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These patterns evolve between constructive 
and destructive interference as the delay-in-
duced phase varies from 0 to p. The soliton 
signature emerges as a broad background 
signal superimposed on the Ramsey pattern 
and involves higher light intensities (opti-
cal fields accumulated in the pulse-shaped 
soliton) that, consequently, produce  high-
er-order sidebands.

Nonlinear optical behavior can also be 
observed through the formation of chaotic 
light fields, trains of solitons, or individual 
solitons, depending on how the input light 
wavelength and its power are tuned. These 
phenomena are driven by the silicon nitride 
nonlinear optical response (5, 8). As the laser 
wavelength and power were varied, Yang et 
al. could probe the transitions between non-
linear optical regimes because of the strong 
sensitivity of PINEM to the light field inten-
sity and its distribution around the ring. The 
data of Yang et al. could be explained through 
a combination of well-established theoretical 
models for both the nonlinear optical re-
sponse of microcavities (9) and the electron–
photon interaction (2, 3). Simulations based 
on these models were in good quantitative 
agreement with the authors’ experiments.

The interaction of electrons with en-
hanced light fields enabled by the microring 
geometry creates opportunities to obtain 
previously inaccessible information on light 
propagation inside integrated optical cir-
cuits. This includes the degree and spatial 
distribution of coherence associated with 
nonlinearly generated light pulses such as 
solitons. Furthermore, electron–soliton in-
teraction enables a disruptive approach to 
shaping the electron probability density in 
space and time. Also, solitons circulating 
the microring cavity can interact with a 
continuous electron beam at a high repeti-
tion rate approaching the terahertz, which 
is inaccessible with current ultrafast optics 
technology. The resulting electron modula-
tions could be synchronized with the optical 
excitation, presenting new ways to perform 
electron microscopy and probe ultrafast dy-
namics in material  systems with sub-fs/nm 
spatiotemporal resolution. j
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 By Frederike H. Petzschner

P
recision medicine promises treat-
ments tailored to individual patient 
profiles. Machine learning models 
have been heralded as the tools to ac-
celerate precision medicine by sifting 
through large amounts of complex 

data to pinpoint the genetic, sociodemo-
graphic, or biological markers that predict 
the right treatment for the right person at 
the right time. However, the initial enthu-
siasm for these advanced predictive tools is 
now facing a sobering reality check. On page 
164 of this issue, Chekroud et al. (1) show that 
machine learning models that predict treat-
ment response to antipsychotic medication 
among individuals with schizophrenia in one 
clinical trial failed to generalize to data from 
new, unseen clinical trials. The findings not 
only highlight the necessity for more strin-
gent methodological standards for machine 
learning approaches but also require reexam-
ination of the practical challenges that preci-
sion medicine is facing.

What predicts whether a patient will ben-
efit from a particular treatment? The answer 
may lie in their genetics, biology, sociode-
mographic background, social environment, 
past experiences, or a myriad of other po-
tential factors. Machine learning techniques 

have the capacity to analyze large datasets 
and identify the most effective combination 
of features that accurately predicts a vari-
able of interest. They thus offer a promising 
avenue for discovering relevant features or 
biomarkers that predict individual treatment 
responses. Typically, this involves training the 
model on a dataset for which the outcome, 
such as the response to a given treatment, is 
already known. This is known as supervised 
learning. One common pitfall of this method 
is overfitting. Overfitting occurs when a 
model is too flexible relative to the data it is 
trained on, which limits its generalizability. 
A sign of overfitting is when the model ac-
curately predicts outcomes on the data it was 
trained on but performs poorly on new, un-
seen data. To address the issue of overfitting, 
it is essential to validate models on unseen 
data. Cross-validation is a widely used tech-
nique for this purpose. It involves repeatedly 
dividing the data into subsets, training the 
model on one subset, and then evaluating its 
prediction accuracy on the remaining “held-
out” data (see the figure). 

However, cross-validation is not infallible. 
Chekroud et al. revealed that models trained 
to predict responses to antipsychotic medica-
tion in schizophrenia within a specific clinical 
trial using cross-validation failed to predict 
treatment responses in other independent 
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The prediction of individual treatment responses 
with machine learning faces hurdles

Individual treatment prediction using machine learning
Supervised machine learning for individual treatment prediction is based on the development of classifiers. 
To prevent overfitting, model validation is crucial, typically achieved through cross-validation or out-of-sample 
validation. Out-of-sample validation requires a completely independent dataset and is more resource-intensive, 
but this approach is less susceptible to overfitting and can provide more generalizable results.
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clinical trials. One reason that cross-valida-
tion can inadvertently result in overfitting 
the held-out data is that the modeler, through 
iterative model adjustments, may eventually 
use all the available data. The issue is likely 
more widespread than typically acknowl-
edged. For example, a comprehensive review 
of 116 studies across various psychiatric diag-
noses found signs of overfitting specifically 
in studies with small sample sizes (<50 par-
ticipants) (2). Small sample sizes also cause 
large variance in cross-validation results, and 
although these issues are well known in sta-
tistics and machine learning, many studies 
still do not follow best practices to improve 
the outcomes of cross-validation (3). 

