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BACKGROUND
Black Americans are exposed to higher annual levels of air pollution containing 
fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) 
than White Americans and may be more susceptible to its health effects. Low-
income Americans may also be more susceptible to PM2.5 pollution than high-
income Americans. Because information is lacking on exposure–response curves 
for PM2.5 exposure and mortality among marginalized subpopulations categorized 
according to both race and socioeconomic position, the Environmental Protection 
Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 
standards.

METHODS
We analyzed 623 million person-years of Medicare data from 73 million persons 
65 years of age or older from 2000 through 2016 to estimate associations between 
annual PM2.5 exposure and mortality in subpopulations defined simultaneously by 
racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible).

RESULTS
Lower PM2.5 exposure was associated with lower mortality in the full population, 
but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. 
For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic 
meter to 8 µg per cubic meter for the White higher-income subpopulation was 
0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard 
ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) 
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Recap: multinomial goodness of !t statistics

• Pearson’s χ# test

Q =
k!

j=!

{Yj − npj(θ̂)}#

npj(θ̂)
d→ χ#k−!−p

θ̃ MLE in multinomial

• Likelihood ratio (deviance) test

W = #
k!

j=!
Yj log

"
Yj

npj(θ̃)

#
d→ χ#k−!−p
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Recap: Smooth goodness-of-!t statistics

Kn = sup
t
| $Fn(t)− F$(t)| d→ K, pr(K > x) = #

∞!

j=!
(−!)j+! exp(−#j#x#)

W#
n =

%
{ $Fn(t)− F$(t)}#dF$(t) d→

∞!

j=!

Z#j
j#π#

A#n =
% { $Fn(t)− F$(t)}#
F$(t){!− F$(t)}

dF$(t) d→
∞!

j=!

Z#j
j(j+ !)
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This just in

The Annals of Statistics
2022, Vol. 50, No. 5, 2514–2544
https://doi.org/10.1214/22-AOS2187
© Institute of Mathematical Statistics, 2022

TESTING GOODNESS-OF-FIT AND CONDITIONAL INDEPENDENCE WITH
APPROXIMATE CO-SUFFICIENT SAMPLING

BY RINA FOYGEL BARBER1,a AND LUCAS JANSON2,b

1Department of Statistics, University of Chicago, arina@uchicago.edu
2Department of Statistics, Harvard University, bljanson@fas.harvard.edu

Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to
model selection, confidence interval construction, conditional independence
testing, and multiple testing, just to name a few applications. While testing
the GoF of a simple (point) null hypothesis provides an analyst great flexibil-
ity in the choice of test statistic while still ensuring validity, most GoF tests
for composite null hypotheses are far more constrained, as the test statistic
must have a tractable distribution over the entire null model space. A notable
exception is co-sufficient sampling (CSS): resampling the data conditional on
a sufficient statistic for the null model guarantees valid GoF testing using any
test statistic the analyst chooses. But CSS testing requires the null model to
have a compact (in an information-theoretic sense) sufficient statistic, which
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Causality AoS !",!#; SM $.!.%; Cox & Donnelly $.%

• randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson’s ‘paradox’

• counterfactuals; average treatment e)ect; conditional average treatment e)ect; ...

• graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

• The Book
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Confounding variables

Men Women
Number of Number Percent Number of Number Percent

Major applicants admitted admitted applicants admitted admitted
A (#* *!# +# !,( (- (#
B *+, $*$ +$ #* !' +(
C $#* !#, $' *-$ #,# $&
D &!' !$( $$ $'* !$! $*
E !-! *$ #( $-$ -& #&
F $'$ ## + $&! #& '

Total #+-! !!-( && !($* **' $,
data(UCBAdmissions)
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... Confounding variables

LinkMathematical Statistics II March !" #$#% !!

logist
regression

0 4 917
O x gender

dept

0

http://euclid.psych.yorku.ca/www/psy6136/R/output/berkeley-logit.html


... Confounding variables Radelet !$&!

race of death penalty death penalty
defendant imposed not imposed percentage
white !- !&! !!.((.
black !' !&- !,.#&.
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... Confounding variables Radelet !$&!

race of death penalty death penalty
defendant imposed not imposed percentage
white !- !&! !!.((.
black !' !&- !,.#&.

race of death penalty death penalty
white victim defendant imposed not imposed percentage

white !" !#$ !$.%&'
black !! %$ !(.)*'

race of death penalty death penalty
black victim defendant imposed not imposed percentage

white + " +'
black * "( %.&#'
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... Confounding variables SM ".'
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Causality and Counterfactuals AoS Ch. !"; Cox & D $.%

• A – binary treatment indicator AoS uses X for tmt

• Y – binary outcome could be continuous

• “A causes Y” to be distinguished from “A is associated with Y”
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Causality and Counterfactuals AoS Ch. !"; Cox & D $.%

• A – binary treatment indicator AoS uses X for tmt

• Y – binary outcome could be continuous

• “A causes Y” to be distinguished from “A is associated with Y”

• introduce potential outcomes Y(,), Y(!) AoS C!, C"; HR Ya

• causal treatment e)ect θ = E(Y(!))− E(Y(,)) want to estimate this

• association α = E(Y | A = !)− E(Y | A = ,) have data to estimate α

• Consistency assumption: Y = Y(a) we can learn about potential outcome from observed values
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Counterfactual: Examples AoS Ch.!"; HR Ch.!

