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Background Reading

STA256/260 text on maximum likelihood.

STA258 text or lecture slides on confidence intervals and
hypothesis tests.
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Background

Statistical Estimation and Inference

You want to learn from data.

Adopt a probability model for the data.

Often, pretend your data are sampled randomly from some
population.

In rare cases, this may even be true.

What you wish you knew is represented by one or more unknown
parameters.

Estimate the parameters, or draw conclusions about the
parameters.

Interpret the results in terms of the data.
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Background

Examples of probability models
Also called Statistical models

Let X1, . . . , Xn be a random sample from a normal distribution
with expected value µ and variance σ2.
The parameters µ and σ2 are unknown.

For i = 1, . . . , n, let yi = β0 + β1xi + εi, where

β0 and β1 are unknown constants.
x1, . . . xn are known, observable constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
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Background

Meaning of the regression model

For i = 1, . . . , n, let yi = β0 + β1xi + εi, where

β0 and β1 are unknown constants.

x1, . . . xn are known, observable constants.

ε1, . . . , εn are independent N(0, σ2) random variables.

The parameters β0, β1, σ
2 are unknown constants.

The regression model means

The predictor x has a rough linear connection to the outcome y.

If β1 > 0, low x goes with low y and high x goes with high y.

If β1 < 0, low x goes with high y and high x goes with low y.

If β1 = 0, then x and y are unrelated.
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Maximum Likelihood

Maximum Likelihood
Thank you Mr. Fisher

Denote the unknown parameter by θ.

How should we estimate θ based on the sample data?

Choose the value of θ that yields the greatest probability of
getting the observed data.
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Maximum Likelihood

Likelihood
Assuming independent observations (a “random sample”)

L(θ) =

n∏
i=1

p(yi|θ) or

n∏
i=1

f(yi|θ)

The likelihood is the probability of obtaining the observed data – expressed as
a function of the parameter.

If the assumed distribution of the data is discrete, this statement is exactly
correct.

If the assumed distribution of the data is continuous, the likelihood is roughly
proportional to the probability of observing the data.

This is a standard calculus problem in maximizing a function.

It is usually more convenient to maximize the natural log of the likelihood.

The answer is the same because log(x) is an increasing function.

The greater the likelihood, the greater the log likelihood.
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Maximum Likelihood

Mechanics
Really basic math

I have noticed that a major obstacle for many students when doing
maximum likelihood calculations is a set of basic mathematical
operations they actually know. But the mechanics are rusty, or the
notation used in statistics is troublesome. So, with sincere apologies to
those who don’t need this, here are some basic rules.
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Maximum Likelihood

The distributive law

a(b+ c) = ab+ ac. You may see this in a form like

θ

n∑
i=1

xi =

n∑
i=1

θxi
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Maximum Likelihood

Power of a product is the product of powers

(ab)c = ac bc. You may see this in a form like(
n∏
i=1

xi

)α
=

n∏
i=1

xαi
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Maximum Likelihood

Multiplication is addition of exponents

abac = ab+c. You may see this in a form like

n∏
i=1

θe−θxi = θn exp(−θ
n∑
i=1

xi)
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Maximum Likelihood

Powering is multiplication of exponents

(ab)c = abc. You may see this in a form like

(eµt+
1
2
σ2t2)n = enµt+

1
2
nσ2t2
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Maximum Likelihood

Log of a product is sum of logs
log means natural log, base e, possibly denoted ln on your calculator

log(ab) = log(a) + log(b). You may see this in a form like

log

n∏
i=1

xi =

n∑
i=1

log xi
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Maximum Likelihood

Log of a power is the exponent times the log

log(ab) = b log(a). You may see this in a form like

log(θn) = n log θ
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Maximum Likelihood

The log is the inverse of the exponential function

log(ea) = a. You may see this in a form like

log

(
θn exp(−θ

n∑
i=1

xi)

)
= n log θ − θ

n∑
i=1

xi
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Maximum Likelihood

Example: Coffee taste test

A fast food chain is considering a change in the blend of coffee beans
they use to make their coffee. To determine whether their customers
prefer the new blend, the company plans to select a random sample of
n = 100 coffee-drinking customers and ask them to taste coffee made
with the new blend and with the old blend, in cups marked “A” and
“B.” Half the time the new blend will be in cup A, and half the time it
will be in cup B. Management wants to know if there is a difference in
preference for the two blends.

