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Background Reading

Chapter 7 in Applied Survival Analysis Using R by Dirk Moore

Modeling Survival Data: Extending the Cox Model (2000) by Terry
Thereau and Patricia Grambsch
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Overview

1 Stochastic processes

2 Residuals
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What could go wrong?

Proportional hazards assumption could be incorrect. The
log-normal model is an example.

Relationships might not be straight-line. For example,

h(t) = h0(t) exp{β1 cos(β2x)}

Some individual observations may have too much influence on the
results.

Look at residuals.

Martingale residuals?
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Stochastic processes

Stochastic Processes

A stochastic process is an infinite collection of random variables.

A counting process N(t) counts the number of events up to and
including time t.

Let Ni(t) be the number of deaths for patient i, in the interval
(0, t].

This means more general counts are possible (and useful).

Number of heart attacks.
Number of major auto repairs.
Number of admissions to hospital.
Number of lectures missed.
Number of times a sexually transmitted disease was diagnosed (for
one person).

These all are in the category of recurrent risks.

Being at risk is also a stochastic process that can turn on or off.
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Stochastic processes

Stochastic processes formulation for survival analysis

The pair (Ti, δi) is replaced by

Ni(t): Number of observed events in (0, t] for unit i.

Yi(t) =

{
1 if unit i is at risk at time t
0 otherwise

.

This is called the risk process.

And the probability distribution is determined by the hazard function

hi(t) = h0(t)e
xi(t)

>β

Note this is a conditional model, in which xi (a time-varying covariate)
is a fixed function of t.
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Stochastic processes

Martingales

A discrete-time martingale is a sequence of random variables
X1, X2, . . . that satisfies

E(|Xn|) <∞
E(Xn+1|X1, . . . , Xn) = Xn

Examples:

An unbiased random walk.

A gambler’s current fortune if the game is fair.
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Stochastic processes

Martingale sequence with respect to another sequence
Still discrete time

The sequence Y1, Y2, . . . is a martingale with respect to X1, X2, . . . if

E(|Yn|) <∞
E(Yn+1|X1, . . . , Xn) = Yn

Example: Likelihood ratio. Let Ln =

n∏
i=1

g(Xi)

f(Xi)
. If X1, X2, . . . are

independent with density f(x), then {L1, L2, . . .} is a martingale with
respect to {X1, X2, . . .}.
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Stochastic processes

Continuous time martingale

A stochastic process Y (t) is said to be a martingale with respect to the
stochastic process X(t) if for all t,

E(|Y (t)|) <∞
E(Y (t)|{X(τ) : τ ≤ s}) = Y (s)

Example: If Ŝ(t) is the Kaplan-Meier estimate, then under mild
technical conditions,

√
D(Ŝ(t)− S(t)) is a continuous time martingale.

9 / 17



Stochastic processes

Martingale convergence theorems
There are many versions

Let Xn(t) be a martingale satisfying supt>0E(|X(t)|p <∞) for some

p > 1. Then there exists a stochastic process X(t) such that

P{ lim
t→∞

Xn(t) = X(t)} = 1
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Stochastic processes

Martingale Central Limit Theorems
Again there are quite a few versions

Under some technical conditions, sums of (standardized) independent
martingales converge to a Brownian motion process B(t), for which

B(0) = 0.

E(B(t)) = 0 for all t.

Independent increments: B(t)−B(u) is independent of B(u) for
any 0 ≤ u ≤ t.
It’s a Gaussian process: For any positive integer n and time points
t1, . . . , tn, the joint distribution of B(t1), . . . , B(tn) is multivariate
normal.
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Stochastic processes

Doob-Meyer decomposition Theorem

Any counting process Ni(t) can be decomposed into

N(t) = Λ(t) + M(t),

where M(t) is a martingale and Λ(t) is a “predictable” stochastic
process.

“Predictable” has an intense mathematical definition, but the idea is
that the distribution of Λn+1(t) depends on the distribution of
Λ1(t), . . . ,Λn(t).
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Stochastic processes

Decomposition for the Proportional Hazards Model
Special case of survival (one event) and right censored data

Let Ni(t) = 1 if unit i failed in (0, t], and zero otherwise.

Ni(t) = Hi(t) + Mi(t),

where Hi(t) =
∫ y
0 hi(s) ds is the cumulative hazard.
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Residuals

Martingale Residuals
Based on Ni(t) = Hi(t) +Mi(t)

M̂i(t) = Ni(t)− Ĥi(t)

Evaluated at ti, the estimated martingale residual is

M̂i(ti) = δi − Ĥi(t)

= δi + exi(t)
>β̂ log

(
Ŝ0(ti)

)

Martingale residuals are martingales.

Add to zero.

Large values need investigation.

Plots against x variables can reveal the functional form of the
dependence of survival time on x.
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Residuals

Schoenfeld residuals

We have already seen

D∑
i=1

x(i) −∑
j∈Ri

xj
eβ̂xj∑

k∈Rj
eβ̂xk

 = 0

The terms that add to zero are called the Schoenfeld residuals

There is one set for each explanatory variable.

Unusually large or small values are worthy of investigatoin.

They can be approximately standardized, which helps.

They can be used to form a chi-squared test of H0 : Proportional
hazards. (Thereau and Grambsch, Chapter 6).
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Residuals

Case Deletion Residuals

Let β̂(i) denote the partial MLE of β with case i deleted.

Calculate β̂(i) − β̂.

There will be p differences.

These are called dfbeta.

They can be standardized.

The standardized versions are called dfbetas.

They can reveal observations that are overly influential.
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Residuals

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/312f23
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