Potential outcomes C$, C!

treatment X, response Y

Potential outcomes Y$, Y!
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Causal E"ect and Association AoS HR Ch.!

Potential outcomes Observed outcomes
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Causal treatment e"ect AoS Eq. (!".%)

θ = E(Y(!))− E(Y(,)) risk di,erence; ratio; odds
also called “ATE” and “ACE”: average treatment/causal e)ect

α = E(Y | A = !)− E(Y | A = ,) this can be estimated from the data

If A is is independent of (Y(,), Y(!)), then θ = α

If treatment is randomly assigned, then A ⊥ (Y(,), Y(!)) ⊥≡independent
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Example #$.%

θ = ,; α = ! θ = ,, α = &/' < !

(C$, C!) not independent of X thought experiment
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Causal E"ect and Association AoS HR Ch.!

Potential outcomes Observed outcomes
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Three types of causal statements SM ($.!.%

!. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its e)ect

#. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

$. observed association may be linked to causal e)ect via counterfactuals if
(Y(,), Y(!)) ⊥ A not usually testable
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Conditional and marginal e"ects AoS (!".'

• typically have additional explanatory variables (covariates) X AoS uses Z; HR use L

• causal e)ect of treatment when X = x

θ(x) = E(Y(!) | X = x)− E(Y(,) | X = x)

• marginal causal e)ect

θ = EX{E(Y(!) | X)− E(Y(,) | X)}

• association function

r(x) = E(Y | A = !, X = x)− E(Y | A = ,, X = x)

• marginal association
EX{r(X)}
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Example HR Ch%

θL=$

θL=!

L = ! critical condition

L = , stable condition
conditional randomization
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No unmeasured confounding AoS (!".'

• in observational studies treatment is not randomly assigned =⇒ θ(x) ∕= r(x)
• No unmeasured confounding:

{Y(a);a ∈ A} ⊥ A | X

can learn about Y(a) even if A ∕= a by using observed Y for ‘similar’ people from A = a group

• under the assumption of no unmeasured confounding,
marginal causal e)ect

E(Y(a)) =
%

E(Y | A = a, X = x)dFX(x)

can be estimated by the association function

$E(Y(a)) = !
n

n!

i=!
r̂(a, Xi) = β̂$ + β̂!a+ β̂#X̄n

causal reg function ≡ adjusted treatment e,ectMathematical Statistics II March !" #$#% #&

canal
causal effectof tmt

E 111 Exo

elalfftatedlae.is w Y Bo B.Atpax

Emegalyp.EetdhrttitBotB.atBt



E"ect of confounding SM ($.!.!
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E"ect of confounding SM ($.!.!

Causal e)ect ≡ !

Le/: ȳ! − ȳ$ = ,.#± ,.$ Right: ȳ! − ȳ$ = −!.#± ,.$

adjust for covariate: y = β$ + β!x + δt+ ε

Le/: δ̂ = −,.'± ,.$ Right: δ̂ = −!.#*± ,.!+ right randomized within pairs; matched on x
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Causality and observational data CD $.%.)

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

• the association is strong
• the association is found consistently over a number of independent studies

• the association is speci"c to the outcome studied
• the observation of a potential cause occurs earlier in time than the outcome
• there is a dose-response relationship
• there is subject-matter theory that makes a causal e)ect plausible
• the association is based on a suitable natural experiment

see also AoS -!*.#
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Simpson’s paradox revisited AoS !".)

confusion of causal e)ect
with association
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Estimation of causal e"ects Linbo Wang

• assume no unmeasured confounding
• want to estimate
E(Y(!) | X)− E(Y(,) | X)

causal regression function

• or possibly EX{E(Y(!) | X)− E(Y(,) | X)}
marginal e,ect of A

• regression model

E(Y | X,A) = β$ + β!A+ β#X

• or something more complex

E(Y | X,A) = f (X,A)

neural network ...Mathematical Statistics II March !" #$#% #"
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Estimation of marginal causal e"ects Linbo Wang

• estimand average causal e)ect or average treatment e)ect (ATE)

E{Y(!)}− E{Y(,)}

estimand: something we estimate

• under the linear model E(Y | X,A) = β$ + β!A+ β#X, the ATE is β!
if the linear model is correct

•
$E(Y(a)) = !

n

n!

i=!

$E(Y | A = a, Xi)

• recovers β̂! in a linear model
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Estimation of marginal causal e"ects Linbo Wang

• treat Yi(!) as missing data, if Ai = , (and v.v.)
• write

E(Y(a)) = E

&
!{A = a}Y

pr(A = a | x)

'

• model pr(A = a | X), e.g. by logistic regression
• doubly robust estimator of E(Y(!))

µ̂AIPW =
!
n

n!

i=!

AiYi
$pr(A = ! | Xi)

+

&
!− Ai

$pr(A = ! | Xi)

'
$E(Y(!))
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Directed graphs and randomization SM $.!

graphs can be useful for clarifying dependence relations among random variables
Fig ".! SM
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DAGs and confounders AoS !#.&

randomized study observational study E(Y | x) =
(
E(Y | X, Z = z)dFZ(z)

unobserved confounder: θ ∕= α
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