
RESEARCH ARTICLE
◥

NEUROSCIENCE

Illusory generalizability of clinical prediction models
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Alkomiet Hasan4, Joseph Kambeitz5, Philip R. Corlett2, Nikolaos Koutsouleris6, Harlan M. Krumholz7,
John H. Krystal2, Martin Paulus8

It is widely hoped that statistical models can improve decision-making related to medical treatments.
Because of the cost and scarcity of medical outcomes data, this hope is typically based on investigators
observing a model’s success in one or two datasets or clinical contexts. We scrutinized this optimism
by examining how well a machine learning model performed across several independent clinical trials of
antipsychotic medication for schizophrenia. Models predicted patient outcomes with high accuracy
within the trial in which the model was developed but performed no better than chance when applied
out-of-sample. Pooling data across trials to predict outcomes in the trial left out did not improve
predictions. These results suggest that models predicting treatment outcomes in schizophrenia are
highly context-dependent and may have limited generalizability.

O
ne fundamental problem in medicine is
that despite similar treatments some pa-
tients get better whereas others show
no improvement. One goal of precision
medicine is to use machine learning to

find models that will help predict who will
respond to what type of treatment (1). For
precision medicine to affect clinical practice
and improve outcomes, the models that we
develop must robustly predict outcomes for
unseen, future patients (2–5).
However, models are not usually tested on

new patients in a different context because
data—especially data from controlled designs—
are scarce and expensive (6). Instead, research-
ers typically split a study’s participants into
two or more random groups, build a model
using the data from one of the groups, and test
its predictions on the other group (e.g., k-fold
cross-validation) (3, 4). When we use this kind
of approximation based on one data set or
clinical sample, we have a fundamentally lim-
ited insight into the true potential for a model
to improve outcomes in the future. Validating
clinical prediction models in different clinical
samples is an essential step in the model de-
velopment process. It generally results in pre-
dictive performance measures that are lower
but allows for a more realistic assessment of

the potential for statistical models to improve
clinical practice (7–9).

Open data opens possibilities

As efforts towardmandatory randomized con-
trolled trial (RCT) data deposition, archival
data sharing, and open science continue to
advance, opportunities arise to more rigor-
ously examine how well treatment predic-
tion models will fare in different contexts. The
Yale Open Data Access (YODA) Project is one
such effort, which now includes a data archive
of over 246 clinical trials from all medical
fields.
The YODA project included several RCTs

evaluating the comparative efficacy of anti-
psychoticmedications for treating schizophrenia.
Predicting treatment outcomes in schizophrenia
could be especially advantageous because the
clinical response to pharmacological interven-
tions is heterogeneous and depends on many

environmental factors such as individual and
family-related stress, drug abuse, homeless-
ness, and social isolation. Depending on the
clinical outcome definition, up to 20 to 30% of
first-episode individuals (10) and more than
50%with a relapse do not respond sufficiently
to antipsychotic medications (11).
We examined the generalizability of clinical

predictionmodels acrossmultiple clinical trials
using the case study of antipsychotic treat-
ments for schizophrenia. Critically, this study
directly evaluated the performance of a model
on its initial training sample as well as how
the same model performed on truly inde-
pendent clinical trial samples. This allowed us
toassess twokey risks: First,modelsmay “overfit”
the data by fitting the random noise of one
particular dataset rather than a true signal
likely to generalize across samples, leading to
good predictions in the training data that do
not generalize to the testing data. The second
key risk is poormodel transportability.Models
may lack external validity due to patients,
providers, or implementation characteristics
varying across trials (12).

