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What'’s that microplastic? Advances in machine learning are
making identifying plastics in the environment more reliable

Published: March 6, 2025 8.35am EST

Ambuj Tewari

Professor of Statistics, University of Michigan

Microplastics — the tiny particles of plastic shed when litter breaks down — are ev e, from the

deep sea to Mount Everest, and many worry that they could harm human health.

Tam a machine learning researcher. With a team of scientists, I have developed a tool to make

identification of microplastics using their unique chemical fingerprint more reliable. We hope that
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Recap Mar 4 choosing test stats, hypothesis/signficance testing, multiple testing
Nonparametric tests, goodness-of-fit
Introduction to causal inference
Reviewing project guidelines
Conformal prediction
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MICHELE
GUINDANI

Professor of Biostatistics
Fielding School of Public Health,

Upcoming seminar

Department Seminar Thursday March 6 11.00 - 12.00
Hydro Building, Room 9014

Bayesian modelling in neuroimaging

Michele Guindani, UCLA
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Project Guidelines

link

Project Guidelines STA 2212S: Mathematical Statistics IT 2025

Presentation on April 1, 2025.

Report submission due April 16, 2025.

Part 1: Presentation [10 points]

On the last day of class (April 1), you will present your final project. This includes:

e Emailing a .pdf version of your team’s slide deck pdf to
nancym.reid@utoronto.ca by 09.00 April 1.  You are responsible for
the slides corresponding to your sections of the write-up. Please email one
complete version for each team.
Mathematical Statistics Il eVPidsentingsthe slides in no more than 10 minutes; each team member to present 3

for no more than 5 minutes.


https://q.utoronto.ca/courses/380105/assignments/1485468

Xiyoo o  Xn ~f(x;0),0 € © CRP

« testing Hy : 0 € ©g against some alternative
simple or composite H

* rejection region {x : t(x) > c,} pry {t(X) > o} <

 p-value:

pry, {t(X) > t(x°*°)}

large values

- significance function (9 € R)

p(6) = pr, {t(X) > t(x**)}

Mathematical Statistics Il March 112025 4



Recap: Choosing test statistics t(-)

1. Optimal choice - Neyman-Pearson lemma Might be UMP (HW 7)

2. Pragmatic choice - likelihood-based test statistics

3. Pragmatic choice - nonparametric test statistics

(a) Need to know distribution of test statistic under H,
(b) Test statistic should be large when H, is not true in probability
(c) Test statistic should have maximum power to detect departures from H,

Mathematical Statistics Il March 112025 5



... power of sign test

334 7 - Estimation and Hypothesis Testing
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Figure 7.6 Power
functions for a test of
whether the mean of a
N(u, o%) random sample
of size n equals o against
the alternative . = 1, as
a function of

8 =n"2(u — po)/o.
The test size is & = 0.05.
The solid curve is the
power function for a test
of 1 > o based on 'y,
and the dashed line is the
power function for the
sign test. Both critical
regions are of form

¥ > ty. The dotted curve
is the power function for y
when the critical region is
Y <ty



Recap: Hypothesis tests and significance tests

+ Hypothesis tests typically means:
* Ho, H,
« critical/rejection region R C X,
- level a, power1— g

- conclusion: “reject Ho at level «” or “do not reject H, at level o”

+ planning: maximize power for some relevant alternative

« Significance tests typically means:
M Ho:
« test statistic T
- observed value t°%,
« p-value p°* = Pr(T > t°%; H,)
- alternative hypothesis often only implicit

Mathematical Statistics Il March 112025

minimize type Il error

large T points to alternative



Multiple testing EH 15.2, AoS

leukemia_big <- read.csv
("http://web.stanford.edu/ hastie/CASI_files/DATA/leukemia_big.csv")
dim(leukemia_big)
[1] 7128 72

