\documentclass[12pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb \usepackage{graphicx} % To include pdf files! \usepackage{comment} \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{euscript} % for \EuScript \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \oddsidemargin=-.25in % Good for US Letter paper \evensidemargin=0in \textwidth=6.3in \topmargin=-0.7in \headheight=0.1in \headsep=0.1in \textheight=9.4in \pagestyle{empty} % No page numbers \begin{document} \enlargethispage*{1000 pt} \begin{center} {\Large ~~~~~~~\textbf{STA 312f23 Formulas}}\\ % \vspace{1 mm} \end{center} \renewcommand{\arraystretch}{1.75} \noindent \begin{tabular}{lcl} %%%%%%%%%%%%%%%%%%%%%%%%%%%% Gamma %%%%%%%%%%%%%%%%%%%%%%%%%% $\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, dt$ & ~ & $\Gamma(\alpha+1) = \alpha \, \Gamma(\alpha)$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$\\ %%%%%%%%%%%%%%%%%%%%%%%%%%%% Moments %%%%%%%%%%%%%%%%%%%%%%%%%% $E(X) \stackrel{def}{=} \sum_x x \, p_x(x)$ or $\int_{-\infty}^\infty x \, f_x(x) \, dx$ & ~ & $E(g(X)) = \sum_x g(x) \, p_x(x)$ or $\int_{-\infty}^\infty g(x) \, f_x(x) \, dx$ \\ $Var(X) \stackrel{def}{=} E\left( (X-\mu)^2 \right)$ & ~ & $Var(X) = E(X^2)-[E(X)]^2$ \\ %If $X \sim N(\mu,\sigma^2)$, then $\frac{X-\mu}{\sigma} \sim N(0,1)$. %& ~ & %If $Z \sim N(0,1)$, then $Z^2 \sim \chi^2(1)$. \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%% Likelihood %%%%%%%%%%%%%%%%%%%%%%%%%% $L(\theta) = \prod_{i=1}^n p(y_i|\theta) $ & ~ & $L(\theta) = \prod_{i=1}^n f(y_i|\theta)$ \hspace{5mm} $\ell(\theta) = \log L(\theta)$ \\ $L(\theta) = \prod_{i=1}^n f(t_i|\theta)^{\delta_i} \, S(t_i|\theta)^{1-\delta_i}$ & ~ & $\ell(\theta) = \sum_{i=1}^n \delta_i \log f(t_i|\theta) + \sum_{i=1}^n (1-\delta_i) \log S(t_i|\theta) $ \\ %%%%%%%%% Univariate %%%%%%%%% $\widehat{\theta}_n \stackrel{.}{\sim} N(\theta,\frac{1}{n \, I(\theta)})$ & ~ & $I(\theta) = -E \frac{\partial^2}{\partial\theta^2} \log f(X|\theta)$ \\ $\widehat{v}_n = 1/-\ell^{\prime\prime}(\widehat{\theta})$ & ~ & $S_{\widehat{\theta}} = \sqrt{\,\widehat{v}_n}$ \\ % $se = \sqrt{\,\widehat{v}_n}$ \\ 95\% CI: $\widehat{\theta} \pm 1.96 \times S_{\widehat{\theta}}$ & ~ & $Z_n = \frac{\widehat{\theta}-\theta_0}{S_{\widehat{\theta}}}$ \\ If $g: \mathbb{R} \rightarrow \mathbb{R}$ & ~ & $g(\widehat{\theta}) \stackrel{.}{\sim} N\left( g(\theta), g^\prime(\theta)^2 \, v_n \right)$ \\ %%%%%%%%% Multivariate %%%%%%%%% $ \widehat{\boldsymbol{\theta}}_n \stackrel{.}{\sim} N_k\left(\boldsymbol{\theta}, \frac{1}{n} \boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\right )$ & ~ & $ \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[-E\left(\frac{\partial^2}{\partial\theta_i\partial\theta_j} \log f(Y;\boldsymbol{\theta})\right)\right]$ \\ $\mathbf{H}(\boldsymbol{\theta}) = \left[-\frac{\partial^2} {\partial\theta_i\partial\theta_j} \ell(\boldsymbol{\theta}) \right]$ & ~ & $\widehat{\mathbf{V}}_n = \mathbf{H}(\boldsymbol{\widehat{\theta}})^{-1}$ estimates $\frac{1}{n} \boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}$ \\ If $g: \mathbb{R}^k \rightarrow \mathbb{R}$ & ~ & \\ \.