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ABSTRACT

BACKGROUND
Black Americans are exposed to higher annual levels of air pollution containing
fine particulate matter (particles with an aerodynamic diameter of <2.5 um [PM, ]])
than White Americans and may be more susceptible to its health effects. Low-
income Americans may also be more susceptible to PM, ; pollution than high-
income Americans. Because information is lacking on exposure-response curves
for PM, ; exposure and mortality among marginalized subpopulations categorized
according to both race and position, the 1 Protection
Agency lacks important evidence to inform its regulatory rulemaking for PM,
standards.

METHODS
We analyzed 623 million person-years of Medicare data from 73 million persons
65 years of age or older from 2000 through 2016 to estimate associations between
annual PM, ; exposure and mortality in lations defined si

racial 1dent1ty (Black vs. White) and income level (Medicaid eligible vs. mellglble)

RESULTS
Lower PM, ; exposure was associated with lower mortality in the full population,
but marginalized subpopulations appeared to benefit more as PM, , levels decreased.
For example, the hazard ratio associated with decreasing PM, ; from 12 ug per cubic
meter to 8 ug per cubic meter for the White higher-income subpopulation was
0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard



1. Recap Mar 11 goodness-of-fit tests
2. Introduction to causal inference

3. Project guidelines:
if you are not sure how to fit your paper into the guidelines contact me
office hour: Tuesday 3-4; Monday 7-8
email: nancym.reid@utoronto.ca
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Recap: multinomial goodness of fit statistics

« Pearson’s x? test
k ~
{Y; —npi(0)}* 4
Q=) —————— > Xi__
12_1: np;() e

6 MLE in multinomial

- Likelihood ratio (deviance) test

R
Y; d
W:2§:Y-Iog L1 33,
j=1 j (npj(a)) e
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Recap: Smooth goodness-of-fit statistics

Kn = sup[Fa(t) = Fo(t)] 5 K, pr(K>x) —zz
~ 2
/ (Fo(t) — Fo(t)2dFo(t) % 2127}1'2

2 {Fn(t) = Fo(1)}? =
A”:/Fo(t){1—Fo( Hl) = ZJ(1+1

J=1
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1 A simulated realzation of a Brounian bridge process
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o Goodness-of-Fit tests via Machine Learning

o9
GOF tests:
- Assess how well a model HO describes the data
~ No alternative model H1 specified, it it was, likelihood ratio L(data|H1)/
L(data | HO) would provide optimal test (Neyman-Pearson)
© Standard GOF tests in HEP: y? (most frequent), Kolgomorov- Smirnov

(seldomly), others..
< Difficulties arise for multi-dimensional distributions

== Machine Learning offers various possibilities «
Todays topic!

link

Mathematical Statistics Il March 18 2025 5
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AL
TISTICAL Statistical Methodology

CIETY
DATA | EVIDENCE | DECISIONS

J. R. Statist. Soc. B (2020)
82, Part 3, pp. 773-795

Goodness-of-fit testing in high dimensional
generalized linear models

Jana Jankovéa and Rajen D. Shah,
University of Cambridge, UK

Peter Bihimann
Eidgendssische Technische Hochschule Ziirich, Switzerland

and Richard J. Samworth
University of Cambridge, UK
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This just in

Mathematical Statistics Il

2. Methodology: generalized residual prediction tests

As mentioned in Section 1.1, our generalized residual prediction (GRP) testing methodology
relies on an initial fit of the form

. n

Bimargmin {1 3% o X104 MBI .

perr M i=]

In what follows, we refer to 3 as the GLM lasso, though it is not essential that the loss function p:
Y x R— Ris the negative log-likelihood that is obtained from a GLM, and indeed this definition
incorporates penalized quasi-likelihood estimators, among others. Our general framework for
goodness-of-fit testing will also assume that we have available an auxiliary data set (X4, Y4) €
R"4%P x yna independent of (X,Y). In the rest of the paper, we take ny =n for simplicity,
although this is not needed for our procedures. Consider the Pearson-type residuals

_ Yi—pedB
VG B}

Here 3 € R? is an additional estimate of 3y that may be computed by using the auxiliary data set,
or in certain circumstances may be taken as B itself: we discuss these two cases in the following
sections. Given the vector R of residuals, the basic form of our test statistic is wT R; here w € R"
is a direction that is typically derived by using the auxiliary data set. We describe in detail the
construction of such a w in Section 2.1, where the goal is general goodness-of-fit testing.