- each row is a different gene; 47 AML responses and 25 ALL responses
+ we could compute 7128 t-statistics for the mean difference between AML and ALL

tvals <- rep(0,7128)

for (i in 1:7128){
leukemia_bigli,] %> select(starts_with("ALL")) %>% as.numeric() -> x
leukemia_big[i,] %>% select(starts_with("AML")) %>, as.numeric() -> y
tvals[i] <- t.test(x,y,var.equal=T)$statistic
}

Mathematical Statistics Il March 112025 8



Multiple testing EH 1.2, 15.2

750 -

500~

250~ ‘ ‘l

o __..II|II IIIIII-. |
; : ) :

count

-15

10
tvals

summary (tvals)

Min. 1st Qu.

Median Mean 3rd Qu.
-13.52611 -1.20672

Max.
-0.08406 0.02308

1.20886 12.26065

Mathematical Statistics Il March 112025



Benjamini-Hochberg

AoS 10.7; EH 15.2

- order the p-values p), ..., p(m)
find imax, the largest index for which

i
Py < md

Let BHq be the rule that rejects Ho; for i < imax, NOt rejecting otherwise

« Theorem: If the p-values corresponding to valid null hypotheses are independent

of each other, then

FDR(BHq) = m0q < q, where o = mo/m

+ change the bound under dependence

i 1
P(i)qu Cm227

Mathematical Statistics Il March 112025

7o unknown but close to 1
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Example AoS Ex.10.28

index 1 2 3 4 5 6 7 8 9 10
pval 0.00017 0.00448 0.00671 0.00907 0.01220 0.33626 0.3934 0.5388 0.5813 0.9862
cutl 0.00500 0.01000 0.01500 0.02000 0.02500 0.03000 0.0350 0.0400 0.0450 0.0500

cut2 0.00171 0.00341 0.00512 0.00683 0.00854 0.01024 0.0119 0.0137 0.0154 0.0171

Mathematical Statistics Il March 112025 17



Multiple testing

750~

count

s 10

tvals
> summary(ttest)
Min. 1st Qu. Median
-13.52611 -1.20672 -0.08406

Mathematical Statistics Il March 112025

500~
250 | ‘I
o _---lIIII IIII..I- g
5 0 5

Mean
0.02308

3rd Qu.
1.20886

EH 1.2, 15.2

Sorted p-values, alpha = 0.01

— FDRIine /
w | — Bonferroni threshold /
g /
3 /
o /
] g i=751/7
I S
2 S
§ 4
3
§ i-199
S T T T
0 200 400 600

Index

The figure above shows sorted p-values of the N = 7128 t-tests. The red line corresponds to
the threshold /N from the Bonferroni method, and the blue line is the FDR line (i/N)a. The

Max.
12.26065

12



Multinomial goodness of fit tests MS 9.2; AoS 10.8

© Xayo ooy Xn iiid.
* Ho: X; ~f(x;0); H,:X;arbitrary distribution
- Define ksets A, ... ,A; st
pr(X; € U]k:1Aj} =9

- Define
n

Y=Y X €A}
i=1
number of obs in category j

Mathematical Statistics Il March 112025 13



Multinomial goodness of fit tests

© Xayo ooy Xn iiid.
* Ho: X; ~f(x;0); H,:X;arbitrary distribution
- Define ksets A, ... ,A; st
pr(X; € U]k:1Aj} =9

- Define
n

Y=Y X €A}

i=1

Y =(Ya,...,Yr) ~ Multy(n; p)
° PT(Y1 :yh"‘vyk :ykvp) =

* Ho:p=p(#); H,:parbitrary

Mathematical Statistics Il March 112025

MS 9.2; AoS 10.8

number of obs in category j
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Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

Mathematical Statistics Il March 112025 14



Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

« Theorem 9.1 (MS): Under Hq p = dim(0)