{g}$(\boldsymbol{\theta}) = \left( \frac{\partial g}{\partial\theta_1}, \ldots , \frac{\partial g}{\partial\theta_k} \right)$ & ~ & $g(\widehat{\boldsymbol{\theta}}) \stackrel{.}{\sim} N\left( g(\boldsymbol{\theta}), \mbox{\.{g}}(\boldsymbol{\theta}) \mathbf{V}_n \, \mbox{\.{g}}(\boldsymbol{\theta})^\top \right)$ \\ $G^2 = -2 \log \left( \frac{\max_{\boldsymbol{\theta} \in \Theta_0} L(\boldsymbol{\theta})} {\max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta})} \right) = -2 \log \left( \frac{L(\widehat{\boldsymbol{\theta}}_0)} {L(\widehat{\boldsymbol{\theta}})} \right) $ & ~ & $W_n = (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h})^\top \left(\mathbf{L} \widehat{\mathbf{V}}_n \mathbf{L}^\top\right)^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h})$ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%% Survival and Hazard %%%%%%%%%%%%%%%%%%%%%%%%%% $S(t) \stackrel{def}{=} P(T > t) = 1-F(t)$ & ~ & $h(t) \stackrel{def}{=} \lim_{\Delta \rightarrow 0} \frac{P(t < T < t + \Delta|T>t)}{\Delta}$, where $\Delta>0$ \\ $ h(t) = \frac{f(t)}{S(t)}$ & ~ & $S(t) = \exp\{-\int_0^t h(x) \, dx\}$ \end{tabular} % \hspace{10mm} % \hspace{2mm} %%%%%%%%%%%%%%%%%%%%%%%%%%%% Distributions %%%%%%%%%%%%%%%%%%%%%%%%%% % See earlier versions for material that was cut out. {\small \begin{center} \begin{tabular}{|l|l|c|c|c|} \hline \textbf{Distribution} & \hspace{20mm} \textbf{Density} & $\mathbf{S(t)}$ & $\mathbf{E(T)}$ & \textbf{Median} \\ \hline \hline Exponential & $f(t|\lambda) = \lambda e^{-\lambda t} \, I(t \geq 0)$ & $e^{-\lambda t}$ & $\frac{1}{\lambda}$ & $\frac{\log(2)}{\lambda}$\\ \hline Weibull & $f(t|\alpha,\lambda) = \alpha\lambda(\lambda t)^{\alpha-1} \, \exp\{-(\lambda t)^\alpha \} \, I(t \geq 0)$ & $e^{-(\lambda t)^\alpha}$ & $\frac{\Gamma(1+1/\alpha)}{\lambda}$ & $\frac{\log(2)^{1/\alpha}}{\lambda}$ \\ \hline Gumbel $G(\mu,\sigma)$ & $f(y|\mu,\sigma) = \frac{1}{\sigma} \, \exp\left\{ \left( \frac{y-\mu}{\sigma}\right) - e^{ \left(\frac{y-\mu}{\sigma}\right)} \right\}$ & $e^{-e^{\left( \frac{t-\mu}{\sigma} \right)}}$ & $\sigma\Gamma^\prime(1)+\mu$ & $\sigma\log(\log(2)) + \mu$ \\ \hline Log-normal$(\mu,\sigma^2)$ & $f(y|\mu,\sigma) = \frac{1}{\sigma \sqrt{2\pi}} \, \exp -\left\{{\frac{(\log(t)-\mu)^2} {2\sigma^2}}\right\} \, \frac{1}{t} \, I(t>0)$ & & $\exp\left( \mu + \frac{\sigma^2}{2} \right)$ & $e^\mu$ \\ \hline \end{tabular} \vspace{2mm} \end{center} \renewcommand{\arraystretch}{1.0} } % End size \noindent $T \sim$ Lognormal$(\mu,\sigma^2)$ if and only if $X = \log(T) \sim N(\mu,\sigma^2)$ \vspace{2mm} \noindent Log of standard exponential is Gumbel(0,1), also called the standard extreme value distribution. \\ If $Z \sim G(0,1)$, MGF is $M_z(t)=\Gamma(t+1)$, $E(Z) = \Gamma^\prime(1)$, $Var(Z) = \frac{\pi^2}{6}$, and \\ $Y = \sigma Z + \mu \sim G(\mu,\sigma)$. \\ Log of Weibull with $\alpha = 1/\sigma$ and $\lambda = e^{-\mu}$ is Gumbel$(\mu,\sigma)$. \\ %\vspace{1mm} \pagebreak %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent Kaplan-Meier estimate: Discrete time. \begin{itemize} \item $p_j = $ the probability of surviving past time $t_j$, given survival to time $t_{j-1}$. \\ $S(t_k) = \prod_{j=1}^k p_j$. %\item $\displaystyle S(t_k) = \prod_{j=1}^k p_j$. \item $d_j$ is the number of deaths at time $t_j$, and $n_j$ is the number of individuals at risk before time $t_j$. \item $\widehat{p}_j = \frac{n_j-d_j}{n_j}$,\hspace{5mm} $\widehat{S}(t_k) = \prod_{j=1}^k \widehat{p}_j$,\hspace{5mm} $\widehat{S}(t) = \prod_{t_j \leq t} \widehat{p}_j$. \item $\widehat{S}(t) \stackrel{.