Mathematical Statistics II

STA2212H S LEC9101

Week 8

March 4 2025

	ostract 📢	Effe A sys of ra	ect of ex stematic rev indomised o	ercise for view and net controlled tr	r depres twork meta- ials	s ion analysis	
Summary	For and trai pha	treating dep d effective, p ining. Effects armacothera	oression, var articularly w s were comp apy. Exercise	ious exercis valking or jog varable to ps worked bet	e modalitie: gging, yoga, ychotherap ter when m	s are well to and streng y and ore intense	olerated gth
iii Population	14 170 participant	Participa s (ie, meet or diagno	nts with dep ing clinical osed by a cli	pression thresholds nician)	No other e participant and with a	exclusion ci ts are from ny comorb	riteria, se any age idities
🖉 Study design	218 studies	s 495 unio	que arms			and P.	
common treatment are presented as 'co	s for depres: mpared with	sion. All resu h active cont – Network r -1.5	ilts trols.' neta-analys -1.0	is, standardi -0.5	sed mean d	ifference 9 0.5	95% Crl
Walking or jogging		1210					1.5
- / 00 0		(1000)					1.5
Cognitive behaviou	ral therapy 💧	712					
Cognitive behaviour Yoga	ral therapy	1047					
Cognitive behaviour Yoga Exercise + SSRI*	ral therapy	 712 1047 268 	_		-		
Cognitive behaviour Yoga Exercise + SSRI* Aerobic exercise + t	ral therapy herapy	 712 1047 268 404 	-				
Cognitive behaviour Yoga Exercise + SSRI* Aerobic exercise + t Strength	herapy	 712 1047 268 404 643 	-				
Cognitive behaviour Yoga Exercise + SSRI* Aerobic exercise + t Strength Mixed aerobic exerci	herapy ises	 712 1047 268 404 643 1286 					
Cognitive behaviour Yoga Exercise + SSRI* Aerobic exercise + t Strength Mixed aerobic exerc Tai chi or qigong	herapy ises	 712 1047 268 404 643 1286 343 					
Cognitive behaviour Yoga Exercise + SSRI* Aerobic exercise + t Strength Mixed aerobic exerci Tai chi or qigong Aerobic exercise + s	herapy ises trength	 712 1047 268 404 643 1286 343 1036 					

Certainty rating ----- Clinically important benefit 📃 Equivalent to active control

OPEN ACCESS

Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials

Michael Noetel,¹ Taren Sanders,² Daniel Gallardo-Gómez,³ Paul Taylor,⁴ Borja del Pozo Cruz,^{5,6} Daniel van den Hoek,⁷ Jordan J Smith,⁸ John Mahoney,⁹ Jemima Spathis,⁹ Mark Moresi,⁴ Rebecca Pagano,¹⁰ Lisa Pagano,¹¹ Roberta Vasconcellos,² Hugh Arnott,² Benjamin Varley,¹² Philip Parker,¹³ Stuart Biddle,^{14,15} Chris Lonsdale¹³

For numbered affiliations see end of the article

Correspondence to: M Noetel m.noetel@uq.edu.au (or @mnoetel on Twitter; ORCID 0000-0002-6563-8203)

Additional material is published online only. To view please visit the journal online.

Cite this as: BMJ 2024;384:e075847

http://dx.doi.org/10.1136/ bmj-2023-075847

Accepted: 15 January 2024

ABSTRACT

OBJECTIVE

To identify the optimal dose and modality of exercise for treating major depressive disorder, compared with psychotherapy, antidepressants, and control conditions.

DESIGN

Systematic review and network meta-analysis.

METHODS

Screening, data extraction, coding, and risk of bias assessment were performed independently and in duplicate. Bayesian arm based, multilevel network meta-analyses were performed for the primary g -0.42, -0.65 to -0.21). The effects of exercise were proportional to the intensity prescribed. Strength training and yoga appeared to be the most acceptable modalities. Results appeared robust to publication bias, but only one study met the Cochrane criteria for low risk of bias. As a result, confidence in accordance with CINeMA was low for walking or jogging and very low for other treatments.

