tj+∆|T≥tj)

∆ is roughly
proportional to the probability of failure at time tj , conditionally
on survival to that point.
Make the hazard at a failure time into an actual probability.
Normalize it, dividing by the total hazards of all the individuals at
risk:

q(i) = 1− p(i) =
h0(t)e

x>
(i)

β∑
j∈R(i)

h0(t)ex
>
j β

=
e
x>
(i)

β∑
j∈R(i)

ex
>
j β

First, notice that the baseline hazard cancels, including eβ0 .
These really are like the pi and qi in Kaplan-Meier estimation.
Except, instead of dividing by the number of individuals at risk,
they are weighted by their hazards.
And those hazards depend on the explanatory variable values
through β.
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Estimation and Testing

Estimating β

Now we have failure probabilities q(i) = e
x>
(i)

β∑
j∈R(i)

ex
>
j β

.

How can these be used to estimate β? Cox suggested . . .

Multiply them together and treat them as a likelihood.

Take the minus log, and minimize over β.

He suggested that all the usual likelihood theory should hold.

Fisher information, asymptotic normality, likelihood ratio tests:
everything.

He called it partial likelihood.

Why?!
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Estimation and Testing

Partial Likelihood

Using h(t) = f(t)
S(t) ⇐⇒ f(t) = h(t)S(t),

L(θ) =

n∏
i=1

f(ti|θ)δi S(ti|θ)1−δi

=

n∏
i=1

(h(ti|θ)S(ti|θ))δi S(ti|θ)1−δi

=

n∏
i=1

h(ti|θ)δi S(ti|θ)δi+1−δi

=

n∏
i=1

h(ti|θ)δi S(ti|θ)

=

D∏
i=1

h(t(i)|θ)
n∏
i=1

S(ti|θ)
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Estimation and Testing

Continuing the likelihood calculation

L(θ) =

D∏
i=1

h(t(i)|θ)
n∏
i=1

S(ti|θ)

=

D∏
i=1

h0(t(i))e
x>
(i)

β
n∏
i=1

S(ti|β, h0)

=

D∏
i=1

h0(t(i))e
x>
(i)

β

D∏
i=1

∑
j∈R(i)

h0(t(i))e
x>
j β

 D∏
i=1

∑
j∈R(i)

h0(t(i))e
x>
j β

 n∏
i=1

S(ti|β, h0)

=

D∏
i=1

h0(t(i))e
x>
(i)

β∑
j∈R(i)

h0(t(i))e
x>
j β

 D∏
i=1

∑
j∈R(i)

h0(t(i))e
x>
j β

 n∏
i=1

S(ti|β, h0)
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Estimation and Testing

Partial Likelihood

L(β, h0) =

D∏
i=1

 e
x>
(i)

β∑
j∈R(i)

ex
>
j β


 D∏
i=1

∑
j∈R(i)

h0(t(i))e
x>
j β

 n∏
i=1

S(ti|β, h0)

The red product is Cox’s partial likelihood.

Properties similar to ordinary likelihood were proved years later.

There are fairly convincing arguments that the black product is
negligible for large samples.

Lack of dependence on the baseline hazard is a good feature.

This is the state of the art.
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Estimation and Testing

Hypothesis Tests

As Cox hypothesized, all the usual likelihood theory applies to partial
likelihood.

Consistency (i.e., large-sample accuracy)

Asymptotic normality.

Fisher information

Z-tests

Wald tests

Score tests

Likelihood ratio tests

Call them partial likelihood ratio tests.

Estimation of the survival function will be described later.
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Estimation and Testing

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/312f23
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