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ABSTRACT

OBJECTIVE

To identify the optimal dose and modality of exercise
for treating major depressive disorder, compared
with psychotherapy, antidepressants, and control
conditions.

DESIGN

Systematic review and network meta-analysis.

METHODS

Screening, data extraction, coding, and risk of bias
assessment were performed independently and in
duplicate. Bayesian arm based, multilevel network
meota.analucec were narfarmed far the nrimary

g-0.42, -0.65 to —0.21). The effects of exercise were
proportional to the intensity prescribed. Strength
training and yoga appeared to be the most acceptable
modalities. Results appeared robust to publication
bias, but only one study met the Cochrane criteria for
low risk of bias. As a result, confidence in accordance
with CINeMA was low for walking or jogging and very
low for other treatments.

CONCLUSIONS

Exercise is an effective treatment for depression,
with walking or jogging, yoga, and strength training
more effective than other exercises, particularly
when intense. Yoga and strength training were well
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Project Guidelines

link

Project Guidelines STA 2212S: Mathematical Statistics IT 2025

Presentation on April 1, 2025.

Report submission due April 16, 2025.

Part 1: Presentation [10 points]

On the last day of class (April 1), you will present your final project. This includes:

e Emailing a .pdf version of your team’s slide deck pdf to
nancym.reid@utoronto.ca by 09.00 April 1.  You are responsible for
the slides corresponding to your sections of the write-up. Please email one
complete version for each team.
Mathematical Statistics Il eVPudsenting the slides in no more than 10 minutes; each team member to present 4

for no more than 5 minutes.


https://q.utoronto.ca/courses/380105/assignments/1485468

Recap: hypothesis testing MS 7.3, AoS Ch 10

Xiyoo o  Xn ~f(x;0),0 € © CRP

+ Null and alternative hypotheses

« Size and power

« Test statistic T = t(X) testing function
« Rejection region {x: T >c,}

* P-value pry (T > )

Mathematical Statistics Il March 4 2025 5



Recap: Neyman-Pearson lemma MS Thm 7.2; AoS Thm 10.30

- for testing simple H, against simple H,

* test statistic
_ L(6:ix) _ f(x;6h)

"~ L(6o;s)  f(x;60)

« critical region
{x:t(x) > R}

 Choose k = R, to satisfy
pry,(T>Ry) =

« This test is a most powerful test of H, against H, at level a.

Mathematical Statistics Il March 4 2025 6



A neatly-typed proof (from MS)

Let ¢(x) be the test function for the test based on T.
Let ¢/(x) be any other function that maps x to [0, 1].
If

Ep {¢(X)} < En{6(X)} = a
then it must follow that

En, {¥(X)} < En, {6(X)}
Proof: V x,

P){fr(x) — kfo(X)} < d(X){f1(x) — kfo(x)}

Integrate and re-arrange terms to get the result

Mathematical Statistics Il March 4 2025 7



A neatly-typed proof (from SM 7.3)

Let R be the rejection region for the test based on T = fi(X)/fo(s)

R={x:T(x) > R,}

Let R’ be some other rejection region also of size a <o
a= /fo(x)dx = / fo(x)dx
R R’
fo(X)dx = fo(X)dx
R—R’ R’—R
On LHS f;(x) > Rafo(X). R—R CR
On RHS f1(x) < Rofo(X). R —RCRC

nmmz/ f1(x)dx
R—R’ R'—R

Add integral over intersection RN R’

Mathematical Statistics Il March 4 2025 8



Choosing test statistics

1. Optimal choice - Neyman-Pearson lemma Might be UMP (HW 7)
2. Pragmatic choice - likelihood-based test statistics

3. Pragmatic choice - nonparametric test statistics

(a) Need to know distribution of test statistic under H,
(b) Test statistic should be large when H, is not true in probability

(c) Test statistic should have maximum power to detect departures from H,

Mathematical Statistics Il March 4 2025



Choosing test statistics

1. Optimal choice - Neyman-Pearson lemma Might be UMP (HW 7)
2. Pragmatic choice - likelihood-based test statistics

3. Pragmatic choice - nonparametric test statistics
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Choosing test statistics

1. Optimal choice - Neyman-Pearson lemma Might be UMP (HW 7)
2. Pragmatic choice - likelihood-based test statistics

3. Pragmatic choice - nonparametric test statistics

Mathematical Statistics Il March 4 2025 17



Example: Sign test SM Ex.7.26

© Xiy..., Xp iiid. F(4)
* Ho : = po, p = F~*(1/2) median of distribution
s Hytp > o both H composite
« test statistic .