CONCLUSIONS

Exercise is an effective treatment for depression, with walking or jogging, yoga, and strength training more effective than other exercises, particularly when intense. Yoga and strength training were well

- 1. Recap Feb 25 Formal testing, NP Lemma, size and power, *p*-values
- 2. Significance testing, nonparametric tests
- 3. Diagnostic testing
- 4. Multiple testing
- 5. Project Selections and Guidelines, HW 7

Upcoming seminar

Mathematical Statistics II

Department Seminar Thursday March 6 11.00 – 12.00 Hydro Building, Room 9014 Conformal selection Archer Yang, McGill University

March 4 2025

control, making it a robust tool for multivariate selection

Project Guidelines

link

Project Guidelines

STA 2212S: Mathematical Statistics II 2025

Presentation on April 1, 2025. Report submission due April 16, 2025.

Part 1: Presentation [10 points]

On the last day of class (April 1), you will present your final project. This includes:

- Emailing a .pdf version of your team's slide deck pdf to nancym.reid@utoronto.ca by 09.00 April 1. You are responsible for the slides corresponding to your sections of the write-up. Please email one complete version for each team.
- Mathematical Statistics II •••• MPresenting the slides in no more than 10 minutes; each team member to present for no more than 5 minutes.

Recap: hypothesis testing

MS 7.3, AoS Ch 10

 $X_1,\ldots,X_n\sim f(\pmb{x};\theta), \theta\in\Theta\subset\mathbb{R}^p$

- Null and alternative hypotheses
- Size and power
- Test statistic $T = t(\mathbf{X})$

testing function

- Rejection region $\{ \boldsymbol{x} : \boldsymbol{T} \geq \boldsymbol{c}_{\alpha} \}$
- P-value $pr_{H_0}(T \ge t^{obs})$

Recap: Neyman-Pearson lemma

- for testing simple H_0 against simple H_1
- test statistic

$$T = \frac{L(\theta_1; \mathbf{x})}{L(\theta_0; \mathbf{s})} = \frac{f(\mathbf{x}; \theta_1)}{f(\mathbf{x}; \theta_0)}$$

• critical region

 $\{\boldsymbol{x}:t(\boldsymbol{x})\geq k\}$

• Choose $k = k_{\alpha}$ to satisfy

$$\mathrm{pr}_{H_{o}}(T \geq k_{\alpha}) = \alpha$$

• This test is a most powerful test of H_0 against H_1 at level α .

A neatly-typed proof (from MS)

Let $\phi(\mathbf{x})$ be the test function for the test based on T. Let $\psi(\mathbf{x})$ be any other function that maps \mathbf{x} to [0, 1]. If

 $\mathbf{E}_{H_{o}}\{\psi(\mathbf{X})\} \leq \mathbf{E}_{H_{o}}\{\phi(\mathbf{X})\} = \alpha$

then it must follow that

 $\mathbf{E}_{H_1}\{\psi(\boldsymbol{X})\} \leq \mathbf{E}_{H_1}\{\phi(\boldsymbol{X})\}$

Proof: ∀ **x**,

$$\psi(\mathbf{x})\{f_1(\mathbf{x}) - kf_0(\mathbf{x})\} \le \phi(\mathbf{x})\{f_1(\mathbf{x}) - kf_0(\mathbf{x})\}$$

Integrate and re-arrange terms to get the result

Let R be the rejection region for the test based on

$${\sf R}=\{{m x}:{\sf T}({m x})\geq {m k}_lpha\}$$

Let ${\it R}'$ be some other rejection region also of size α

$$\alpha = \int_{R} f_{\mathsf{o}}(\mathbf{x}) d\mathbf{x} = \int_{R'} f_{\mathsf{o}}(\mathbf{x}) d\mathbf{x}$$
$$\int_{R-R'} f_{\mathsf{o}}(\mathbf{x}) d\mathbf{x} = \int_{R'-R} f_{\mathsf{o}}(\mathbf{x}) d\mathbf{x}$$

On LHS $f_1(\mathbf{x}) \ge k_{\alpha} f_0(\mathbf{x})$. On RHS $f_1(\mathbf{x}) < k_{\alpha} f_0(\mathbf{x})$.