}{\sim} N\left( S(t) , S(t)^2\sum_{t_j \leq t} \frac{1-p_j}{n_jp_j} \right)$. \item The standard error of $\widehat{S}(t)$ is $\widehat{S}(t)\sqrt{\sum_{t_j \leq t} \left(\frac{d_j}{n_j(n_j-d_j)}\right)}$. \end{itemize} \noindent Weibull Regression: $t_i = \exp\{\beta_0+\beta_1x_{i,1} + \ldots + \beta_{p-1}x_{i,p-1} \} \cdot \epsilon_i^\sigma = e^{\mathbf{x}_i^\top \boldsymbol{\beta}}\epsilon_i^\sigma$, where $\epsilon_1 \sim \exp(1)$. \begin{itemize} \item $t_i \sim$ Weibull, with $\alpha = 1/\sigma$ and $\lambda = e^{-\mathbf{x}_i^\top \boldsymbol{\beta}}$. \item $E(t_i) = e^{\mathbf{x}_i^\top \boldsymbol{\beta}} \, \Gamma(\sigma + 1)$, Median($t_i$) = $e^{\mathbf{x}_i^\top \boldsymbol{\beta}} \, \log(2)^\sigma$, $h_i(t) = \frac{1}{\sigma} \exp\{-\frac{1}{\sigma}\mathbf{x}_i^\top \boldsymbol{\beta}\}t^{\frac{1}{\sigma}-1}$. % \item[] $S(t) = e^{ -\left( e^{-\frac{1}{\sigma}\mathbf{x}_i^\top \boldsymbol{\beta} } t^{\frac{1}{\sigma}} \right)}$ \item $S(t) = \exp\left\{ - e^{-\frac{1}{\sigma}\mathbf{x}_i^\top \boldsymbol{\beta} } t^{\frac{1}{\sigma}} \right\}$ \end{itemize} \noindent Log-normal Regression Regression: $t_i = \exp\{\beta_0+\beta_1x_{i,1} + \ldots + \beta_{p-1}x_{i,p-1} \} \cdot \epsilon_i^\sigma = e^{\mathbf{x}_i^\top \boldsymbol{\beta}}\epsilon_i^\sigma$, where $\epsilon_1 \sim$ Log-normal(0,1). \begin{itemize} \item $t_i \sim$ Log-normal$(\mu,\sigma^2)$, with $\mu = e^{\mathbf{x}_i^\top \boldsymbol{\beta}}$. \item $E(t_i) = e^{\mathbf{x}_i^\top \boldsymbol{\beta}+ \frac{1}{2}\sigma^2} $, Median($t_i$) = $e^{\mathbf{x}_i^\top \boldsymbol{\beta}}$. \end{itemize} % \begin{comment} \noindent Proportional Hazards Regression \begin{itemize} \item $ h(t) = h_0(t) \, e^{\mathbf{x}^\top \boldsymbol{\beta}}$. \item $\mbox{PL}(\boldsymbol{\beta}) = \displaystyle \prod_{i=1}^D \left( \frac{\displaystyle e^{\mathbf{x}_{(i)}^\top \boldsymbol{\beta}} } {\displaystyle \sum_{j \in R_{(i)}} e^{\mathbf{x}_j^\top \boldsymbol{\beta}}} \right) $. % \item $h_{i,j}(t_{i,j}) = h_0(t_{i,j}) \exp\{ \sigma z_i + \mathbf{x}_{i,j}^\top\boldsymbol{\beta} \}$ \end{itemize} % \end{comment} \vspace{10mm} \vspace{8mm} \hrule \vspace{3mm} This formula sheet was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Mathematical and Computational Sciences, University of Toronto Mississauga. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \begin{center} \href{http://www.utstat.toronto.edu/brunner/oldclass/312f23} {\texttt{http://www.utstat.toronto.edu/brunner/oldclass/312f23}} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% & ~~~~~ & \\ %\multicolumn{3}{l} {$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$} % $P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$ & & % \multicolumn{3}{l} {$P(B_j|A) = P(A|B_j)P(B_j) / \sum_{k=1}^n P(A|B_k)P(B_k)$}