= 21{Xi > ot

i=1

- under Ho,

T ~ Binom(n,1/2)
 p-value

n
n\ 1 . 2(tops — N/2
pobs:ero(thobs) = Z ( >— =1 —¢{M}.

n1/2
r=tops

Mathematical Statistics Il March 4 2025 12



Power of the sign test SM Ex.7.30

* Ho:pt = pio Hq:pe > po p="F"1/2)
« Test statistic T = 3" 1{X; > po}

+ Rejection region R = {T > ¢, }

* C,~Nnj2—n"%z,/2 Normal approx

+ Power = pry (reject Ho) = pry (T > c.) Need distribution of T under H,
« to calculate power we need values for i and for F

Mathematical Statistics Il March 4 2025 13



Power of the sign test SM Ex.7.30

* Ho:pt = pio Hq:pe > po p="F"1/2)
« Test statistic T = 3" 1{X; > po}

+ Rejection region R = {T > ¢, }

s Cu~Nn/2—-n"?z,/2 Normal approx

+ Power = pry (reject Ho) = pry (T > c.) Need distribution of T under H,
« to calculate power we need values for i and for F

« SM assumes F is N(y, 0?), so 6 =n"2(u1 — po)/o
nd(n="2§) —n/2 + n'/?z,
In®(n="728){1— &(n—"/2]]
= ®{z, +5(2/7)"?}

pr, (T > o) =pr, (T > n/2—n"?z,/2) = & {

- test based on X has power ®(z,, + ¢)

Mathematical Statistics Il March 4 2025 13



... power of sign test

334 7 - Estimation and Hypothesis Testing
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Figure 7.6 Power
functions for a test of
whether the mean of a
N(u, o%) random sample
of size n equals o against
the alternative . = 1, as
a function of

8 =n"2(u — po)/o.
The test size is & = 0.05.
The solid curve is the
power function for a test
of 1 > o based on 'y,
and the dashed line is the
power function for the
sign test. Both critical
regions are of form

¥ > ty. The dotted curve
is the power function for y
when the critical region is
Y <ty
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Permutation test

leukemia data (EH): Xi,...,X;7; Ya,..., Yas
oneline
ALL ALL.1 ALL.2 ALL.3 ALL.4 ALL.5 ALL.6 ALL.7
136 0.9186952 1.634002 0.4595867 0.6379664 0.3440379 0.8614784 0.5132176 0.9790902
ALL.8 ALL.9 ALL.10 ALL.11 ALL.12 ALL.13 ALL.14 ALL.15 ALL.16
136 0.2105782 0.8016072 0.6006949 0.3614374 1.04632 0.9697635 0.4873159 0.4976364 1.101717
ALL.17 ALL.18 ALL.19 AML AML.1 AML.2 AML.3 AML.4 AML.5
136 0.8563937 0.661415 0.817711 0.7671718 0.9793741 1.425479 1.074389 0.9839282 0.9859271
AML.6 AML.7  AML.8 AML.9 AML. 10 AML.11 AML.12 AML.13 ALL.20
136 0.3247027 0.7110302 1.09625 0.9675151 0.975123 0.7775957 0.9472205 1.261352 0.5679544
ALL.21 ALL.22 ALL.23 ALL.24 ALL.25 ALL.26 ALL.27 ALL.28
136 0.8462901 0.8838616 0.7239931 0.7327029 0.7823618 0.5435396 0.832537 0.5527333
ALL.29 ALL.30 ALL.31 ALL.32 ALL.33 ALL.34 ALL.35 ALL.36
136 0.7327029 0.5510955 0.8214005 0.6418498 0.720798 0.5830999 0.7657568 0.5262976
ALL.37 ALL.38 ALL.39 ALL.40 ALL.41 ALL.42 ALL.43 ALL.44
136 1.466999 0.5445589 0.5725049 1.362768 0.8533535 0.8132982 0.8538596 0.5689876
ALL.45 ALL.46 AML.14 AML.15 AML.16 AML. 17 AML.18 AML.19 AML.20
136 0.6930355 1.067526 0.9677959 0.9338141 1.138926 1.161753 0.6242354 0.6590103 1.215186
AML.21 AML.22 AML.23 AML.24
136 0.9340861 1.310376 0.771426 0.7556606