A reliable way to assure the generalizability 
of machine learning models lies in validating 
their predictive accuracy on a truly indepen-
dent, untouched validation sample, known 
as out-of-sample validation. Often, this ap-
proach is not used in clinical studies owing 
to the challenges associated with acquiring 
larger datasets and the need for stringent 
rules governing data acquisition and usage. 
However, the study by Chekroud et al. adds to 
a growing body of evidence that underscores 
the necessity of these more robust validation 
standards to avoid overly optimistic results 
from machine learning models that fail to 
generalize to wider clinical contexts.

Even with models that are properly vali-
dated and supported by large sample sizes, 
attempts to predict the clinical outcome or 
treatment response for individual patients 
can be unreliable. In the study by Chekroud 
et al., even when data from multiple clini-
cal trials were pooled to train the model, its 
predictions still failed to generalize to a new 
independent trial. The reasons for this are 
complex and multifaceted. A primary factor 
is the inherent heterogeneity in data from 
clinical populations. This issue is particularly 
prominent in psychiatric disorders, which 
are typically defined by sets of symptoms 
(syndromes). Patients with the same diagnos-
tic label may exhibit vastly different symptom 
profiles that warrant different treatments. 
Moreover, identical symptoms in different 
individuals might have distinct biological 
underpinnings and thus require different 
therapeutic strategies (4). Basing machine 
learning models purely on diagnostic labels 
without taking this type of heterogeneity into 
account can lead to inaccuracies when pre-
dicting effective treatment strategies. 

A promising approach to address this chal-
lenge is to stratify patients into more pre-
cisely defined categories, for example, based 
on underlying symptom causes. This can be 
achieved, in part, through the use of theory-

driven computational models that aim to 
describe underlying disease mechanisms, a 
method gaining traction in the field of com-
putational psychiatry. These models are in-
creasingly being used alongside data-driven 
machine learning techniques, forming pow-
erful tools to tackle the issue of heterogeneity 
in patient populations (5, 6).

Another form of heterogeneity may stem 
from systematic differences across studies, 
locations, or time points. As a result, predic-
tions of machine learning models trained on 
data from a specific context—a population, 
country, setting, or time period—might rely 
on features that are associated but not caus-
ally related with a clinical outcome in a given 
study but are not predictive in other contexts. 
One way to address this heterogeneity is to 
pool data across multiple studies and sites.

Unreliable predictions may also be the 
result of outdated outcome measures. Many 
existing symptom scores are based on ques-
tionnaires that may no longer align with 
understanding of the disease and potentially 
lead to inaccurate assessments of treatment 
response. For example, the positive and nega-
tive syndrome scale (PANSS) used in the 
clinical trials from Chekroud et al. is gradu-
ally being supplanted by more contemporary 
assessment tools, specifically in the context 
of negative symptoms in schizophrenia (7). 
If a questionnaire fails to fully capture the 
true disease burden, it might not accurately 
detect genuine improvements resulting from 
treatment. This discrepancy can lead to mis-
classification of who has or has not benefited 
from the treatment, which hinders the accu-
rate training of the machine learning model. 
Similar to the heterogeneity within diagnos-
tic categories, outcome measures will become 
more accurate with increasing insight into 
the underlying disease mechanism.

The challenges of using machine learning 
to predict individual treatment response in 
medicine, specifically in the context of psy-
chiatry, stem from a complex interplay of is-
sues related to model validation standards, 
diagnostic heterogeneity, and the relevance 
of outcome measures used. Addressing these 
challenges is essential for impactful clinical 
research and to enable progression toward 
effective precision medicine. j
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By Viacheslav Slesarenko1,2 and 
Lars Pastewka1,2

F
riction controls daily life, often with-
out being noticed. It allows walking 
without slipping, holds sandcastles 
together, and determines the per-
ceived cleanliness of hair. Little resis-
tance is desired when pedaling bikes, 

yet the expectation of pulling the brakes is 
to stop moving. Overall, machines use 20% 
of the world’s energy production to over-
come frictional resistance (1). Present-day 
strategies to tune friction, derived from 
more than a century of engineering in-
sights, often involve the lubrication of in-
terfaces with oils or greases. On page 200 
of this issue, Aymard et al. (2) report an 
alternative strategy of rationally design-
ing the frictional properties of interfaces. 
Their approach to friction control may 
lead to the development of surfaces that 
adapt to the environment in real time. 

Aymard et al. show that small bumps of 
identical radii (3) constitute simple build-
ing blocks that can be combined into a 
frictional metainterface. By using many 
such bumps on a surface and adjust-
ing their height distribution, the authors 
could prescribe a desired, even nonlinear, 
dependence of the frictional force that re-
sists sliding motion on the external load 
that pushes the sliding interfaces together.

The effect of surface topography on 
friction has long been known. Charles-
Augustin Coulomb, one of the founders of 
tribology (the science of friction), wrote in 
1779 about the interlocking of asperities 
(4), the name given to “bumps” on rough 
surfaces. Surface topography determines 
the amount of actual contact that two 
bodies make. Thus, two bodies typically 
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