$$\int_{R-R'} f_1(\boldsymbol{x}) d\boldsymbol{x} \geq \int_{R'-R} f_1(\boldsymbol{x}) d\boldsymbol{x}$$

 $R - R' \subset R$ $R' - R \subset R^c$

Add integral over intersection $R \cap R'$

Mathematical Statistics II March 4 2025

 $T = f_1(\mathbf{x})/f_0(\mathbf{s})$

 $\leq \alpha$

Choosing test statistics

1. Optimal choice – Neyman-Pearson lemma

Might be UMP (HW 7)

- 2. Pragmatic choice likelihood-based test statistics
- 3. Pragmatic choice nonparametric test statistics

- (a) Need to know distribution of test statistic under H_0
- (b) Test statistic should be large when H_0 is not true

in probability

(c) Test statistic should have maximum power to detect departures from H_0

Choosing test statistics

1. Optimal choice – Neyman-Pearson lemma

Might be UMP (HW 7)

- 2. Pragmatic choice likelihood-based test statistics
- 3. Pragmatic choice nonparametric test statistics

Choosing test statistics

1. Optimal choice – Neyman-Pearson lemma

Might be UMP (HW 7)

- 2. Pragmatic choice likelihood-based test statistics
- 3. Pragmatic choice nonparametric test statistics

Example: Sign test

- $X_1, ..., X_n$ i.i.d. $F(\cdot)$
- $H_{
 m o}:\mu=\mu_{
 m o},\,\mu=F^{-1}(1/2)$ median of distribution
- $H_1: \mu > \mu_0$
- test statistic

 $T \sim Binom(n, 1/2)$

 $T = \sum_{i=1}^n \mathbf{1}\{X_i > \mu_0\}$

• *p*-value

$$p_{obs} = \operatorname{pr}_{H_o}(T \ge t_{obs}) = \sum_{r=t_{obs}}^n \binom{n}{r} \frac{1}{2^n} \doteq 1 - \Phi\left\{\frac{2(t_{obs} - n/2)}{n^{1/2}}\right\}.$$

both H composite

Power of the sign test

- $H_{o}: \mu = \mu_{o}$ $H_{1}: \mu > \mu_{o}$
- Test statistic $T = \sum_{i=1}^{n} \mathbf{1}\{X_i > \mu_0\}$
- Rejection region $R = \{T \ge c_{\alpha}\}$
- $c_lpha pprox n/2 n^{1/2} z_lpha/2$
- Power = $\operatorname{pr}_{H_1}(\operatorname{reject} H_0) = \operatorname{pr}_{H_1}(T \ge c_{\alpha})$
- to calculate power we need values for μ and for F

$$\mu = F^{-1}(1/2)$$

Normal approx

Need distribution of T under H_1

SM Ex.7.30

• $H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$ • Test statistic $T = \sum_{i=1}^n \mathbb{1}\{X_i > \mu_0\}$ • Rejection region $R = \{T > c_0\}$

• $c_{\alpha} \approx n/2 - n^{1/2} z_{\alpha}/2$

$$\mu = F^{-1}(1/2)$$

Normal approx

Need distribution of T under H_1

• to calculate power we need values for μ and for *F*

• Power = $\operatorname{pr}_{H_1}(\operatorname{reject} H_0) = \operatorname{pr}_{H_1}(T \ge c_\alpha)$

• SM assumes F is N(μ, σ^2), so $\delta = n^{1/2} (\mu_1 - \mu_0) / \sigma^2$

$$\mathrm{pr}_{\mu_1}(T \ge \mathbf{c}_{\alpha}) = \mathrm{pr}_{\mu_1}(T \ge n/2 - n^{1/2} z_{\alpha}/2) \doteq \Phi \left\{ \frac{n \Phi(n^{-1/2} \delta) - n/2 + n^{1/2} z_{\alpha}}{[n \Phi(n^{-1/2} \delta) \{1 - \Phi(n^{-1/2} \}]} \right\} \\ \doteq \Phi\{z_{\alpha} + \delta(2/\pi)^{1/2}\}$$