Ho

:Fx = Fy Hi  T=TX.Y)=

Mathematical Statistics Il March 4 2025

EH 4.4, A0S 10.5

AoS EX. 10.20

15



o
8 L
3 | — L
©
> f—
o
5 ¢
g J
o
£
3 |
o
original
./t—statistic
A NN T | : : : 1n I
L 1T0 Time
4 301 -2 0 2 3.01 4
t* values

Figure 4.3 10,000 permutation ¢ *-values for testing ALL vs AML,
for gene 136 in the leukemia data of Figure 1.3. Of these, 26
t*-values (red ticks) exceeded in absolute value the observed
t-statistic 3.01, giving permutation significance level 0.0026.

Mathematical Statistics Il March 4 2025 A0S 10.20 uses median 16



Hypothesis tests and significance tests

+ Hypothesis tests typically means:
* Ho, H.
« critical/rejection region R C X,
- level a, power1— g
- conclusion: “reject Ho at level «” or “do not reject H, at level o”
+ planning: maximize power for some relevant alternative minimize type Il error

Mathematical Statistics Il March 4 2025 17



Hypothesis tests and significance tests

+ Hypothesis tests typically means:
* Ho, H.
« critical/rejection region R C X,
- level a, power1— g
- conclusion: “reject Ho at level «” or “do not reject H, at level o”
+ planning: maximize power for some relevant alternative minimize type Il error

« Significance tests typically means:
M Ho:
* test statistic T
- observed value t°%,
« p-value p°* = Pr(T > t°%; H,)
- alternative hypothesis often only implicit large T points to alternative

Mathematical Statistics Il March 4 2025 17



Diagnostic testing Wikipedia

1. Hypothesis testing AoS Table 101
| Ho not rejected  H, rejected
Ho true type 1 error
truth
H, true type 2 error
2. Diagnostic testing link
test negative test positive
C19 neg TN FP N
truth
C19 pos FN TP P

Mathematical Statistics Il March 4 2025 18


https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Diagnostic testing and ROC
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True positive rate =
sensitivity =
TP/P

False positive rate =

1— specificity =
1—TN/N

19
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True positive rate =
sensitivity =
TP/P

False positive rate =
1— specificity =
1—TN/N

Perfect
classifier ROC curve
1.0e

0.5

True positive rate

0.0 0.5 1.0
False positive rate
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Covid testing Cochrane Library, PLoS One

Rapid flow test, care home link

test negative test positive
C19 neg 114,993 101 115,094
truth
C19 pos 37 128 499

Sensitivity = TP/P = 128/499 = 0.257
Specificity = TN/N = 114,993/115094 =0.999

Cochrane review meta-analysis

“consistently high specificities”

“sensitivity varied widely: average sensitivities by brand ranged from 34.3% to 91.3% "

Mathematical Statistics Il March 4 2025 20


https://pmc.ncbi.nlm.nih.gov/articles/PMC10446167/pdf/pone.0290406.pdf
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013705.pub3/full

Multiple testing AoS Table 10.2

1. Hypothesis testing AoS Table 101
| Ho not rejected  H, rejected
Ho true type 1 error
truth
H, true type 2 error
3. Multiple testing AoS Table 10.2
Ho not rejected H, rejected
Ho true U Vv Mo
truth FDP, FDR
H, true T S m;,
m—R R m

Mathematical Statistics Il March 4 2025 21



Multiple testing EH 15.2, AoS

leukemia_big <- read.csv
("http://web.stanford.edu/ hastie/CASI_files/DATA/leukemia_big.csv")
dim(leukemia_big)
[1] 7128 72

- each row is a different gene; 47 AML responses and 25 ALL responses
+ we could compute 7128 t-statistics for the mean difference between AML and ALL

tvals <- rep(0,7128)

for (i in 1:7128){
leukemia_bigli,] %> select(starts_with("ALL")) %>% as.numeric() -> x
leukemia_big[i,] %>% select(starts_with("AML")) %>, as.numeric() -> y
tvals[i] <- t.test(x,y,var.equal=T)$statistic
}

Mathematical Statistics Il March 4 2025 22



Multiple testing EH 1.2, 15.2

750 -

500~

250~ ‘ ‘l

o __..II|II IIIIII-. |
; : ) :

count

-15

10
tvals

summary (tvals)

Min. 1st Qu.