Data sources

Weused treatment data from five international,
multisite RCTs (NCT00518323, NCT00334126,
NCT00085748, NCT00078039, and NCT00083668)
obtained through the YODA Project (https://
yoda.yale.edu/). These trials were selected be-
cause of their comparability and consistency.
All patients had a current DSM-IV diagnosis of
schizophrenia at the start of the trial; all trials
randomized patients to an antipsychotic med-
ication or placebo; all trials used the same
scale tomeasure treatment outcomes (the Posi-
tive andNegative Syndrome Scale, PANSS); all
trials included a 4-week timepoint to measure
outcomes; and all trials collected similar data
about the patients at baseline. Combined, the
trials also provide a heterogeneous patient
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Table 1. Treatment outcomes across trials.

Outcome definition

Adults first
episode
(n = 321)

Adults -
Chronic #1
(n = 430)

Adults -
Chronic #2
(n = 481)

Older
adults
(n = 99)

Teens
(n = 182)

Total
(n = 1513)

25% Reduction PANSS
264

(82.2%)
208

(48.4%)
266

(55.3%)
32

(32.3%)
47

(25.8%)
816

(54.0%)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

50% Reduction
PANSS

119
(37.1%)

85
(19.8%)

82
(17.0%)

7
(7.1%)

12
(6.6%)

306
(20.3%)

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

RSWG remission
criteria

152
(47.4%)

129
(30.0%)

153
(31.8%)

24
(24.2%)

58
(31.9%)

517 (34.2%)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Percentage change
in PANSS total
score (SD)

-44.1
(23.1)

-26.9
(28.2)

-28.4
(25.3)

-18.0
(21.8)

-13.7
(21.5)

-28.8
(26.7)

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Baseline total
PANSS (SD)

103.0
(14.3)

92.4
(13.0)

92.9
(10.9)

91.1
(8.8)

90.0
(13.1)

94.4
(13.2)

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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population, with patients recruited from 194
sites across 4 continents, a pediatric trial, an
older adult trial, and a trial of individuals with
a first episode (see SM for more details). The
study design, outcome measure, and cross-
validation approach were preregistered on
2 August 2016 (YODA 2016-1005). Minor up-
dates to the preregistrationwere submitted on
2 May 2023 (included in the SM).

Patients and outcomes

From 29 March 2004 to 30 March 2009, 1962
total patients aged 12 to 81 years were enrolled
across five randomized controlled trials at
194 sites in North America, Asia, Europe, and
Africa. We assessed symptomatic outcomes
based on the PANSS (13) at week 4 for the
1513 participants with baseline and 4-week
follow-up data. Different definitions of re-
sponse, remission, and recovery are used in
schizophrenia research, which makes com-
paring and applying results in clinical practice
difficult (14–16). The primary outcome re-
ported here is the Remission in Schizophrenia
Working Group criteria (RSWG) (17). To ensure
that our findings were not driven by idiosyn-
crasies in howwe defined treatment response,
we included three other definitions commonly
used in the field, including percentage change
with baseline correction (15, 16), and two bi-
nary definitions of 25 and 50% symptom re-

duction. Table 1 reports treatment outcomes
for all definitions across the five trials.
We extracted all information available at

baseline across all trials and retained it as a
predictor variable if it was available for more
than 80% of patients. We also computed con-
dition (control versus treatment) X predictor
interaction terms. Drug dose was standar-
dized to paliperidone dose equivalents using
the defined daily dose method (18). Together,
this yielded 217 predictor variables that in-
cluded basic demographic features, psychiat-
ric history (DSM-IV diagnosis category, age of
diagnosis, psychiatric hospitalizations), clin-
ical data (PANSS, Clinical Global Impression)
(17), extrapyramidal symptom scales (Abnor-
mal Involuntary Movement Scale) (19) and
Simpson Angus Scale (20), biometric data
(blood chemistry panel, hematology, urinaly-
sis), and treatment randomization. The de-
tailed list of predictors, selection criteria, and
missing data approach is provided in the SM.

