Exercises February 2

- 1. Suppose Y_1, \ldots, Y_n are independent Poisson random variables, with $E(Y_i) = \mu_0$ with probability π , and $E(Y_i) = \mu_1$ with probability (1π) . We fit a working model under the assumption that Y_i are independent Poisson random variables all with the same mean μ .
 - (a) Show that the maximum likelihood estimate under the working model is $\hat{\mu} = \bar{y}$, and find its limiting value μ^* under the correct model.
 - (b) Give an expression for the asymptotic variance of $\hat{\mu}$ using the sandwich variance formula.
 - (c) Compare this to the asymptotic variance of $\hat{\mu}$ under the working model.
- 2. Suppose Y_1, \ldots, Y_n are i.i.d. from a density $f(y; \theta), \theta \in \mathbb{R}$, and we have a prior density $\pi(\theta)$ which satisfies $\pi(\theta) > 0$ and $\int \pi(\theta) d\theta = 1$ (a so-called *proper prior*). The Laplace approximation to the posterior is

$$\pi(\theta \mid y) \doteq \frac{1}{\sqrt{2\pi}} |j(\hat{\theta})|^{1/2} \exp\{\ell(\theta) - \ell(\hat{\theta})\} \frac{\pi(\theta)}{\pi(\hat{\theta})},$$

where we assume $\hat{\theta}$ is the solution to $\ell'(\theta) = 0$, and $j(\theta) = -\ell''(\theta)$. Show that integrating this approximation gives

$$\Pi(\theta \mid y) = \int^{\theta} \pi(\vartheta \mid y) d\vartheta \doteq \Phi(r) + \phi(r) \left(\frac{1}{q} - \frac{1}{r}\right),$$

where r and q are functions of θ (and y), of the form

$$r^{2}/2 = \ell(\hat{\theta}) - \ell(\theta),$$

$$q = \ell'(\theta)j^{-1/2}(\hat{\theta})\pi(\hat{\theta})/\pi(\theta),$$

and $\Phi(\cdot)$ and $\phi(\cdot)$ are the standard normal cumulative distribution function and density function.

Comment: not required, but fun to figure out, to the same order of approximation

$$\Pi(\theta \mid y) \doteq \Phi(r + \frac{1}{r} \log \frac{q}{r}).$$