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BACKGROUND
Black Americans are exposed to higher annual levels of air pollution containing 
fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) 
than White Americans and may be more susceptible to its health effects. Low-
income Americans may also be more susceptible to PM2.5 pollution than high-
income Americans. Because information is lacking on exposure–response curves 
for PM2.5 exposure and mortality among marginalized subpopulations categorized 
according to both race and socioeconomic position, the Environmental Protection 
Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 
standards.

METHODS
We analyzed 623 million person-years of Medicare data from 73 million persons 
65 years of age or older from 2000 through 2016 to estimate associations between 
annual PM2.5 exposure and mortality in subpopulations defined simultaneously by 
racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible).

RESULTS
Lower PM2.5 exposure was associated with lower mortality in the full population, 
but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. 
For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic 
meter to 8 µg per cubic meter for the White higher-income subpopulation was 
0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard 
ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) 
for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the 
White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black 
low-income subpopulation.

CONCLUSIONS
Higher-income Black persons, low-income White persons, and low-income Black 
persons may benefit more from lower PM2.5 levels than higher-income White persons. 
These findings underscore the importance of considering racial identity and income 
together when assessing health inequities. (Funded by the National Institutes of 
Health and the Alfred P. Sloan Foundation.)
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Today

󱸯. Recap Mar 󱸯󱸯 goodness-of-󰎓t tests
󱸰. Introduction to causal inference
󱸱. Project guidelines:

if you are not sure how to 󰎓t your paper into the guidelines contact me
o󰎏ce hour: Tuesday 󱸱-󱸲; Monday 󱸵-󱸶
email: nancym.reid@utoronto.ca
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Recap: multinomial goodness of 󰎓t statistics

• Pearson’s χ󱸰 test

Q =
k󰁛

j=󱸯

{Yj − npj(θ̂)}󱸰

npj(θ̂)
d→ χ󱸰k−󱸯−p

θ̃ MLE in multinomial

• Likelihood ratio (deviance) test

W = 󱸰
k󰁛

j=󱸯

Yj log
󰀣

Yj
npj(θ̃)

󰀤
d→ χ󱸰k−󱸯−p
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Recap: Smooth goodness-of-󰎓t statistics

Kn = sup
t
| 󰁥Fn(t)− F󱸮(t)|

d→ K, pr(K > x) = 󱸰
∞󰁛

j=󱸯

(−󱸯)j+󱸯 exp(−󱸰j󱸰x󱸰)

W󱸰
n =

󰁝
{ 󰁥Fn(t)− F󱸮(t)}󱸰dF󱸮(t)

d→
∞󰁛

j=󱸯

Z󱸰j
j󱸰π󱸰

A󱸰n =
󰁝 { 󰁥Fn(t)− F󱸮(t)}󱸰
F󱸮(t){󱸯− F󱸮(t)}

dF󱸮(t)
d→

∞󰁛

j=󱸯

Z󱸰j
j(j+ 󱸯)
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https://doi.org/10.1214/22-AOS2187
© Institute of Mathematical Statistics, 2022

TESTING GOODNESS-OF-FIT AND CONDITIONAL INDEPENDENCE WITH
APPROXIMATE CO-SUFFICIENT SAMPLING

BY RINA FOYGEL BARBER1,a AND LUCAS JANSON2,b

1Department of Statistics, University of Chicago, arina@uchicago.edu
2Department of Statistics, Harvard University, bljanson@fas.harvard.edu

Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to
model selection, confidence interval construction, conditional independence
testing, and multiple testing, just to name a few applications. While testing
the GoF of a simple (point) null hypothesis provides an analyst great flexibil-
ity in the choice of test statistic while still ensuring validity, most GoF tests
for composite null hypotheses are far more constrained, as the test statistic
must have a tractable distribution over the entire null model space. A notable
exception is co-sufficient sampling (CSS): resampling the data conditional on
a sufficient statistic for the null model guarantees valid GoF testing using any
test statistic the analyst chooses. But CSS testing requires the null model to
have a compact (in an information-theoretic sense) sufficient statistic, which
only holds for a very limited class of models; even for a null model as simple
as logistic regression, CSS testing is powerless. In this paper, we leverage the
concept of approximate sufficiency to generalize CSS testing to essentially
any parametric model with an asymptotically efficient estimator; we call our
extension “approximate CSS” (aCSS) testing. We quantify the finite-sample
Type I error inflation of aCSS testing and show that it is vanishing under
standard maximum likelihood asymptotics, for any choice of test statistic.
We apply our proposed procedure both theoretically and in simulation to a
number of models of interest to demonstrate its finite-sample Type I error
and power.