A further modification of the method can enable us to use multiple directions w to test
simultaneously for different departures from the null or to aggregate over different directions
derived by using flexible regression methods with different tuning parameters. Givenaset W C R”
of direction vectors w, our proposed test statistic then takes the form

March 18 2025

i i=1,...,n.

supwlR.
weW



This just in

The Annals of Statistics

2022, Vol. 50, No. 5, 2514-2544
https://doi.org/10.1214/22-A0S2187

© Institute of Mathematical Statistics, 2022

TESTING GOODNESS-OF-FIT AND CONDITIONAL INDEPENDENCE WITH
APPROXIMATE CO-SUFFICIENT SAMPLING

BY RINA FOYGEL BARBER!2 AND LUCAS JANSONZP

LDepartment of Statistics, University of Chicago, *rina@uchicago.edu
2Departmem‘ of Statistics, Harvard University, bljanson@ fas.harvard.edu

Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to
model selection, confidence interval construction, conditional independence
testing, and multiple testing, just to name a few applications. While testing
the GoF of a simple (point) null hypothesis provides an analyst great flexibil-
ity in the choice of test statistic while still ensuring validity, most GoF tests
for composite null hypotheses are far more constrained, as the test statistic
must have a tractable distribution over the entire null model space. A notable
exception is co-sufficient sampling (CSS): resampling the data conditional on

Mathematical Statistics Il @ sufficient statistic for the null model guarantees valid GoF testing using any 8
test statistic the analyst chooses. But CSS testing requires the null model to



Causality A0S 16,17; SM 9.1.2; Cox & Donnelly 9.2

- randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson'’s ‘paradox’

- counterfactuals; average treatment effect; conditional average treatment effect; ...

- graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

» The Book

Mathematical Statistics Il March 18 2025 9


https://miguelhernan.org/whatifbook

Confounding variables

Men Women

Number of  Number Percent | Number of Number Percent

Major applicants admitted admitted | applicants admitted admitted
A 825 512 62 108 89 82

B 560 353 63 25 17 68

C 325 120 37 593 202 34

D 17 138 33 375 131 35

E 191 53 28 393 94 24

F 373 22 6 341 24 7
Total 2691 1198 4Lt 1835 557 30

data(UCBAdmissions)

Mathematical Statistics Il March 18 2025 10



... Confounding variables

.
14 Gender
® - Male
o ¢ -* Female
£
£ 0-
k]
<
3
B -1+ L
o
o
o
—
24
: B c D E F
Dept
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Link ™M


http://euclid.psych.yorku.ca/www/psy6136/R/output/berkeley-logit.html

... Confounding variables Radelet 1981

race of death penalty death penalty

defendant imposed not imposed  percentage
white 19 145 11.88%
black 17 149 10.24%

Mathematical Statistics Il March 18 2025 12



... Confounding variables

Radelet 1981

race of death penalty death penalty

defendant imposed not imposed  percentage

white 19 1 11.88%

black 17 149 10.24%
race of death penalty death penalty

white victim  defendant imposed not imposed percentage
white 19 132 12.58%
black 11 52 17.46%
race of death penalty  death penalty

black victim  defendant imposed not imposed percentage
white o 9 0%
black 6 97 5.83%

Mathematical Statistics Il

March 18 2025

12



... Confounding variables

258 6 - Stochastic Models

Table 6.8 Twenty-year
survival and smoking
status for 1314 women
(Appleton et al., 1996).
Overall 139/582(24)  230/732(31) The smoker and
non-smoker columns
contain number dead/total