• test based on \bar{X} has power $\Phi(z_{\alpha} + \delta)$

Figure 7.6 Power functions for a test of whether the mean of a $N(\mu, \sigma^2)$ random sample of size *n* equals μ_0 against the alternative $\mu = \mu_1$, as a function of $\delta = n^{1/2} (\mu_1 - \mu_0) / \sigma.$ The test size is $\alpha = 0.05$ The solid curve is the power function for a test of $\mu_1 > \mu_0$ based on $\overline{\nu}$. and the dashed line is the power function for the sign test. Both critical regions are of form $\overline{y} > t_{\alpha}$. The dotted curve is the power function for \overline{y} when the critical region is $\overline{v} < t_{\alpha}$.

leukemia data (EH): X_1, \ldots, X_{47} ; Y_1, \ldots, Y_{25}

oneline

AT.T. ALL 1 AT.L. 4 ALL.5 ALL 6 ATT 2 ALL 3 ALT. 7 136 0.9186952 1.634002 0.4595867 0.6379664 0.3440379 0.8614784 0.5132176 0.9790902 ALL 8 AT.T. 9 ALL.10 ALL.11 ALL.12 ALL.13 ALL.14 ALL.15 ALL.16 136 0.2105782 0.8016072 0.6006949 0.3614374 1.04632 0.9697635 0.4873159 0.4976364 1.101717 ALL.17 ALL.18 ALL.19 AML AML.1 AML.2 AML.3 AML.4 AML.5 136 0.8563937 0.661415 0.817711 0.7671718 0.9793741 1.425479 1.074389 0.9839282 0.9859271 AML 6 AML 7 AML 8 AML.9 AML.10 AML.11 AML.12 AML.13 ALL 20 136 0.3247027 0.7110302 1.09625 0.9675151 0.975123 0.7775957 0.9472205 1.261352 0.5679544 ALT 21 ALL 22 ALL 23 ALL.24 ALL.25 ALL.26 ALL.27 ALT 28 136 0.8462901 0.8838616 0.7239931 0.7327029 0.7823618 0.5435396 0.832537 0.5527333 AT.L. 29 ALL. 30 ALL. 31 ALL 32 ALL: 33 ALL. 34 ALL: 35 136 0.7327029 0.5510955 0.8214005 0.6418498 0.720798 0.5830999 0.7657568 0.5262976 ATT 39 ALL.41 ALT 37 ATT 38 ATT 40 ALT 42 ATT 43 ATT 44 136 1 466999 0 5445589 0 5725049 1 362768 0 8533535 0 8132982 0 8538596 0 5689876 ALL.45 ALL.46 AML.17 AMT. 14 AML.15 AML.16 AML.18 AML.19 AML 20 136 0.6930355 1.067526 0.9677959 0.9338141 1.138926 1.161753 0.6242354 0.6590103 1.215186 AML. 21 AML. 22 AML. 23 AML. 24

136 0.9340861 1.310376 0.771426 0.7556606

 $H_{o}: F_{X} = F_{Y}$ H_{1} $T = T(\boldsymbol{X}, \boldsymbol{Y}) =$

AoS Ex. 10.20

Figure 4.3 10,000 permutation t^* -values for testing ALL vs AML, for gene 136 in the leukemia data of Figure 1.3. Of these, 26 t^* -values (red ticks) exceeded in absolute value the observed t-statistic 3.01, giving permutation significance level 0.0026.

Hypothesis tests and significance tests

- Hypothesis tests typically means:
 - H_0, H_1
 - critical/rejection region $R \subset \mathcal{X}$,
 - + level $\alpha {\rm , \ power \ 1} \beta$
 - conclusion: "reject H_o at level α " or "do not reject H_o at level α "
 - planning: maximize power for some relevant alternative

minimize type II error

Hypothesis tests and significance tests

- Hypothesis tests typically means:
 - *H*₀, *H*₁
 - critical/rejection region $R \subset \mathcal{X}$,
 - level α , power 1 β
 - conclusion: "reject H_o at level α " or "do not reject H_o at level α "
 - planning: maximize power for some relevant alternative

minimize type II error

- Significance tests typically means:
 - H_o,
 - test statistic T
 - observed value t^{obs},
 - p-value $p^{obs} = Pr(T \ge t^{obs}; H_o)$
 - alternative hypothesis often only implicit

large T points to alternative

1. Hypothesis testing

AoS Table 10.1

		H _o not rejected	$H_{\rm o}$ rejected
	H _o true		type 1 error
truth			
	H₁ true	type 2 error	