Machine learning approach

We applied machine learning methods using
baseline data to predict whether a patient
would achieve clinically significant improve-
ments in symptoms over four weeks of anti-
psychotic treatment. We used the elastic net
algorithm (21, 22), a penalized regressionmeth-
od that is appropriate when covariates are

correlated with one another and predictors
may only be sparsely endorsed. It has been
successful in research predicting psychiatric
treatment outcomes (5, 23–25).
The elastic net model uses two penalty pa-

rameters, lambda and alpha, which balance
stability with parsimony. We examined 400
combinations of alpha and lambda penalties
(see supplement) and selected the optimal pe-
nalties using repeated 10-fold cross-validation.
The cross-validation part of this procedure se-
parates the data set into 10 random folds and
uses 9 of the subsets for training, repeating the
process such that each subset is left out once
for testing. The repeated part of this procedure
re-splits the data ten times to reduce the im-
pact of the random data split; in aggregate,
100 total models were fit to the 10 folds by 10
repeats. Model performance was calculated
by averaging the performance metric across
all 100 models. This entire procedure was run
for each of the 400 combinations of alpha and
lambda values, and the final values were
chosen as the combination of alpha and
lambda values that optimized the model
performance metric. We used the metrics
of area under the receiver operating curve
for binary outcomes and root mean square
error for continuous outcomes. The final
alpha and lambda values were applied to the
aggregate sample to estimate the prediction
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Fig. 1. Balanced accuracy for models predicting treatment outcome (Remission in Schizophrenia Working Group criteria) across all modeling scenarios.
Gray intervals represent 95% confidence intervals, not adjusted for multiple comparisons. Red markers denote statistical significance after applying the Benjamini-
Hochberg adjustment with the false discovery rate set to 5%. Repeated 10-fold cross-validation; FE, first episode.

RESEARCH | RESEARCH ARTICLE

Chekroud et al., Science 383, 164–167 (2024) 12 January 2024 2 of 4

D
ow

nloaded from
 https://w

w
w

.science.org on January 14, 2024



model coefficients. To interpret differential
performance across samples, we report a
metric known as balanced accuracy [(sensi-
tivity + specificity) / 2] whose null distribution
is centered on 50% (26, 27). To determine
whether balanced accuracy was statistically
significantly above chance, we bootstrapped
confidence intervals and adjusted for multiple
comparisons across all 35 comparisons using
the Benjamini-Hochberg adjustment with the
false discovery rate set to 5% (28). All analysis
was conducted using R version 4.1 (29), with
machine learning models fit using the caret
package (30).

Exploring the generalizability of machine
learning models

We evaluated the applicability of machine
learning models across four distinct scenarios
to gain insights into their generalizability:
First, we assessed the predictive accuracy of
the model within the trial, without any ex-
ternal validation beyond the training data.
Second, we also focused on within-trial pre-
diction accuracy but this time estimated using
the data excluded from the training set in a
repeated tenfold cross-validation process. Third,
we conducted a paired-across-trial prediction
accuracy assessment. In this case, models
trained on one trial were applied to all other
trials to evaluate their performance. Finally, in
the fourth scenario, we implemented a leave-
one-trial-out prediction accuracy assessment.
Models were trained using data aggregated
from four trials and their predictive accuracy
was tested on the fifth trial (Fig. 1). Balanced
accuracy for the RSWG criteria are shown in
Fig. 1, and data for alternative outcome de-
finitions and additional outcomemetrics are
shown in the supplement.

No validation

In the scenario where we assessed within-trial
performance without any external validation,
the final prediction model created for a spe-
cific trial was applied to the entire sample
from that same trial. The balanced accuracy
was high and significantly above random
chance for all models, with an average of 0.72
(range: 0.66 to 0.77) across all five prediction
models. However, because themodel was eval-
uated on the same sample used to develop it,
there is a risk of overfitting, making these re-
sults less likely to generalize.