Age (years) Smokers Non-smokers

18-24 2/55 (4) 1762 (2)
25-34 3/124 (2) 5/157 (3) (% dead).
35-44 14/109 (13) 7121 (6)
45-54 27/130 (21) 12/78 (15)
55-64 SIS (44) 407121 (33)
65-74 20/36 (81)  101/129 (78)
75+ 13/13(100) 64764 (100)

Mathematical Statistics Il March 18 2025 13



Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

« A - binary treatment indicator AoS uses X for tmt
* Y - binary outcome could be continuous
« “A causes Y” to be distinguished from “A is associated with Y”

Mathematical Statistics Il March 18 2025 14



Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

« A - binary treatment indicator AoS uses X for tmt
* Y - binary outcome could be continuous
« “A causes Y” to be distinguished from “A is associated with Y”

- introduce potential outcomes Y(0), Y(1) A0S Co, C; HR Y@
« causal treatment effect 6 = E(Y(1)) — E(Y(0)) want to estimate this
- association a=EY|A=1)—-EY|A=0) have data to estimate «

- Consistency assumption: Y = Y(a) we can learn about potential outcome from observed values

Mathematical Statistics Il March 18 2025 14



Counterfactual: Examples A0S Ch:16; HR Cha

Potential outcomes C,, C, Potential outcomes Y©°, Y"
X Y G G Table 2.1 —
0 44 R0 T
* ela !
0 7 7 Kronos 0 1 1 ?
0 2 2 * Demeter 0 0 0 ?
0 8 8 * Hades 0 0 0 ?
Hestia 1 0 ? 0
r 3 * 3 Poseidon 1 0 7 0
1 5 * 5 Hera 1 0 ? 0
* Zeus 1 1 ? 1
1 8 * 8 Artemis 0 1 1 ?
19 9 Apollo 001 1 ?
Leto 0 0 0 ?
treatment X, response Y Ares 17 1
Athena 1 1 ? 1
Hephaestus 1 1 7 1
Aphrodite 11 7 1
Cyclope 11 7 1
Persephone 1 1 7 1
Hermes 1 0 ? 0
Hebe 1 0 ? 0

Mathematical Statistics Il March 18 2025 Dionysus 1 0 ? 0 15




Causal Effect and Association A0S HR Ch

Potential outcomes Observed outcomes
Table 1.1 Table 1.2

Ya:O Ya:l A Y
Rheia 0 1 Rheia 0 0
Kronos 1 0 Kronos 0 1
Demeter 0 0 Demeter 0 0
Hades 0 0 Hades 0 0
Hestia 0 0 Hestia 1 0
Poseidon 1 0 Poseidon 1 0
Hera 0 0 Hera 1 0
Zeus 0 1 Zeus 1 1
Artemis 1 1 Artemis 0 1
Apollo 1 0 Apollo 0 1
Leto 0 1 Leto 0 0
Ares 1 1 Ares 1 1
Athena 1 1 Athena 1 1
Hephaestus 0 1 Hephaestus 1 1
Aphrodite 0 1 Aphrodite 1 1
Cyclope 0 1 Cyclope 1 1
Persephone 1 1 Persephone 1 1
Hermes 1 0 Hermes 1 0
Hebe 1 0 Hebe 1 0

Mathddirnyeus Statistiks 11 QMarch 18 2025 Dionysus 10 16




Causal treatment effect AoS Eq. (16.2)

0 =E(Y(1)) — E(Y(0)) risk difference; ratio; odds
also called “ATE” and “ACE”: average treatment/causal effect

a=E(Y|A=1)—E(Y|A=0) thiscan be estimated from the data

If Ais is independent of (Y(0), Y(1)), then 6 = «

If treatment is randomly assigned, then A L (Y(0),Y(1)) L =independent

Mathematical Statistics Il March 18 2025 17



Example 16.2

XY ¢ ¢ X Y Cy C
0 0 O 0* 0 0 O 0*
0O 0 O 0* 1 0 0 0*
0O 0 O 0* 1 0 0 0*
0 0 O 0* 1 0 0 0*
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
=0; a=1 =0, a=4/7<1
(Co, Cy) not independent of X thought experiment