1. Introduction. Suppose we observe data X belonging to some sample space X , and
would like to test whether it comes from some parametric null model {Pθ : θ ∈ "}, where
" ⊆ Rd , versus a more complex (usually higher-dimensional) model. This problem of so-
called “goodness-of-fit” (GoF) testing is one of the most fundamental in statistics, with a
vast literature exhibiting applications and theoretical and methodological development. We
pause here to highlight a few of the many areas of statistics to which GoF testing is directly
applicable, including some problems that are not obviously or commonly associated with
GoF.

PROBLEM DOMAIN 1 (Standard goodness-of-fit testing). GoF testing is commonly used
to test a postulated model or distributional property, often as a precursor to further sta-
tistical analysis that assumes the postulated model/property to be correct. Such null mod-
els/properties include standard distributional families, nonparametric properties such as sym-
metry or log-concavity, time-series properties such as stationarity, and relational properties
such as independence.

PROBLEM DOMAIN 2 (Model selection). GoF testing can also be used to select a best-
fitting model through simultaneously testing a family of models. For instance, this could be

Received January 2021; revised February 2022.
MSC2020 subject classifications. Primary 62F03; secondary 62B05.
Key words and phrases. Goodness-of-fit test, approximate sufficiency, co-sufficiency, conditional randomiza-

tion test, model-X, conditional independence testing, high-dimensional inference.
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Causality AoS 󱸯󱸴,󱸯󱸵; SM 󱸷.󱸯.󱸰; Cox & Donnelly 󱸷.󱸰

• randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson’s ‘paradox’

• counterfactuals; average treatment e󰎎ect; conditional average treatment e󰎎ect; ...

• graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

• The Book
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Confounding variables

Men Women
Number of Number Percent Number of Number Percent

Major applicants admitted admitted applicants admitted admitted
A 󱸶󱸰󱸳 󱸳󱸯󱸰 󱸴󱸰 󱸯󱸮󱸶 󱸶󱸷 󱸶󱸰
B 󱸳󱸴󱸮 󱸱󱸳󱸱 󱸴󱸱 󱸰󱸳 󱸯󱸵 󱸴󱸶
C 󱸱󱸰󱸳 󱸯󱸰󱸮 󱸱󱸵 󱸳󱸷󱸱 󱸰󱸮󱸰 󱸱󱸲
D 󱸲󱸯󱸵 󱸯󱸱󱸶 󱸱󱸱 󱸱󱸵󱸳 󱸯󱸱󱸯 󱸱󱸳
E 󱸯󱸷󱸯 󱸳󱸱 󱸰󱸶 󱸱󱸷󱸱 󱸷󱸲 󱸰󱸲
F 󱸱󱸵󱸱 󱸰󱸰 󱸴 󱸱󱸲󱸯 󱸰󱸲 󱸵

Total 󱸰󱸴󱸷󱸯 󱸯󱸯󱸷󱸶 󱸲󱸲 󱸯󱸶󱸱󱸳 󱸳󱸳󱸵 󱸱󱸮
data(UCBAdmissions)

Mathematical Statistics II March 󱸯󱸶 󱸰󱸮󱸰󱸳 󱸯󱸮



... Confounding variables
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... Confounding variables Radelet 󱸯󱸷󱸶󱸯

race of death penalty death penalty
defendant imposed not imposed percentage
white 󱸯󱸷 󱸯󱸲󱸯 󱸯󱸯.󱸶󱸶󱹻
black 󱸯󱸵 󱸯󱸲󱸷 󱸯󱸮.󱸰󱸲󱹻
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... Confounding variables Radelet 󱸯󱸷󱸶󱸯

race of death penalty death penalty
defendant imposed not imposed percentage
white 󱸯󱸷 󱸯󱸲󱸯 󱸯󱸯.󱸶󱸶󱹻
black 󱸯󱸵 󱸯󱸲󱸷 󱸯󱸮.󱸰󱸲󱹻

race of death penalty death penalty
white victim defendant imposed not imposed percentage

white 󱸯󱸷 󱸯󱸱󱸰 󱸯󱸰.󱸳󱸶󱹻
black 󱸯󱸯 󱸳󱸰 󱸯󱸵.󱸲󱸴󱹻

race of death penalty death penalty
black victim defendant imposed not imposed percentage

white 󱸮 󱸷 󱸮󱹻
black 󱸴 󱸷󱸵 󱸳.󱸶󱸱󱹻
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... Confounding variables SM 󱸴.󱸱
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Causality and Counterfactuals AoS Ch. 󱸯󱸴; Cox & D 󱸷.󱸰