17 / 53



Maximum Likelihood

Statistical model

Letting θ denote the probability that a consumer will choose the new
blend, treat the data Y1, . . . , Yn as a random sample from a Bernoulli
distribution. That is, independently for i = 1, . . . , n,

p(yi|θ) = θyi(1− θ)1−yi

for yi = 0 or yi = 1, and zero otherwise.
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Maximum Likelihood

Find the MLE of θ
Show your work

Denoting the likelihood by L(θ) and the log likelihood by
`(θ) = logL(θ), maximize the log likelihood.

∂`

∂θ
=

∂

∂θ
log

(
n∏
i=1

p(yi|θ)

)

=
∂

∂θ
log

(
n∏
i=1

θyi(1− θ)1−yi
)

=
∂

∂θ
log
(
θ
∑n
i=1 yi(1− θ)n−

∑n
i=1 yi

)
=

∂

∂θ

(
(

n∑
i=1

yi) log θ + (n−
n∑
i=1

yi) log(1− θ)

)

=

∑n
i=1 yi
θ

−
n−

∑n
i=1 yi

1− θ
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Maximum Likelihood

Setting the derivative to zero and solving

θ =
∑n
i=1 yi
n = y

Second derivative test: ∂2`
∂θ2 = −n

(
1−y

(1−θ)2 + y
θ2

)
< 0

Concave down, maximum, and the MLE is the sample proportion:
θ̂ = y = p
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Maximum Likelihood

Numerical estimate

Suppose 60 of the 100 consumers prefer the new blend. Give a point
estimate the parameter θ. Your answer is a number.

> p = 60/100; p

[1] 0.6
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Maximum Likelihood

Minus log likelihood measures lack of model fit

−`(θ) = − log
∏n
i=1 p(xi|θ) =

∑n
i=1− log p(xi|θ)

The best fit for observation xi is if p(xi|θ) = P (Xi = xi|θ) = 1.

Then the log is zero.

If p(xi|θ) < 1, then log p(xi|θ) is negative and − log p(xi|θ) is
positive.

The lower the probability (bad fit), the greater − log p(xi|θ)
becomes.

So maximum likelihood is minimizing the total (or average)
badness of fit.

In machine learning, the minus log likelihood would be called a
loss function.

And estimating θ by minimizing the loss function would be called
learning about θ.
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Confidence Intervals and Tests

Large-sample Normality
Leading to confidence intervals and tests

For the taste test example, have MLE θ̂ = y, the sample mean.

The Central Limit Theorem says that if y1, . . . , yn are independent
random variables from a distribution with expected value µ and
variance σ2, then

The distribution of yn is approximately normal for large samples.

Regardless of sample size, E(yn) = µ and V ar(yn) = σ2

n .

Here, the data are Bernoulli, with µ = θ and σ2 = θ(1− θ).
Write

θ̂n
.∼ N

(
θ,
θ(1− θ)

n

)
.

Vocabulary: θ̂n is “asymptotically normal,” with asymptotic mean
θ and asymptotic variance θ(1− θ)/n.
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Confidence Intervals and Tests

Large-sample Normality
Still for the taste test example

θ̂n
.∼ N

(
θ, θ(1−θ)n

)
.

This means Zn = θ̂n−θ√
θ(1−θ)
n

.∼ N(0, 1).

Also, Zn = θ̂n−θ√
θ̂n(1−θ̂n)

n

.∼ N(0, 1).

In general, substitute the MLE for the parameter in the formula
for the variance, and the Central limit Theorem still holds.