Median Mean 3rd Qu.
-13.52611 -1.20672

Max.
-0.08406 0.02308

1.20886 12.26065

Mathematical Statistics Il March 4 2025
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Multiple testing EH 15.2, AoS 10.7

« Hoiversus Hqy, i=1,....m

e p-values p,,...,Ppm

- Bonferroni method: reject Hy; if p; < a/m FWER
« pr(any H, falsely rejected ) < « very conservative

Mathematical Statistics Il March 4 2025 24



Multiple testing EH 15.2, AoS 10.7

« Hoiversus Hqy, i=1,....m
e p-values p,,...,Ppm
- Bonferroni method: reject Hy; if p; < a/m FWER
« pr(any H, falsely rejected ) < « very conservative
+ FDR method controls the number of rejections that are false FDP = V/R
Ho not rejected H, rejected
Hy true U v mg
truth FDR = E(FDP)
H, true T S m;,
m—R R m

Mathematical Statistics Il March 4 2025 24



Benjamini-Hochberg A0S 10.7; EH 15.2

- order the p-values p), ..., p(m)
+ find imax, the largest index for which

i
Py < md

* Let BHq be the rule that rejects Ho; for i < imax, NOt rejecting otherwise

Mathematical Statistics Il March 4 2025 25



Benjamini-Hochberg

AoS 10.7; EH 15.2

- order the p-values p), ..., p(m)
find imax, the largest index for which

i
Py < md

Let BHq be the rule that rejects Ho; for i < imax, NOt rejecting otherwise

« Theorem: If the p-values corresponding to valid null hypotheses are independent

of each other, then

FDR(BHq) = m0q < q, where o = mo/m

+ change the bound under dependence

i 1
P(i)qu Cm227

Mathematical Statistics Il March 4 2025

7o unknown but close to 1
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Example AoS Ex.10.28

index 1 2 3 4 5 6 7 8 9 10
pval 0.00017 0.00448 0.00671 0.00907 0.01220 0.33626 0.3934 0.5388 0.5813 0.9862
cutl 0.00500 0.01000 0.01500 0.02000 0.02500 0.03000 0.0350 0.0400 0.0450 0.0500

cut2 0.00171 0.00341 0.00512 0.00683 0.00854 0.01024 0.0119 0.0137 0.0154 0.0171

Mathematical Statistics Il March 4 2025 26



Multiple testing

750~

count

s 10

tvals
> summary(ttest)
Min. 1st Qu. Median
-13.52611 -1.20672 -0.08406

Mathematical Statistics Il March 4 2025

500~
250 | ‘I
o _---lIIII IIII..I- g
5 0 5

Mean
0.02308

3rd Qu.
1.20886

EH 1.2, 15.2

Sorted p-values, alpha = 0.01

— FDRIine /
w | — Bonferroni threshold /
g /
3 /
o /
] g i=751/7
I S
2 S
§ 4
3
§ i-199
S T T T
0 200 400 600

Index

The figure above shows sorted p-values of the N = 7128 t-tests. The red line corresponds to
the threshold /N from the Bonferroni method, and the blue line is the FDR line (i/N)a. The

Max.
12.26065
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Multiple testing

I Unlikely results

How a small proportion of false positives can prove very misleading

False [ True

1. Of hypotheses
interesting
enough to test,
perhaps onein
tenwill be true.
Soimagine tests
on 1,000
hypotheses,

100 of which

are true.

Source: The Economist

Mathematical Statistics Il March 4 2025

I False negatives M False positives

2.The tests havea
false positive rate
of 5%. That means
they produce 45
false positives (5%
0f 900). They have
a power of 0.8, so
they confirm only
80 of the true
hypotheses,
producing 20 false
negatives.

3. Not knowing
whatis false and
whatis not, the
researcher sees
125 hypotheses as
true, 45 of which
are not.

The negative
results are much
more reliable—but
unlikely to be
published.