Cross-validation

To estimate more generalizable prediction ac-
curacy, we employedwithin-trial cross-validation.
Performance characteristics of the optimal
alpha and lambda valueswere averaged across
the 100 left out folds (10 folds * 10 repeats)
from the repeated cross-validation procedure.
Each trial’s data were divided into 10 subsets,
with coefficients developed on 9 subsets and

then tested on the remaining subset. In this
scenario, balanced accuracy was lower in each
dataset, averaging 0.60 (range: 0.56 to 0.67)
across all five prediction models. Only three
out of five models performed above chance.

Paired-trial validation

Next, we directly assessed out-of-sample per-
formance in the paired-trial validation (16).
We applied the prediction models developed
using within-trial models across each of the
other trials, for a total of 20 trial pairs. Model
performance was low (mean across all trial
pairs was 0.54, range 0.48 to 0.61) with only
three trial pairs performing above chance.

Leave-one-trial-out validation

Given the availability of multiple archival trials
for developing a prediction model, a natural
extension of the paired-trial validation would
be a leave-one-trial-out approach. This approach
might enhance generalizability by allowing the
algorithm to be exposed to more information
through between-trial variability in baseline
phenotypes. We aggregated data across four
trials, leaving the fifth out for testing, and
repeated the process 5 times so that each trial
was left out once. Performance was once again
poor with low balanced accuracy in all con-
ditions (mean across all left out trials was 0.54
with range 0.50 to 0.58) and performance was
significantly above chance in only two of the
five testing sets.

Sensitivity analyses

The pattern of results observed was not due
to idiosyncrasies of how we measured treat-
ment response. We found the same pattern of
results when we reproduced all four modeling
scenarios using other binary and continuous
definitions of treatment response (see SM).
This lack of model generalizability to un-

seen patients was also observed for another
machine learning algorithm.Whenwe applied
random forest models, which can detect com-
plex patterns of interactions amongst predic-
tor variables, we observed the same pattern of
results except that excessive overfitting occur-
red for no-validation conditions (see SM).

Discussion

Machine learning prediction of treatment out-
comes in medicine is exciting but challenging.
Our modeling scenarios using antipsychotic
treatment outcome prediction in schizophrenia
suggest that predictive models are fragile and
that excellent performance in one clinical con-
text is not a strong indicator of performance
on future patients. This is highly concerning as
most predictive studies today rely on internal
samples for testing and validation. When
models were tested on the same sample on
which they were developed, models routinely
produced strong predictions. Cross-validation

tempered these performance estimates but
even the models that performed well in cross-
validation were little better than chance when
predicting outside of the sample in which they
were developed—even when the unseen sam-
ples were well-phenotyped. In a world where
we hope that predictive models might eventu-
ally improve clinical practice, the ability to
generalize to other carefully controlled clin-
ical contexts is only the first step to generalize
to settings with more heterogeneity in patient
presentations and methods of care delivery.

Why model generalizability is challenging

There are three key reasons why predictive
models might not generalize across trials.
First, patient groups may be too different
across trials. The umbrella category of schiz-
ophrenia is useful for clinical practice but also
means that patients with different disease
stages are coerced into the same diagnostic
category in clinical trials. If key information
that differentiates patients is not captured in
the data or if the range of that information is
more restricted in the dataset used to develop
the model compared with the target trial, pre-
dictions may be inaccurate. Thus, patient pop-
ulations may differ considerably between trials
within the same diagnostic category. However,
the current study found little evidence that
results would generalize across even the most
similar trials. The three cross-trial pairs with
predictions slightly greater than chance were
amongst the three studies of adults aged 18
and over but this pattern of results did not
consistently replicate across other outcome
definitions.
Second, these trials may not have collected