2. Diagnostic testing

test negativetest positiveC19 negTNFPNtruthC19 posFNTPP

link

Diagnostic testing and ROC

True positive rate = sensitivity = TP/P

False positive rate = 1- specificity = 1 - TN/N

Diagnostic testing and ROC

True positive rate = sensitivity = TP/P

False positive rate = 1- specificity = 1 - TN/N

Rapid flow test, care home link

		test negative	test positive	
	C19 neg	114,993	101	115,094
truth				
	C19 pos	371	128	499

Sensitivity = TP/P = 128/499 = 0.257 Specificity = TN/N = 114,993/115094 =0.999

Cochrane review

meta-analysis

"consistently high specificities"

"sensitivity varied widely: average sensitivities by brand ranged from 34.3% to 91.3%"

1. Hypothesis testing

AoS Table 10.1

		H _o not rejected	$H_{\rm o}$ rejected
	H _o true		type 1 error
truth			
	H₁ true	type 2 error	

3. Multiple testing

AoS Table 10.2

		H _o not rejected	$H_{\rm o}$ rejected	
	H _o true	U	V	mo
truth				
	H₁ true	Т	S	m_1
		m-R	R	m

FDP, FDR

```
leukemia_big <- read.csv
 ("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")
dim(leukemia_big)
 [1] 7128 72</pre>
```

- each row is a different gene; 47 AML responses and 25 ALL responses
- we could compute 7128 t-statistics for the mean difference between AML and ALL

```
tvals <- rep(0,7128)
for (i in 1:7128){
    leukemia_big[i,] %>% select(starts_with("ALL")) %>% as.numeric() -> x
    leukemia_big[i,] %>% select(starts_with("AML")) %>% as.numeric() -> y
    tvals[i] <- t.test(x,y,var.equal=T)$statistic
    }</pre>
```


summary(tvals)

Min. 1st Qu. Median Mean 3rd Qu. Max. -13.52611 -1.20672 -0.08406 0.02308 1.20886 12.26065

- $H_{\text{o}i}$ versus H_{1i} , $i = 1, \dots, m$
- p-values p_1, \ldots, p_m
- Bonferroni method: reject H_{oi} if $p_i < \alpha/m$
- + $\operatorname{pr}(\operatorname{any} \operatorname{\mathit{H}_{o}} \operatorname{falsely} \operatorname{rejected}) \leq \alpha$

FWER

very conservative

- FDR method controls the number of rejections that are false

- H_{0i} versus H_{1i} , $i = 1, \ldots, m$
- p-values p_1, \ldots, p_m
- Bonferroni method: reject $H_{\alpha i}$ if $p_i < \alpha/m$

• pr(any H _o falsely rejected	$) \leq \alpha$

FDP = V/R

		H _o not rejected	$H_{\rm o}$ rejected	
	H _o true	U	V	mo
truth				
	H₁ true	Т	S	m_1
		m-R	R	m

FWFR

verv conservative

FDR = E(FDP)

Benjamini-Hochberg

AoS 10.7; EH 15.2

- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

$$p_{(i)} \leq \frac{i}{m}q$$

• Let BH_q be the rule that rejects H_{oi} for $i \leq i_{max}$, not rejecting otherwise

Benjamini-Hochberg

AoS 10.7; EH 15.2

- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

$$p_{(i)} \leq \frac{i}{m}q$$

- Let BH_q be the rule that rejects H_{oi} for $i \leq i_{max}$, not rejecting otherwise
- Theorem: If the *p*-values corresponding to valid null hypotheses are independent of each other, then

$$\mathsf{FDR}(\mathsf{BH}_q) = \pi_{\mathrm{o}} q \leq q, \qquad ext{where } \pi_{\mathrm{o}} = m_{\mathrm{o}}/m \, .$$