Substituting the sample variance s2 for σ2 also works.

s2 =

∑n
i=1(yi − y)2

n− 1
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Confidence Intervals and Tests

Getting the picture

Zn = θ̂n−θ√
θ̂n(1−θ̂n)

n

.∼ N(0, 1) means P{−zα/2 < Zn < zα/2} ≈ 1− α.
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Confidence Intervals and Tests

Confidence interval using Zn = θ̂n−θ√
θ̂n(1−θ̂n)

n

.∼ N(0, 1)

1− α ≈ P{−zα/2 < Zn < zα/2}

= P{−zα/2 <
θ̂n − θ√
θ̂n(1−θ̂n)

n

< zα/2}

= P{−zα/2

√
θ̂n(1− θ̂n)

n
< θ̂n − θ < zα/2

√
θ̂n(1− θ̂n)

n
}

= P{−θ̂n − zα/2

√
θ̂n(1− θ̂n)

n
< −θ < −θ̂n + zα/2

√
θ̂n(1− θ̂n)

n
}

= P{θ̂n + zα/2

√
θ̂n(1− θ̂n)

n
> θ > θ̂n − zα/2

√
θ̂n(1− θ̂n)

n
}

= P{θ̂n − zα/2

√
θ̂n(1− θ̂n)

n
< θ < θ̂n + zα/2

√
θ̂n(1− θ̂n)

n
}
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Confidence Intervals and Tests

Numerical confidence interval for the taste test

Using 1− α ≈ P
{
θ̂n − zα/2

√
θ̂n(1−θ̂n)

n
< θ < θ̂n + zα/2

√
θ̂n(1−θ̂n)

n

}

> thetahat = 60/100; n = 100

> zcrit = qnorm(0.975); zcrit

[1] 1.959964

> se = sqrt(thetahat*(1-thetahat)/n)

> c(thetahat - zcrit*se, thetahat + zcrit*se)

[1] 0.5039818 0.6960182

Confidence interval is θ̂ ± zα/2 × standard error.
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Confidence Intervals and Tests

Tests of statistical hypotheses

Model: y ∼ Fθ
y is the data vector, and Y is the sample space: y ∈ Y
θ is the parameter, and Θ is the parameter space: θ ∈ Θ

Null hypothesis is H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ ∩Θc
0.

Meaning of the null hypothesis is that nothing interesting is
happening.

C ⊂ Y is the critical region. Reject H0 in favour of HA when y ∈ C.
Significance level α (size of the test) is the maximum probability
of rejecting H0 when H0 is true. Conventionally, α = 0.05.

p-value is the smallest value of α for which H0 can be rejected.

Small p-values are interpreted as providing stronger evidence
against the null hypothesis.
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Confidence Intervals and Tests

Carry out a test to determine which brand of coffee is
preferred
Recall the model is y1, . . . , yn

i.i.d.∼ B(1, θ)

Start by stating the null hypothesis.

H0 : θ = 0.50

H1 : θ 6= 0.50

Could you make a case for a one-sided test?

α = 0.05 as usual.

Reject H0 if p < 0.05.
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Confidence Intervals and Tests

Several valid test statistics for H0 : θ = θ0 are available
Based on y

.∼ N(θ, θ(1−θ)
n

)

Two of them are

Z1 =

√
n(y − θ0)√
θ0(1− θ0)

and

Z2 =

√
n(y − θ0)√
y(1− y)

What is the critical value? Your answer is a number.

> alpha = 0.05

> qnorm(1-alpha/2)

[1] 1.959964
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Confidence Intervals and Tests

Calculate the test statistic and the p-value for each test
Suppose 60 out of 100 preferred the new blend

Z1 =
√
n(Y−θ0)√
θ0(1−θ0)

> theta0 = .5; ybar = .6; n = 100

> Z1 = sqrt(n)*(ybar-theta0)/sqrt(theta0*(1-theta0)); Z1

[1] 2

> pval1 = 2 * (1-pnorm(Z1)); pval1

[1] 0.04550026

Z2 =
√
n(Y−θ0)√
Y (1−Y )

> Z2 = sqrt(n)*(ybar-theta0)/sqrt(ybar*(1-ybar)); Z2

[1] 2.041241

> pval2 = 2 * (1-pnorm(Z2)); pval2

[1] 0.04122683
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Confidence Intervals and Tests

Conclusions

Do you reject H0? Yes, just barely.

Isn’t the α = 0.05 significance level pretty arbitrary?
Yes, but if people insist on a Yes or No answer, this is what you
give them.

What do you conclude, in symbols? θ 6= 0.50. Specifically,
θ > 0.50.