Yi

k
i d
szg Y;ilo — | =2
j=1 : g<npi(9)) e

Mathematical Statistics Il March 112025 14



Multinomial goodness of fit tests MS 9.2, AoS 10.8

+ log-likelihood function

- generalized likelihood ratio test

« Theorem 9.1 (MS): Under Hq p = dim(0)
k Y. )
W=2) Yilog Sk
; ! (”pj(a)) "

« Theorem 92. (MS): Under Ho

_Z{Y np;(0)}? d

i it kR—1—p
Mathematical Statistics Il March 11 2025 npj() A
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Multinomial goodness-of-fit tests

Table 9.1 Frequency of goals in First Division matches and “expected” frequency
under Poisson model in Example 9.2

Goals 0 1 2 3 4 =5
Frequency 252 344 180 104 28 16
Expected 248.9 326.5 214.1 93.6 30.7 10.2

L
Po(N) =1=3_pi(N): PN =eWN/jl, A=1318
j=0

Q=1.09; W=10.87; pr(x; > [11.09,10.87]) = [0.026,0.028]

Mathematical Statistics Il March 112025 15



Multinomial goodness-of-fit tests

SM Ex 4.38

Table 4.3 Blood groups
in England (Taylor and
Prior, 1938). The upper
part of the table shows a
cross-classification of 422
persons by presence or
absence of antigens ‘A’
and ‘B, giving the groups
‘A, ‘B”, ‘AB’, ‘O’ of the

system. The lower part
shows genotypes and

under one-

and two-locus models. See
Example 4.38 for details.

Q = 15.73; W = 17.66 (two-locus)

p <107

Q = 2.82; W = 3.17 (single locus)

136 4 - Likelihood
Antigen ‘B’
Absent Present  Total
Absent  ‘0’:202  ‘B’:35 237
Antigen ‘A>  Present  ‘A:179  ‘AB’: 6 185
human blood group
Total 381 41 422
corresponding
Two-locus model One-locus model
Group Genotype Probability Genotype Probability
A (AA:bb), (Aa; bb) a(l—p) (AA), (AO) 33+ 2hako
‘B* (aa; BB), (aa; Bb) (I—a)p (BB).(BO) A3+ 2hpho
‘AB’ (AA;BB). (Aa: BB), apf (AB) 2kakp
(AA: Bb), (Aa; Bb)
‘0 (aa; bb) (1 —a)l—p) ©00) 22

Mathematical Statistics Il
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p = 0.09;0.07
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Smooth goodness-of-fit tests MS 9.3, SM p.327-9

* Xqy...,Xn idd. F(); Ho:F=Fo cumulative d.f.
Fo(t) = 2 XL, X < 1)

* three test statistics:
1. sup, |[Fa(t) — Fo(t)]

2. [{Fa(t) — Fo(t)}2dFo(1)

{Fa(t) — Fo(t)}?
> ) Rty

« SM Example 7.24 testing N(u, o2) distribution
« SM Example 7.23; 6.14 testing U(0, 1) distribution

Mathematical Statistics Il March 112025 17



Smooth goodness-of-fit tests MS 9.3

- Special case Hy : F(t) = Fo(t) =t X; ~ U(0,1)
* Recall

EofFn(t)} = Fo(t) =t, var{Fa(t)} =t(1—t)/n
« What about distribution of

e > (Fa(t) — 12
supe [Fa(t) 1] S0 — 2t Fo(O11 —Fo@} "

- need joint density of F,(t) V' t

Mathematical Statistics Il March 112025 18



Smooth goodness-of-fit tests MS 9.3

- Special case Hy : F(t) = Fo(t) =t X; ~ U(0,1)
* Recall

EofFn(t)} = Fo(t) =t, var{Fa(t)} =t(1—t)/n
« What about distribution of

supelFa(t) =1 J{R (1) - et ) -t

Fo(t){1— Fo(t)}
- need joint density of F,(t) V' t

- define stochastic process B, (t) = v/n(Fa(t) — t)
» vector (By(ty), .. ., Ba(te)) = Ni(0.C), Cj = min(t;, ;) — tit; MS 9.3

+ a Brownian bridge is a continuous function on (0, 1)

) o with all finite-dimensional distributions as above
Mathematical Statistics Il March 112025 18



Smooth goodness-of-fit tests MS 9.3

B()
4

0.0 0.2 04 0.6 0.8 1.0

Figure 9.1 A simulated realization of a Brownian bridge process.