 $\pi_{\rm O}$ unknown but close to 1

• change the bound under dependence

$$\mathcal{D}_{(i)} \leq \frac{i}{mC_m}q \qquad \qquad \mathcal{C}_m = \sum_{i=1}^m \frac{1}{i}$$

Mathematical Statistics II March 4 2025

25

index	1	2	3	4	5	6	7	8	9	10
pval	0.00017	0.00448	0.00671	0.00907	0.01220	0.33626	0.3934	0.5388	0.5813	0.9862
cut1	0.00500	0.01000	0.01500	0.02000	0.02500	0.03000	0.0350	0.0400	0.0450	0.0500
cut2	0.00171	0.00341	0.00512	0.00683	0.00854	0.01024	0.0119	0.0137	0.0154	0.0171

The figure above shows sorted p-values of the N = 7128 t-tests. The red line corresponds to the threshold α/N from the Bonferroni method, and the blue line is the FDR line $(i/N)\alpha$. The

> summary(ttest)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-13.52611	-1.20672	-0.08406	0.02308	1.20886	12.26065

Unlikely results How a small proportion of fals	e positives can prov	e very misleading	The new
False True	False negatives	False positives	true
1. Of hypotheses interesting enough to test, perhaps one in ten will be true. So imagine tests on 1,000 hypotheses, 100 of which are true.	2. Th false of 59 they false of 90 they they false of 90 they they false	e tests have a positive rate 6. That means produce 45 positives (5% 0), They have ver of 0.8, so confirm only the true theses.	3. Not knowing what is false and what is false and what is not, the researcher sees 125 hypotheses as true, 45 of which are not. The negative results are much more reliable—but
	prod nega	ucing 20 false tives.	unlikely to be published.

Source: The Economist

Benjamini-Hochberg proof

Theorem: If the *p*-values corresponding to valid null hypotheses are independent of each other, then

 $FDR(BH_q) = \pi_o q \leq q$, where $\pi_o = m_o/m$

The Annals of Statistics 2006, Vol. 34, No. 4, 1827–1849 DOI: 10.1214/00905360600000425 © Institute of Mathematical Statistics, 2006

ON THE BENJAMINI-HOCHBERG METHOD

By J. A. FERREIRA¹ AND A. H. ZWINDERMAN

University of Amsterdam

We investigate the properties of the Benjamini-Hochberg method for multiple testing and of a variant of Storey's generalization of it, extending and complementing the asymptotic and exact results available in the literature. Results are obtained under two different ests of assumptions and include asymptotic and exact expressions and bounds for the proportion of rejections, the proportion of incorrect rejections out of all rejections and two other proportions used to quantify the efficacy of the method.

1. Introduction. Let $X = \{X_1, X_2, \dots, X_m\}$ be a set of *m* random variables defined on a probability space (Ω, \mathcal{F}, P) such that, for some positive integer $m_0 \leq m$, each of X_1, X_2, \dots, X_m has distribution function (d.f.) F and X_{m_0+1}, \dots, X_m all have d.f.'s different from *F*, and consider the problem of choosing a set $\mathcal{R} \subseteq X$ in such a way that the random variable (r, v).

$$\Pi_{1,m} = \frac{S_m}{R_m \vee 1}$$

Mathematicathere 保護 建聚 and Sm 所 進代 [15] Occ Xm₀]), is guaranteed to be small in some probabilistic sense. In more ordinary language, the problem is that of discovering observations in X which do not have d.f. F without incurring a high

- $X_1, ..., X_n$ i.i.d.
- $H_0: X_i \sim f(x; \theta);$ $H_1: X_i$ arbitrary distribution
- Define k sets A_1, \ldots, A_k s.t.

$$\operatorname{pr}(X_i \in \cup_{j=1}^k A_j\} = 1$$

• Define

$$Y_j = \sum_{i=1}^n \mathbf{1}\{X_i \in A_j\}$$

number of obs in category *j*

- $X_1, ..., X_n$ i.i.d.
- $H_0: X_i \sim f(x; \theta);$ $H_1: X_i$ arbitrary distribution
- Define k sets A_1, \ldots, A_k s.t.