What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new blend of
coffee beans.

Can you really draw directional conclusions when all you did was
reject a non-directional null hypothesis? Yes.
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Confidence Intervals and Tests

A technical issue

In this class we will mostly avoid one-tailed tests.

Why? Ask what would happen if the results were strong and in the
opposite direction to what was predicted (dental example).

But when H0 is rejected, we still draw directional conclusions.

For example, if x is income and y is credit card debt, we test H0 : β1 = 0
with a two-sided t-test.

Say p = 0.0021 and β̂1 = 1.27. We say “Consumers with higher incomes
tend to have more credit card debt.”

Is this justified? We’d better hope so, or all we can say is “There is a
connection between income and average credit card debt.”

Then they ask: “What’s the connection? Do people with lower income
have more debt?”

And you have to say “Sorry, I don’t know.”

It’s a good way to get fired, or at least look silly.
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Confidence Intervals and Tests

The technical resolution

Decompose the two-sided test into a set of two one-sided tests with
significance level α/2, equivalent to the two-sided test.
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Confidence Intervals and Tests

Two-sided test

H0 : θ = 1
2 versus H1 : θ 6= 1

2 , α = 0.05

0.025 0.025

Z
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Confidence Intervals and Tests

Left-sided test

H0 : θ ≥ 1
2 versus H1 : θ < 1

2 , α = 0.025

0.025
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Confidence Intervals and Tests

Right-sided test

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.025

0.025
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Confidence Intervals and Tests

Decomposing the 2-sided test into two 1-sided tests

H0 : θ = 1
2 vs. H1 : θ 6= 1

2 , α = 0.05
0.025 0.025

Z

H0 : θ ≥ 1
2 vs. H1 : θ < 1

2 , α = 0.025
0.025

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.025
0.025

Clearly, the 2-sided test rejects H0 if and only if exactly one of the
1-sided tests reject H0.

Carry out both of the one-sided tests.

Draw a directional conclusion if H0 is rejected.
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Confidence Intervals and Tests

That was a review of confidence intervals and tests

Getting back to maximum likelihood,

39 / 53



Continuous Models

Continuous Random Variable X

Probability is area under a curve.

The curve is called the probability density function.

It is denoted by f(x) or fx(x).

P (X ≤ x) = F (x) or Fx(x) is the cumulative distribution function.

d
dxF (x) = f(x)

And F (x) =
∫ x
−∞ f(t) dt
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Continuous Models

f(x) = d
dxF (x) is not a probability

Recall g′(x) = limh→0
g(x+h)−g(x)

h

f(x) = lim
h→0

F (x+ h)− F (x)

h
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Continuous Models

Another way to write f(x)
Instead of limh→0

F (x+h)−F (x)
h

f(x) = lim
h→0

F (x+ h
2 )− F (x− h

2 )

h

Limiting slope is the same if it exists.
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Continuous Models

Interpretation

f(x) = lim
h→0

F (x+ h
2)− F (x− h

2)

h

F (x+ h
2)− F (x− h

2) = P (x− h
2 < X < x+ h

2)

So f(x) is roughly proportional to the probability
that X is in a tiny interval surrounding x.
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Continuous Models

Example: Exponential data

The lifetime of an electronic component has an exponential
distribution with parameter λ > 0.

That is, f(x|λ) = λe−λx for x > 0, and zero for x ≤ 0.

Let X1, . . . Xn be a random sample of lifetimes.

What is the likelihood function? Simplify.

L(λ) =

n∏
i=1

λe−λxi = λne−λ
∑n
i=1 xi

Note that x1, . . . , xn are the observed data values.

The likelihood is roughly proportional to the probability of
obtaining a set of data values in a tiny neighbourhood of the
observed sample data.
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Continuous Models

Find the MLE
Differentiate the log likelihood

d

dλ
`(λ) =

d

dλ
logL(λ)

=
d

dλ
log
(
λne−λ

∑n
i=1 xi

)
=

d

dλ

(
n log λ− λ

n∑
i=1

xi

)

=
n

λ
−

n∑
i=1

xi
set
= 0

⇒ λ =
n∑n
i=1 xi

So λ̂ = n∑n
i=1 xi

= 1/x.
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Large Samples

Large-sample normality of the MLE

For the coffee taste test (Bernoulli) example, the MLE θ̂ was
approximately normal because (in that example) θ̂ = y, and the
Central Limt Theorem says y is approximately normal for large
samples.