28



Benjamini-Hochberg proof Efron; FZ 2006

Theorem: If the p-values corresponding to valid null hypotheses are independent of
each other, then
FDR(BH4) = m0q < q, where 7o = mg/m

The Annals of Saisics
2006, Vol. 34, No.4, 18271849

DO 10,1214/00903606000000425

© Institue of Mathemaical Satistics, 2006

Monographs
ON THE BENJAMINI-HOCHBERG METHOD

Large-Scale

BY J. A. FERREIRA! AND A. H. ZWINDERMAN

University of Amsterdam Inference
We investigate the properties of the Benjamini-Hochberg method for Empi yes Methods
multiple testing and of a variant of Storey’s generalization of it, extending Estimation, Testing, and Prediction
and complementing the asymptotic and exact results available in the litera-
ture. Results are obtained under two different sets of ions and include Bradley Efron

asymptotic and exact expressions and bounds for the proportion of rejections,
the proportion of incorrect rejections out of all rejections and two other pro-
portions used to quantify the efficacy of the method.

1. Introduction. Let X = {X;, X2,...,X»)} be a set of m random vari-
ables defined on a probability space (2, . P) such that, for some positive in-
teger mo <m, each of Xy, X»,..., Xp, has distribution function (d.f.) F and
Xmo+1+---» Xm all have d.fs different from F, and consider the problem of choos-
ing a set R € X in such a way that the random variable (r.v.)

Sm
Rnv1’

Mathemati here, [gnd Sy 5z r? + Xmy}), is guaranteed to be small in
gthemat Cax)me pforggl é:ic sense. lngnﬁogrrj oA m%‘rlanguage. the problem is that of dis-
covering observations in X which do not have d.f. F without incurring a high CAMBRIDGE

M=
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Multinomial goodness of fit tests MS 9.2; AoS 10.8

© Xayo ooy Xn iiid.
* Ho: X; ~f(x;0); H,:X;arbitrary distribution
- Define ksets A, ... ,A; st
pr(X; € U]k:1Aj} =9

- Define
n

Y=Y X €A}
i=1
number of obs in category j

Mathematical Statistics Il March 4 2025 30



Multinomial goodness of fit tests

© Xayo ooy Xn iiid.
* Ho: X; ~f(x;0); H,:X;arbitrary distribution
- Define ksets A, ... ,A; st
pr(X; € U]k:1Aj} =9

- Define
n

Y=Y X €A}

i=1

Y =(Ya,...,Yr) ~ Multy(n; p)
° PT(Y1 :yh"‘vyk :ykvp) =

* Ho:p=p(#); H,:parbitrary

Mathematical Statistics Il March 4 2025

MS 9.2; AoS 10.8

number of obs in category j

30



Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

Mathematical Statistics Il March 4 2025 31



Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

« Theorem 9.1 (MS): Under Hq p = dim(0)

Yi

k
i d
szg Y;ilo — | =2
j=1 : g<npi(9)) e

Mathematical Statistics Il March 4 2025 31



Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

« Theorem 9.1 (MS): Under Hq p = dim(0)
k Y. )
W=2) Yilog Sk
; ! (”pj(a)) "

« Theorem 92. (MS): Under Ho

_Z{Y np;(0)}? d

i it kR—1—p
Mathematical Statistics Il March 4 2025 npj( ) 31
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Multinomial goodness-of-fit tests

Table 9.1 Frequency of goals in First Division matches and “expected” frequency
under Poisson model in Example 9.2

Goals 0 1 2 3 4 =5
Frequency 252 344 180 104 28 16
Expected 248.9 326.5 214.1 93.6 30.7 10.2

L
Po(N) =1=3_pi(N): PN =eWN/jl, A=1318
j=0

Q=1.09; W=10.87; pr(x; > [11.09,10.87]) = [0.026,0.028]

Mathematical Statistics Il March 4 2025 32



Multinomial goodness-of-fit tests

SM Ex 4.38

Table 4.3 Blood groups
in England (Taylor and
Prior, 1938). The upper
part of the table shows a
cross-classification of 422
persons by presence or
absence of antigens ‘A’
and ‘B, giving the groups
‘A, ‘B”, ‘AB’, ‘O’ of the
human blood group
system. The lower part
shows genotypes and
corresponding

ilities under one-

136 4 - Likelihood
Antigen ‘B’
Absent Present  Total
Absent  ‘0’:202 ‘B:35 237
Antigen ‘A>  Present  ‘A:179  ‘AB’: 6 185
Total 381 41 422
Two-locus model One-locus model
Group Genotype Probability Genotype Probability
‘A (AA;bb), (Aa; bb) a(l —p) (AA), (AO) 33+ 2hako
‘B’ (aa; BB), (aa; Bb) (I-a)p (BB).(BO) A3+ 2hpho
‘AB’ (AA; BB), (Aa; BB), [e7:] (AB) 2hahB
(AA; Bb), (Aa; Bb)
‘0 (aa; bb) (1 —a)l—p) ©00) 22

Mathematical Statistics Il

March 4 2025

and two-locus models. See
Example 4.38 for details.