$$\operatorname{pr}(X_i \in \cup_{j=1}^k A_j\} = 1$$

• Define

$$Y_j = \sum_{i=1}^n \mathbf{1}\{X_i \in A_j\}$$

number of obs in category j

- $Y = (Y_1, \ldots, Y_k) \sim Mult_k(n; p)$
- $pr(Y_1 = y_1, ..., Y_k = y_k; p) =$
- $H_0: p = p(\theta); \quad H_1: p \text{ arbitrary}$

Multinomial goodness of fit tests

log-likelihood function

generalized likelihood ratio test

log-likelihood function

generalized likelihood ratio test

• Theorem 9.1 (MS): Under H_o

 $p = \dim(\theta)$

$$W = 2\sum_{j=1}^{k} Y_j \log \left(\frac{Y_j}{np_j(\tilde{\theta})}\right) \stackrel{d}{\to} \chi^2_{k-1-p}$$

log-likelihood function

generalized likelihood ratio test

• Theorem 9.1 (MS): Under H_o

$$p = \dim(\theta)$$

$$W = 2\sum_{j=1}^{k} Y_j \log \left(\frac{Y_j}{np_j(\tilde{\theta})}\right) \stackrel{d}{\to} \chi^2_{k-1-p}$$

• Theorem 92. (MS): Under H_o

$$Q = \sum_{j=1}^{k} \frac{\{Y_j - np_j(\hat{\theta})\}^2}{np_j(\hat{\theta})} \stackrel{d}{\to} \chi^2_{k-1-p}$$

Mathematical Statistics II March 4 2025

31

Table 9.1 Frequency of goals in First Division matches and "expected" frequency under Poisson model in Example 9.2

Goals	0	1	2	3	4	≥ 5
Frequency	252	344	180	104	28	16
Expected	248.9	326.5	214.1	93.6	30.7	10.2

$$p_{0}(\lambda) = 1 - \sum_{j=0}^{4} p_{j}(\lambda); \quad p_{j}(\lambda) = e^{-\lambda} \lambda^{j} / j!, \quad \tilde{\lambda} = 1.3118$$

Q = 11.09; W = 10.87; $pr(\chi_4^2 > [11.09, 10.87]) = [0.026, 0.028]$

Multinomial goodness-of-fit tests

136

			Antige	en 'B'		
			Absent	Present	Total	
		Absent	'O': 202	'B': 35	237	
	Antigen 'A'	Present	'A': 179	'AB': 6	185	
	Total		381	41	422	
	Two-locu	ıs model			One-loci	us model
roup	Genotype	Pro	bability	Geno	type	Proba
'A'	(AA;bb),(Aa;bb)	α($(1 - \beta)$	(<i>AA</i>),	(AO)	$\lambda_A^2 + 2$

Group	Two-locus model		One-locus model	
	Genotype	Probability	Genotype	Probability
'A'	(AA; bb), (Aa; bb)	$\alpha(1-\beta)$	(AA), (AO)	$\lambda_A^2 + 2\lambda_A\lambda_O$
'B'	(aa; BB), (aa; Bb)	$(1-\alpha)\beta$	(BB), (BO)	$\lambda_B^2 + 2\lambda_B\lambda_O$
'AB'	(AA; BB), (Aa; BB), (Aa; BB), (AA; Bb), (Aa; Bb)	$\alpha\beta$	(AB)	$2\lambda_A\lambda_B$
'O'	(aa;bb)	$(1-\alpha)(1-\beta)$	(00)	λ_O^2

 $4 \cdot Likelihood$

Table 4.3 Blood groups in England (Taylor and Prior, 1938). The upper part of the table shows a cross-classification of 422 persons by presence or absence of antigens 'A' and 'B', giving the groups 'A', 'B', 'AB', 'O' of the human blood group system. The lower part shows genotypes and corresponding probabilities under oneand two-locus models. See Example 4.38 for details. Q = 15.73; W = 17.66 (two-locus) $p < 10^{-5}$

Maize data SM Ex 7.24


```
library(SMPracticals)
data(darwin)
cross <- seq(1,30,by=2)
self <- cross+1
diffs <- darwin[self,4]-darwin[cross,4]
qqnorm(diffs)</pre>
```

MS 9.3, SM p.327-9

Figure 7.5 Analysis of maize data. Left: empirical distribution function for height differences, with fitted normal distribution (dots). Right: null density of Anderson–Darling statistic *T* for normal samples of size n = 15with location and scale estimated. The shaded part of the histogram shows values of T^* in excess of the observed value t_{obs} .