• A – binary treatment indicator AoS uses X for tmt

• Y – binary outcome could be continuous

• “A causes Y” to be distinguished from “A is associated with Y”
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Causality and Counterfactuals AoS Ch. 󱸯󱸴; Cox & D 󱸷.󱸰

• A – binary treatment indicator AoS uses X for tmt

• Y – binary outcome could be continuous

• “A causes Y” to be distinguished from “A is associated with Y”

• introduce potential outcomes Y(󱸮), Y(󱸯) AoS C󱸮, C󱸯; HR Ya

• causal treatment e󰎎ect θ = E(Y(󱸯))− E(Y(󱸮)) want to estimate this

• association α = E(Y | A = 󱸯)− E(Y | A = 󱸮) have data to estimate α

• Consistency assumption: Y = Y(a) we can learn about potential outcome from observed values
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Counterfactual: Examples AoS Ch.󱸯󱸴; HR Ch.󱸯

Potential outcomes C󱸮, C󱸯

treatment X, response Y

Potential outcomes Y󱸮, Y󱸯
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Causal E󰎎ect and Association AoS HR Ch.󱸯

Potential outcomes Observed outcomes
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Causal treatment e󰎎ect AoS Eq. (󱸯󱸴.󱸰)

θ = E(Y(󱸯))− E(Y(󱸮)) risk di󰎎erence; ratio; odds
also called “ATE” and “ACE”: average treatment/causal e󰎎ect

α = E(Y | A = 󱸯)− E(Y | A = 󱸮) this can be estimated from the data

If A is is independent of (Y(󱸮), Y(󱸯)), then θ = α

If treatment is randomly assigned, then A ⊥ (Y(󱸮), Y(󱸯)) ⊥≡independent
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Example 󱸯󱸴.󱸰

θ = 󱸮; α = 󱸯 θ = 󱸮, α = 󱸲/󱸵 < 󱸯

(C󱸮, C󱸯) not independent of X thought experiment
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Causal E󰎎ect and Association AoS HR Ch.󱸯

Potential outcomes Observed outcomes
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Three types of causal statements SM 󱺕󱸷.󱸯.󱸰

󱸯. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its e󰎎ect

󱸰. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

󱸱. observed association may be linked to causal e󰎎ect via counterfactuals if
(Y(󱸮), Y(󱸯)) ⊥ A not usually testable
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Conditional and marginal e󰎎ects AoS 󱺕󱸯󱸴.󱸱

• typically have additional explanatory variables (covariates) X AoS uses Z; HR use L

• causal e󰎎ect of treatment when X = x

θ(x) = E(Y(󱸯) | X = x)− E(Y(󱸮) | X = x)

• marginal causal e󰎎ect

θ = EX{E(Y(󱸯) | X)− E(Y(󱸮) | X)}

• association function

r(x) = E(Y | A = 󱸯, X = x)− E(Y | A = 󱸮, X = x)

• marginal association
EX{r(X)}
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Example HR Ch󱸰

θL=󱸮

θL=󱸯

L = 󱸯 critical condition

L = 󱸮 stable condition
conditional randomization
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No unmeasured confounding AoS 󱺕󱸯󱸴.󱸱

• in observational studies treatment is not randomly assigned =⇒ θ(x) ∕= r(x)
• No unmeasured confounding:

{Y(a);a ∈ A} ⊥ A | X

can learn about Y(a) even if A ∕= a by using observed Y for ‘similar’ people from A = a group

• under the assumption of no unmeasured confounding,
marginal causal e󰎎ect

E(Y(a)) =
󰁝

E(Y | A = a, X = x)dFX(x)

can be estimated by the association function

󰁥E(Y(a)) = 󱸯
n

n󰁛

i=󱸯

r̂(a, Xi) = β̂󱸮 + β̂󱸯a+ β̂󱸰X̄n

causal reg function ≡ adjusted treatment e󰎎ectMathematical Statistics II March 󱸯󱸶 󱸰󱸮󱸰󱸳 󱸰󱸱



E󰎎ect of confounding SM 󱺕󱸷.󱸯.󱸯
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E󰎎ect of confounding SM 󱺕󱸷.󱸯.󱸯