Mathematical Statistics Il March 18 2025 18



Causal Effect and Association A0S HR Ch

Potential outcomes Observed outcomes
Table 1.1 Table 1.2

Yu:O Ya:l A Y
Rheia 0 1 Rheia 0 0
Kronos 1 0 Kronos 0 1
Demeter 0 0 Demeter 0 0
Hades 0 0 Hades 0 0
Hestia 0 0 Hestia 1 0
Poseidon 1 0 Poseidon 1 0
Hera 0 0 Hera 1 0
Zeus 0 1 Zeus 1 1
Artemis 1 1 Artemis 0 1
Apollo 1 0 Apollo 0 1
Leto 0 1 Leto 0 0
Ares 1 1 Ares 1 1
Athena 1 1 Athena 1 1
Hephaestus 0 1 Hephaestus 1 1
Aphrodite 0 1 Aphrodite 1 1
Cyclope 0 1 Cyclope 1 1
Persephone 1 1 Persephone 1 1
Hermes 1 0 Hermes 1 0
Hebe 1 0 Hebe 1 0

Mathematical Statistics Il March 183emysus 1 0 Dionysus 1 0 19




Three types of causal statements SM §9.1.2

1. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its effect

2. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

3. observed association may be linked to causal effect via counterfactuals if
(Y(0),Y(1)) LA not usually testable

Mathematical Statistics Il March 18 2025 20



Conditional and marginal effects AoS §16.3

« typically have additional explanatory variables (covariates) X AoS uses Z; HR use L

« causal effect of treatment when X = x
6(x) = E(Y(1) | X =x) — E(Y(0) | X =X)
- marginal causal effect
0 = Ex{E(Y(1) [ X) — E(Y(0) [ X)}
+ association function
rx)=E(Y|A=1,X=x)—E(Y|A=0,X=X)

« marginal association
Ex{r(X)}

Mathematical Statistics Il March 18 2025 21



Example

Table 2.2

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo

Leto

Ares
Athena
Hephaestus
Aphrodite
Cyclope
Persephone
Hermes
Hebe
Dionysus

o - - OO0 0000 O O
HHEHRHERHERRRRFOOORKRKRKROOO O
COOFRHRHRERFEFOHRRKHOOOOOR O

Mathematical Statistics Il

March 18 2025

OL—o

OL—1

L = 1 critical condition

L = o stable condition
conditional randomization

22



No unmeasured confounding A0S §16.3

+ in observational studies treatment is not randomly assigned —> 6(x) # r(x)
« No unmeasured confounding:

{Y(a);ae A} LA|X

can learn about Y(a) even if A # a by using observed Y for ‘similar’ people from A = a group

« under the assumption of no unmeasured confounding,
marginal causal effect

B(Y(a)) = /E(Y | A =a,X=x)dFx(x)

can be estimated by the association function
n
~ 1. P .
B(v(a) = £ >_f@X) = Bo+ba+ BoXn
1=

. L reg function = adj reatment eff
Mathematical Statistics Il March 18 2025 ol I G i il LR B 23



Effect of confounding SM §9:11

< < Figure 9.2 Simulated
results from experiments
to compare the effect of a
treatment 7" on a response
Y that varies with a
covariate X. The lines
show the mean response
for T = 0 (solid) and

T =1 (dots). Left: the
effect of T is confounded
with dependence on X.
Right: the experiment is
balanced, with random
allocation of 7' dependent

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 on X.

Mathematical Statistics Il March 18 2025 24



Effect of confounding

SM §9.14

Figure 9.2 Simulated
results from experiments
to compare the effect of a
treatment 7" on a response
Y that varies with a
covariate X. The lines
show the mean response
for T = 0 (solid) and

T =1 (dots). Left: the
effect of T is confounded
with dependence on X.
Right: the experiment is
balanced, with random

Left: y; — Yo =02+ 0.3

adjust for covariate: y = 8o + 81X + 6t + ¢
Left: § = —0.7 + 0.3 Right: § = —1.25 + 0.16

Mathematical Statistics Il March 18 2025

llocation of T depend
on X.

