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Various ‘types’ of likelihood

1. likelihood, marginal and conditional likelihood, pro"le likelihood, adjusted pro"le

2. semi-parametric likelihood, partial likelihood

3. quasi-likelihood, composite likelihood misspeci!ed models

4. empirical likelihood, penalized likelihood

5. likelihood inference in high dimensions
6. simulated likelihood, indirect inference

7. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local
likelihood, sieve likelihood
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Presentations

Feb 16 Angela: Cox (2013)
Robert: Barndor*-Nielsen and Cox (1979)
Shiki: Solomon and Cox (1992)

Feb 23 Hengchao: Rotnitzky et al. (2000)
Siyue: De Stavola and Cox (2008)
Manuel: Battey and Cox (2018)
Ziang: Cox (1975)

Feb 16 in SS 1087; Feb 23 online

exercises Jan 26 has details about report structure
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High-dimensional inference

• f (y; θ), y ∈ Rn; θ ∈ Rp, p large relative to n, or p > n

• Partial likelihood has p = n− 1+ d, yet usual asymptotic theory applies

• Empirical likelihood has p = n− 1, yet usual asymptotic theory applies

• “Neyman-Scott problems” have yij ∼ f (·;ψ,λi), j = 1, . . . ,m; i = 1, . . . , k, so n = km
and p = 1+ k i.e. p/n = O(1) if m→ ∞, k "xed; usual theory does not apply
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Empirical likelihood Owen 1988; Knight Ch5.6

• Y1, . . . , Yn i.i.d. F µ = E(Yi) =
!
ydF(y)

• pro"le likelihood: maximize
"n

i=1 pi, subject to pi ≥ 0,Σpi = 1,ΣpiYi = µ

• solution

p̂i(µ) =
1
n

1
1+ λ(Yi − µ)

, where λ solves

0 =
1
n

n#

i=1

Yi − µ

1+ λ(Yi − µ)

• Theorem: R(Y) = {µ : g(Y;µ) ≤ kα} is an approximate 1− α con"dence interval
for µ, where pr{χ21 ≥ kα} = α

• if E|Yi|3 < ∞, under H0 : µ = µ0: actually var(Yi) < ∞

−2
n#

i=1
log{np̂i(µ0)}

d→ χ21 , n→ ∞
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... empirical likelihood Owen 1988; Knight Ch5.6

• proof "rst shows
λ = Op(n−1/2)

• then

λ
.
=
Ȳ − µ

S(µ) , S(µ) = 1
n

n#

i=1
(Yi − µ)2

• then Taylor series expansion:

−2
n#

i=1
log{np̂i(µ0)}

.
=
n(Ȳ − µ0)

2

S(µ0)

• see Owen (2001) Empirical Likelihood for many generalizations, including
proportional hazards model
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Neyman-Scott problems Sartori 2003

• Yij ∼ N(µi,σ2), j = 1, . . . ,m; i = 1, . . . ,q; θ = (µ1, . . . , µq,σ
2) Sartori’s notation

• Yij ∼ N(µ,σ2i ), j = 1, . . . ,m; i = 1, . . . ,q; θ = (µ,σ21 , . . . ,σ
2
q)

• Yij ∼ Bern(pij), j = 1, 2; i = 1, . . . ,q; ψ = log{pi1(1−pi2)pi2(1−pi1)}; λ1, . . . ,λq

• Yij ∼ Gamma(ψ,λi), j = 1, . . . ,m; i = 1, . . . ,q; θ = (ψ,λ1, . . . ,λq)

• Yi1 ∼ Gamma(m,ψ/λi), Yi2 ∼ Gamma(m,ψλi); θ = (ψ,λ1, . . . ,λq)

• sample size n = mq; m→ ∞,q "xed or m "xed ,q→ ∞ or m,q→ ∞

• “methods based on the pro"le likelihood may fail unless q = o(n1/2), ... based on
modi"ed pro"le likelihoods still perform accurately, provided that q = o(n3/4)”
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... Neyman-Scott problems Sartori 2003

• Gamma example:
Yij ∼ Gamma(ψ,λi), j = 1, . . . ,m; i = 1, . . . ,q; θ = (ψ,λ1, . . . ,λq)

• there is an exact conditional log-likelihood for ψ linear exponential family

• ℓC(ψ) = ψs+ q log Γ(mψ)−mq log Γ(ψ)

• pro"le log-likelihood gives poor estimates for large q
• ℓP(ψ) = ψs+ qmψ log(mψ)−mqψ −mq log Γ(ψ)

• modi"ed pro"le log-likelihood is very close to conditional
• ℓM(ψ) = ψs+ q(mψ − 1/2) log(mψ)−mqψ −mq log Γ(ψ)
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Increasing dimension asymptotics

• classical: p/n→ 0, p "xed, n→ ∞ θ has dimension p or pn

• semi-classical pn/n→ 0 or p3/2n /n→ 0 or p2n/n→ 0 Portnoy, Sartori

• moderate dimensions pn/n→ β Sur & Candes ’17

• high dimensions pn/n→ ∞

• ultra-high dimensions pn ∼ en

• Portnoy 1988
• MLE “will tend to be consistent” if p/n→ 0
• asymptotic approximations okay if p3/2/n→ 0
• and fail if p2/n→ 0 Portnoy 1984, 1985
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High-dimensional linear regression Bühlmann et al 2014