But the result holds more generally.

Under some technical conditions that are satisfied in this class, the
distribution of the maximum likelihood estimate is approximately
normal for large samples.

The distribution of vectors of parameter estimates is
approximately multivariate normal.

Thank you, Mr. Wald.
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Large Samples

A Central Limit Theorem for the MLE
Based indirectly on the usual Central Limit Theorem

θ̂n
.∼ N(θ,

1

n I(θ)
)

Where I(θ) is the Fisher Information in one observation.

I(θ) = E
∂2

∂θ2
(− log f(X|θ)) = −E ∂2

∂θ2
log f(X|θ)

Here’s the idea.

You are finding the MLE by minimizing the minus log likelihood
function.

And doing the second derivative test to see if it’s really a
minimum.

But the likelihood is a random quantity, because the Xi values are
random variables.

So take the expected value.
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Large Samples

Fisher Information in the whole sample
I(θ) = −E ∂2

∂θ2
log f(X|θ) is the information in one observation.

−E ∂2

∂θ2
logL(θ) = −E ∂2

∂θ2
log

n∏
i=1

f(Xi|θ)

= −E ∂2

∂θ2

n∑
i=1

log f(Xi|θ)

=

n∑
i=1

−E ∂2

∂θ2
log f(Xi|θ)

= n I(θ)
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Large Samples

Variance and curvature of the log likelihood

Fisher observed that some likelihood functions are almost flat at the
MLE, while others have a lot of curvature (big second derivative).

Likelihoods with more curvature contain more information about the
location of the parameter.

The Fisher information in the whole sample (that’s nI(θ)) is the
expected curvature of the minus log likelihood, at the true parameter
value.

Fisher’s great insight was that the curvature is deeply related to the
variance of the MLE.

The more the curvature, the smaller the variance.

The asymptotic variance of the MLE is vn = 1
nI(θ) .

For many examples it’s exactly the variance.

Fisher discovered this. Doob and Wald proved asymptotic normality
under general conditions.
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Large Samples

Estimating the asymptotic variance vn = 1
nI(θ)

For tests and confidence intervals, we need to estimate the
asymptotic variance of the MLE.

There are (at least) two good ways.

The first is to use 1

nI(θ̂)
.

The other estimate is based on the Fisher information in the whole
sample: nI(θ) = −E ∂2

∂θ2 logL(θ) = −E ∂2

∂θ2 `(θ).

Instead of calculating the expected value and then substituting
θ = θ̂, just substitute θ = θ̂ in the first place.

The result is sometimes called the observed Fisher information:

n̂I(θ) = − ∂2

∂θ2
logL(θ)

∣∣∣∣
θ=θ̂

= −`′′
(
θ̂
)

Often, the two estimates are identical. They are always close for
large samples.
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Large Samples

Observed Fisher Information: −`′′(θ̂)
The second derivative of the minus log likelihood, evaluated at the MLE

We now have a convenient recipe for the standard error (estimated
standard deviation) of the MLE.

Differentiate the log likelihood function and set to zero; solve for
the MLE.

Carry out the second derivative test to make sure it’s a maximum.

That is, differentiate again and substitute θ = θ̂.

Multiply by minus one and invert it (one over). That’s the
estimated variance of the MLE.

Take the square root, and you have the standard error.

S
θ̂

=
1√
−`′′(θ̂)
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Large Samples

What do you need to be able to do?

Given a model, and a set of numerical data,

Derive a formula for θ̂.

Calculate a point estimate of θ from the sample data. The answer
is a number.

Give a formula for the estimated variance of θ̂. Use
v̂n = 1/− `′′(θ̂).
Calculate a 95% confidence interval for θ.
Use θ̂± zα/2 × standard error. The answer is a pair of numbers.

Test H0 : θ = θ0. Use

Zn =
θ̂ − θ0√
v̂n

.

We need an example.
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Large Samples

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/312f23
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