Right: ¥, — Vo = —1.2+ 0.3

Causal effect =1

right randomized within pairs; matched on x

25



Causality and observational data CD9.2.4

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

« the association is strong

- the association is found consistently over a number of independent studies

- the association is specific to the outcome studied

- the observation of a potential cause occurs earlier in time than the outcome

« there is a dose-response relationship

- there is subject-matter theory that makes a causal effect plausible

« the association is based on a suitable natural experiment

see also AoS §16.3

Mathematical Statistics Il March 18 2025 26



Simpson’s paradox revisited

260 16. Causal Inference

Y=1|Y=0||Y=1|Y=0
X =1/ .1500 | .2250 .1000 .0250
X=0] .0375 | .0875 2625 1125
Z =1 (men) Z =0 (women)
The marginal distribution for (X,Y) is
Y=1 Y=0

X=1 25 25 | .50

X=0 .30 .20 | .50

.55 45 1

From these tables we find that,

PY=1X=1)-PY =1X=0)
PY=1X=1Z=1)-PY =1X=0,Z=1)
PY=1X=1,Z=0-PY =1X=0,Z=0)

To summarize, we seem to have the following information:

Mathematical Statistics Il March 18 2025
Mathematical Statement

English Statement?

AoS 16.4

confusion of causal effect

—0.1
0.1

0.1.

with association

27



Estimation of causal effects Linbo Wang

+ assume no unmeasured confounding
air pollution temperature - want to estimate

E(Y(1) [ X) — E(Y(0) | X)
causal regression function

- or possibly Ex{E(Y(1) | X) — E(Y(0) | X)}
marginal effect of A

+ regression model

@ E(Y | X,A) = Bo + 1A + BX

. « or something more complex
weather conditions 8 g

E(Y | X.A) = £(X.A)

. L neural network ...
Mathematical Statistics Il March 18 2025 28



Estimation of marginal causal effects Linbo Wang

- estimand average causal effect or average treatment effect (ATE)

E{Y(1)} - E{¥(0)}

estimand: something we estimate

« under the linear model E(Y | X,A) = (o + B.A + 3.X, the ATE is 5,
if the linear model is correct

n
= 1 =
E(Y(a)) = " > E(Y|A=a,X)
i=i
- recovers 3, in a linear model

Mathematical Statistics Il March 18 2025 29



Estimation of marginal causal effects Linbo Wang

- treat Y;(1) as missing data, if A; = o (and v.v.)

E(Y(a) =E { M}

pr(A=a|x)

« write

model pr(A = a | X), e.g. by logistic regression
+ doubly robust estimator of E(Y(1))

n

~apw ] AY; { A; }A
— = — ' 41— YE(Y(n
A = mamm T ma= Ry BV

i=1

Mathematical Statistics Il March 18 2025 30



Directed graphs and randomization SM9a

graphs can be useful for clarifying dependence relations among random variables

< ¥

NN
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DAGs and confounders AoS 17.8

276 17. Directed Graphs and Conditional Independence

RVANA

X m—Y X —Y X —Y

FIGURE 17.11. Randomized study; Observational study with measured con-
founders; Observational study with unmeasured confounders. The circled variables
are unobserved.

randomized study observational study E(Y | x) = [E(Y | X,Z = z)dF;(2)

unobserved confounder: 6 # «

Mathematical Statistics Il March 18 2025 32
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ABSTRACT

BACKGROUND
Black Americans are exposed to higher annual levels of air pollution containing
fine particulate matter (particles with an aerodynamic diameter of <2.5 um [PM, 1)
than White Americans and may be more susceptible to its health effects. Low-
income Americans may also be more susceptible to PM, , pollution than high-
income Americans. Because information is lacking on exposure—response curves
for PM. . exposure and mortality among marginalized subpopulations categorized
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