the type or volume of data needed to make
good predictions. This study used clinical,
sociodemographic, and simple biomarker data-
based on almost 2000 patients. However,
additional data types may have been more
relevant to treatment outcomes. Psychosocial
information and social determinants of health
were not included in this study but have pre-
viously been found to predict treatment out-
comes in first episode psychosis (27). Preliminary
research suggests that longitudinal patterns
of symptom co-occurrence—either before or
during treatment—can be specifically relevant
to how a patient will respond to treatment
although it may delay care to collect this data
(31–34). Some have suggested the use of
neuroimaging and genetic data but there
is currently little evidence to suggest that
such data would improve predictions; further,
collecting these data would pose additional
barriers for routine implementation (35–37).
Finally, having data from more participants
may allow for more nuanced modeling of in-
dividual differences.
A third reason why predictive models may

not generalize is that patient outcomesmay be
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too context-dependent. Trials may have subtly
important differences in recruiting procedures,
inclusion criteria, or treatment protocols. Be-
cause these characteristics do not vary across
patients within a trial, they cannot bemodeled
as predictors within a single trial. However,
this study usedmultinational RCTs conducted
by large pharmaceutical companies and con-
tract research organizations, minimizing non-
specific concerns especially in comparison to
the variability we would expect in real clinical
practice going from one site or provider to the
next. Of course, different antipsychotic drugs
may differ from one another in ways that af-
fect outcome prediction, and theD2 dopamine
receptor blockade intended to correct overstim-
ulation of D2 receptors by endogenous dopa-
mine may be too far downstream from the
primary pathology of schizophrenia or the symp-
tom severity criteria used to measure it (38).

Improving model generalizability

It is worth considering howwemight improve
the situation in the future. From a statistical
modeling perspective, capturing important
heterogeneity through phenotyping or strat-
ification procedures might help improve the
generalizability of models. Identifying trial-
level characteristics that relate to patient out-
comes may provide information to better
equip prediction models to generalize across
settings. Such trial-level variation can be studied
using Bayesian approaches or recent techni-
ques that incorporate replicability across con-
texts or populations into the algorithm training
process (39). From a population perspective,
there may be some patients for whom the
choice of treatment has no impact on their
clinical course, which represents an inherent
limitation of predicting treatment outcomes.
However, this could also be an opportunity for
further improvement in identifying which
patients have a wider range of potential out-
comes and for whom selecting the optimal
treatment would provide clinical benefit (40).
Longitudinal validation methods, in which

a validation sample is drawn from the same
population at a later point in time, may pro-
vide a limited but pragmatic path to avoid
generalizing from one clinical setting to an-
other. The growth of large mental health care
delivery systems provides the opportunity to
collect large amounts of data and deploy pre-
diction models in the same setting in which
they were developed (41). This strategy can
reduce challenges associated with patient het-
erogeneity and context-dependence, and also
help identify temporal or geographic trends
that affect a model’s predictions. However,
when a model is trained and validated on
samples from the same population, it may
perform well in that specific context but fail
when applied to a different population with
different characteristics.

Conclusions
The present study offers an underwhelming
but realistic picture of our current ability to
develop truly useful predictive models for schiz-
ophrenia treatment outcomes. Models that
performed with excellent accuracy in one sam-
ple routinely failed to generalize to unseen
patients. These findings suggest that approx-
imations based on a single data set are a
fundamentally limited insight into future per-
formance and represent a potential concern
for prediction models throughout medicine.
The field as a whole—present authors included—
hope that machine learning approaches can
eventually improve the allocation of treatments
in medicine; however, we should a priori re-
main skeptical of any predictive model find-
ings that lack an independent sample for
validation.
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Editor’s summary
A central promise of artificial intelligence (AI) in healthcare is that large datasets can be mined to predict and identify
the best course of care for future patients. Unfortunately, we do not know how these models would perform on new
patients because they are rarely tested prospectively on truly independent patient samples. Chekroud et al. showed
that machine learning models routinely achieve perfect performance in one dataset even when that dataset is a large
international multisite clinical trial (see the Perspective by Petzschner). However, when that exact model was tested in
truly independent clinical trials, performance fell to chance levels. Even when building what should be a more robust
model by aggregating across a group of similar multisite trials, subsequent predictive performance remained poor. —
Peter Stern
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