Q = 15.73; W = 17.66 (two-locus)

p <107

Q = 2.82; W = 3.17 (single locus)

p = 0.09;0.07

133)



Smooth goodness-of-fit tests MS 9, SM p.327-9

Maize data SM Ex 7.24 library(SMPracticals)
data(darwin)
6} cross <- seq(1,30,by=2)
3 w - o self <- cross+1
E diffs <- darwin[self,4]-darwin[cross,4]
3 o 400 o qgnorm(diffs)
é' w0 ooooo
& l 00°
o o
N I T T
-1 0 1

Theoretical Quantiles

Mathematical Statistics Il March 4 2025 34



Smooth goodness-of-fit tests MS 9.3, SM p.327-9

v

Figure 7.5 Analysis of
maize data. Left:
empirical distribution M
function for height
differences, with fitted
normal distribution (dots).
Right: null density of
Anderson-Darling
statistic 7" for normal
samples of size n = 15
with location and scale
estimated. The shaded part
of the histogram shows
values of 7" in excess of
the observed value #,ps.

1.0

2.0

Distribution function
1.0

00 02 04 06 08

0.0

-100 -50 0 50 100 0.0 0.5 1.0 1.5
y t

SM Example 7.24 testing N(u, 02) distribution
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Smooth goodness-of-fit tests MS 9.3, SM p.327-9

* Xqy...,Xn idd. F(); Ho:F=Fo cumulative d.f.
Fo(t) = 2 XL, X < 1)

* three test statistics:
1. sup, |[Fa(t) — Fo(t)]

2. [{Fa(t) — Fo(t)}2dFo(1)

{Fa(t) — Fo(t)}?
> ) Rty

« SM Example 7.24 testing N(u, o2) distribution
« SM Example 7.23; 6.14 testing U(0, 1) distribution
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Smooth goodness-of-fit tests MS 9.3

- Special case Hy : F(t) = Fo(t) =t X; ~ U(0,1)
* Recall

EofFn(t)} = Fo(t) =t, var{Fa(t)} =t(1—t)/n
« What about distribution of

sup; |ﬁ,(t) — 1] f{ﬁw(t) — t}2dt %dt

- need joint density of F,(t) V' t
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Smooth goodness-of-fit tests MS 9.3

- Special case Hy : F(t) = Fo(t) =t ‘o)
* Recall
Eo{Fn(t)} = Fo(t) =t, var{F,(t)} =t(1—1t)/n

« What about distribution of R
{Falt) — 1

F (1) _ F(+) _ +12
sup; |Fn(t) — t J{Fn(t) — t}2dt NI,
- need joint density of F,(t) V' t
- define stochastic process B, (t) = v/n(Fa(t) — t)
» vector (By(ty), .. ., Ba(te)) = Ni(0.C), Cj = min(t;, ;) — tit; MS 9.3

+ a Brownian bridge is a continuous function on (0, 1)

) o with all finite-dimensional distributions as above
Mathematical Statistics Il March 4 2025 37



Smooth goodness-of-fit tests MS 9.3

+ Kolmogorov-Smirnov test
Kn = sup [Bn(t)

o<t<1
» Cramer-vonMises test

1
w2 — / B2 (1)dt
o

. [" Bat)
A,,_/O et

« Anderson-Darling test
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Smooth goodness-of-fit tests MS 9.3

+ Kolmogorov-Smirnov test
Kn = sup [Bn(t)

o<t<1

» Cramer-vonMises test

1
w2 — / B2 (1)dt
o

. [" Bat)
A2 _/O et

[ee] Zz
d j
Ko 5K~ wW2S § et

j=1 j=1

pr(K > X) = 2 5575, (—1)*" exp(~2%)

« Anderson-Darling test

limit theorems

=J>
Q

j
JG+1
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Smooth goodness-of-fit tests MS 9.3

B()
4

0.0 0.2 04 0.6 0.8 1.0

Figure 9.1 A simulated realization of a Brownian bridge process.
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