• y = Xβ + ), E()) = 0, cov()) = σ2I p >> n running example, n = 71, p = 4088

β̂ridge = argmin
β

{ 1n (y − Xβ)T(y − Xβ) + λ

p#

j=1
β2j ,

β̂lasso = argmin
β

{ 1n (y − Xβ)T(y − Xβ) + λ

p#

j=1
|βj|

• usual to assume Σn
i=1xij = 0,Σn

i=1x2ij = 1 so units are comparable
β̂0 = ȳ is not ‘shrunk’

• Lasso penalty leads to several β̂k = 0 sparse solutions

• there are many variations on the penalty term
• λ is a tuning parameter o)en selected by cross-validation
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... high-dimensional inference

• Inferential goals (§2.2)
• (a) prediction of surface Xβ or ynew = xTnewβ
• (b) estimation of β
• (c) estimation of S = {j : βj ∕= 0) ‘support set’

• (a): “identi"ability of β is not necessary; from this perspective, prediction is o.en a
much easier problem”

• (b): “an identi"ability assumption on the design X is required, for example, a
restricted eigenvalue condition” not checkable (?)

• (c): “ideally, ... Ŝ = S with high probability” Ŝ estimate of S e.g. {j; β̂j,Lasso ∕= 0}
• (c): requires βmin condition: min |βj| > c, c ∼

!
log p/n ≃ 0.34|S|

• o"en replaced by (c’): ‘screening’ Ŝ ⊃ S with high probability
also needs conditions on X
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... high-dimensional inference

• Inferential goals (§2.2)
• (a) prediction of surface Xβ or ynew = xTnewβ
• (b) estimation of β
• (c) estimation of S = {j : βj ∕= 0) ‘support set’

• can solve (a) and (b), if “the underlying truth is sparse”
• for example, if |S| << n/ log p then just need log p << n log(4088) .

= 8

• “if the true underlying model is not sparse, them high-dimensional inference is ill
posed and uninformative”

• re (a) prediction accuracy can be assessed by cross-validation
• note that (a) can be estimable even if p > n, as long as Xβ of small enough
dimension

STA 4508 February 16 2022 12
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Inference about β, p > n

• re (b): inference for β: e.g. p-values for testing H0,j : βj = 0

• three methods suggested: multi-sample splitting, debiasing, stability selection

• multi-sample splitting: "t the model on random half, say, of observations, leads to Ŝ

• use X(Ŝ) in "tting to the other half

• Pj = p-value for t-test of Hj if j ∈ Ŝ, o.w. 1

• Pcorr,j = Pj × |Ŝ|, j ∈ Ŝ, o.w. 1

• Repeat B times and aggregate Pbcorr,j Pbcorr,j not independent
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Inference about β, p > n

• de-biasing β̂ridge/Lasso,corr,j = b̂j − bias see paper

• Can show resulting estimate β̂ridge/Lasso,corr,j ∼ N(βj,σ2#wj) wj known

• β̂ridge/Lasso,corr,j ∕= 0, any j, so need multiplicity correction p = 4088

• stability selection Meinshausen & B 2010; ,exible

• on their example
• Lasso selects 30 features;
• multi-sample selects 1;
• bias-corrected Ridge selects 0;
• stability selection selects 3 implemented in hdi
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Non-linear models

• example yi independent, E(yi) = µi(β);g(µi) = β0 + xT

i β

• Lasso-type ‘mle’: argmin{− 1
nℓ(β,β0; y) + λΣj=1|βj|} β = (β1, . . . ,βp)

• can use multi-sample splitting or stability selection

• a version of de-biasing applies to GLMs, based on weighted least squares

• a marginal approach would "t y = α0 + αjx(j), one feature at a time
• leading to 4088 p-values, and then need techniques for controlling FWER or FDR
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n,p→ ∞ Portnoy, 1984,5,8

• Model: yi = xT

i β + Zi, i = 1, . . . ,n independent
• M-estimation:

n#

i=1
xiψ(yi − xT

i β̂) = 0 (1)

• result: if ψ is monotone, and p log(p)/n→ 0, and conditions on X, then

there is a solution of (1) satisfying ||β̂ − β||2 = O(p/n)

• “rows of X behave like a sample from a distribution in Rp”
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n,p→ ∞ Portnoy, 1984,5,8

• Model: yi = xT

i β + Zi, i = 1, . . . ,n independent
• M-estimation:

n#

i=1
xiψ(yi − xT

i β̂) = 0 (1)

• result: if ψ is monotone, and p log(p)/n→ 0, and conditions on X, then

there is a solution of (1) satisfying ||β̂ − β||2 = O(p/n)

• “rows of X behave like a sample from a distribution in Rp”

• if p3/2 log n/n→ 0, then
max |xT

i (β̂ − β)| p→ 0
• and

aT

n (β̂ − β)
d→ N(0,σ2)

σ2 = aT
n (XTX)−1anEψ2(Z)/{Eψ′(Z)}2
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