SM Example 7.24 testing $N(\mu, \sigma^2)$ distribution

•
$$X_1, \ldots, X_n$$
 i.i.d. $F(\cdot)$; $H_0: F = F_0$

- $\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \le t\}$
- three test statistics:
 - 1. $\sup_t |\widehat{F_n}(t) F_o(t)|$

2.
$$\int \{\widehat{F}_n(t) - F_o(t)\}^2 dF_o(t)$$

3.
$$\int \frac{\{\widehat{F}_n(t) - F_0(t)\}^2}{F_0(t)\{1 - F_0(t)\}} dF_0(t)$$

- + SM Example 7.24 testing $\textit{N}(\mu, \sigma^2)$ distribution
- SM Example 7.23; 6.14 testing U(0, 1) distribution

cumulative d.f.

- Special case $H_o: F(t) = F_o(t) = t$
- Recall

$$E_{o}{\{\widehat{F_{n}}(t)\}} = F_{o}(t) = t, \quad var{\{\widehat{F_{n}}(t)\}} = t(1-t)/n$$

• What about distribution of

 $\sup_t |\widehat{F_n}(t) - t| \int {\{\widehat{F_n}(t) - t\}^2 dt}$

$$\int \frac{\{\widehat{F_n}(t)-t\}^2}{F_o(t)\{1-t\}} dt$$

• need joint density of $\widehat{F_n}(t) \forall t$

 $X_i \sim U(0, 1)$

- Special case $H_o: F(t) = F_o(t) = t$
- Recall

$$E_{o}{\{\widehat{F_{n}}(t)\}} = F_{o}(t) = t, \quad var{\{\widehat{F_{n}}(t)\}} = t(1-t)/n$$

• What about distribution of

 $\sup_t |\widehat{F_n}(t) - t| \qquad \int {\{\widehat{F_n}(t) - t\}^2 dt}$

- need joint density of $\widehat{F_n}(t) \ \forall \ t$
- define stochastic process $B_n(t) = \sqrt{n}(\widehat{F_n}(t) t)$
- vector $(B_n(t_1), \ldots, B_n(t_k)) \stackrel{d}{\rightarrow} N_k(o, C), \quad C_{ij} = \min(t_i, t_j) t_i t_j$ MS 9.3
- a Brownian bridge is a continuous function on (0, 1)

with all finite-dimensional distributions as above

 $\int \frac{\{\widehat{F}_n(t) - t\}^2}{F_n(t)\{1 - t\}} dt$

Mathematical Statistics II March 4 2025

 $X_i \sim U(0, 1)$

• Kolmogorov-Smirnov test

$$K_n = \sup_{0 \le t \le 1} |B_n(t)|$$

• Cramer-vonMises test

$$W_n^2 = \int_0^1 B_n^2(t) dt$$

• Anderson-Darling test

$$A_n^2 = \int_0^1 \frac{B_n^2(t)}{t(1-t)} dt$$

• Kolmogorov-Smirnov test

$$K_n = \sup_{0 \le t \le 1} |B_n(t)|$$

• Cramer-vonMises test

$$W_n^2 = \int_0^1 B_n^2(t) dt$$

• Anderson-Darling test

$$A_n^2 = \int_0^1 \frac{B_n^2(t)}{t(1-t)} dt$$

• limit theorems

$$K_n \xrightarrow{d} K, \qquad W_n^2 \xrightarrow{d} \sum_{j=1}^{\infty} \frac{Z_j^2}{j^2 \pi^2}, \qquad A_n^2 \xrightarrow{d} \sum_{j=1}^{\infty} \frac{Z_j^2}{j(j+1)}$$
$$\operatorname{pr}(K > x) = 2 \sum_{i=1}^{\infty} (-1)^{j+1} \exp(-2j^2 x^2)$$