Causal e󰎎ect ≡ 󱸯

Le󰎗: ȳ󱸯 − ȳ󱸮 = 󱸮.󱸰± 󱸮.󱸱 Right: ȳ󱸯 − ȳ󱸮 = −󱸯.󱸰± 󱸮.󱸱

adjust for covariate: y = β󱸮 + β󱸯x + δt+ 󰂃

Le󰎗: δ̂ = −󱸮.󱸵± 󱸮.󱸱 Right: δ̂ = −󱸯.󱸰󱸳± 󱸮.󱸯󱸴 right randomized within pairs; matched on x
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Causality and observational data CD 󱸷.󱸰.󱸲

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

• the association is strong
• the association is found consistently over a number of independent studies

• the association is speci󰎓c to the outcome studied
• the observation of a potential cause occurs earlier in time than the outcome
• there is a dose-response relationship
• there is subject-matter theory that makes a causal e󰎎ect plausible
• the association is based on a suitable natural experiment

see also AoS 󱺕󱸯󱸴.󱸱
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Simpson’s paradox revisited AoS 󱸯󱸴.󱸲

confusion of causal e󰎎ect
with association
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Estimation of causal e󰎎ects Linbo Wang

• assume no unmeasured confounding
• want to estimate
E(Y(󱸯) | X)− E(Y(󱸮) | X)

causal regression function

• or possibly EX{E(Y(󱸯) | X)− E(Y(󱸮) | X)}
marginal e󰎎ect of A

• regression model

E(Y | X,A) = β󱸮 + β󱸯A+ β󱸰X

• or something more complex

E(Y | X,A) = f (X,A)

neural network ...Mathematical Statistics II March 󱸯󱸶 󱸰󱸮󱸰󱸳 󱸰󱸶



Estimation of marginal causal e󰎎ects Linbo Wang

• estimand average causal e󰎎ect or average treatment e󰎎ect (ATE)

E{Y(󱸯)}− E{Y(󱸮)}

estimand: something we estimate

• under the linear model E(Y | X,A) = β󱸮 + β󱸯A+ β󱸰X, the ATE is β󱸯
if the linear model is correct

•
󰁥E(Y(a)) = 󱸯

n

n󰁛

i=󱸯

󰁥E(Y | A = a, Xi)

• recovers β̂󱸯 in a linear model
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Estimation of marginal causal e󰎎ects Linbo Wang

• treat Yi(󱸯) as missing data, if Ai = 󱸮 (and v.v.)
• write

E(Y(a)) = E

󰀝
󱸯{A = a}Y

pr(A = a | x)

󰀞

• model pr(A = a | X), e.g. by logistic regression
• doubly robust estimator of E(Y(󱸯))

µ̂AIPW =
󱸯
n

n󰁛

i=󱸯

AiYi
󰁥pr(A = 󱸯 | Xi)

+

󰀝
󱸯− Ai

󰁥pr(A = 󱸯 | Xi)

󰀞
󰁥E(Y(󱸯))
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Directed graphs and randomization SM 󱸷.󱸯

graphs can be useful for clarifying dependence relations among random variables
Fig 󱸷.󱸯 SM
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DAGs and confounders AoS 󱸯󱸵.󱸶

randomized study observational study E(Y | x) =
󰁕
E(Y | X, Z = z)dFZ(z)

unobserved confounder: θ ∕= α
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BACKGROUND
Black Americans are exposed to higher annual levels of air pollution containing 
fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) 
than White Americans and may be more susceptible to its health effects. Low-
income Americans may also be more susceptible to PM2.5 pollution than high-
income Americans. Because information is lacking on exposure–response curves 
for PM2.5 exposure and mortality among marginalized subpopulations categorized 
according to both race and socioeconomic position, the Environmental Protection 
Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 
standards.

METHODS
We analyzed 623 million person-years of Medicare data from 73 million persons 
65 years of age or older from 2000 through 2016 to estimate associations between 
annual PM2.5 exposure and mortality in subpopulations defined simultaneously by 
racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible).

RESULTS
Lower PM2.5 exposure was associated with lower mortality in the full population, 
but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. 
For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic 
meter to 8 µg per cubic meter for the White higher-income subpopulation was 
0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard 
ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) 
for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the 
White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black 
low-income subpopulation.

CONCLUSIONS
Higher-income Black persons, low-income White persons, and low-income Black 
persons may benefit more from lower PM2.5 levels than higher-income White persons. 
These findings underscore the importance of considering racial identity and income 
together when assessing health inequities. (Funded by the National Institutes of 
Health and the Alfred P. Sloan Foundation.)
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