Mathematical Statistics Il March 112025 19



Smooth goodness-of-fit tests MS 9.3

+ Kolmogorov-Smirnov test
Kn = sup [Bn(t)

o<t<1
» Cramer-vonMises test

1
w2 — / B2 (1)dt
o

. [" Bat)
A,,_/O et

« Anderson-Darling test

Mathematical Statistics Il March 112025 20



Smooth goodness-of-fit tests MS 9.3

+ Kolmogorov-Smirnov test
Kn = sup [Bn(t)

o<t<1

» Cramer-vonMises test

1
w2 — / B2 (1)dt
o

. [" Bat)
A2 _/O et

[ee] Zz
d j
Ko 5K~ wW2S § et

j=1 j=1

pr(K > X) = 2 5575, (—1)*" exp(~2%)

« Anderson-Darling test

limit theorems

=J>
Q

j
JG+1

Mathematical Statistics Il March 112025 20



SM p.327-9

Example

Maize data SM Ex 7.24 library(SMPracticals)
data(darwin)
6} cross <- seq(1,30,by=2)
3 w - o self <- cross+1
E diffs <- darwin[self,4]-darwin[cross,4]
3 o 400 o qgnorm(diffs)
é' w0 ooooo
& l 00°
o o
N I T T
-1 0 1

Theoretical Quantiles

Mathematical Statistics Il March 112025 21



Example: SM 7.24

v

Figure 7.5 Analysis of
maize data. Left:
empirical distribution M
function for height
differences, with fitted
normal distribution (dots).
Right: null density of
Anderson-Darling
statistic 7" for normal
samples of size n = 15
with location and scale
estimated. The shaded part
of the histogram shows
values of 7" in excess of
the observed value #,ps.

1.0

2.0

Distribution function
1.0

00 02 04 06 08

0.0

-100 -50 0 50 100 0.0 0.5 1.0 1.5
y t

SM Example 7.24 testing N(u, 02) distribution

Mathematical Statistics Il March 112025 22



A note on Bayesian testing AoS 11.8

« Relatively simple case: X ~ f(x;0), Ho:0 =00, Hqi:0+#0

f(x | Ho)pr(Ho)
f(x | Ho)pr(Ho) + f(x | H1)pr(H1)

pr(Ho | X) =

Mathematical Statistics Il March 112025 23



A note on Bayesian testing AoS 11.8

- Relatively simple case: X ~ f(x;0), Ho:0=0o, Hq,:0+#0
f(x | Ho)pr(Ho)
f(x | Ho)pr(Ho) + f(x | Hy)pr(H.)

pr(Ho | X)

f(x | 6o)pr(Ho)
f(x | 6o)pr(Ho) + [ f(x | 8)7(6)d6pr(H,)

Ln(6o)

* can't use improper priors; result is sensitive to the prior for 0

0 < [Ln(0)7(0)dO < Ln(0
Mathematical Statistics Il March 112025 *f n(0)m(6)d0 < Ln(0) 24



Causality A0S 16,17; SM 9.1.2; Cox & Donnelly 9.2

- randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson'’s ‘paradox’

- counterfactuals; average treatment effect; conditional average treatment effect; ...

- graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

» The Book

Mathematical Statistics Il March 112025 25


https://miguelhernan.org/whatifbook

Confounding variables

Men Women

Number of  Number Percent | Number of Number Percent

Major applicants admitted admitted | applicants admitted admitted
A 825 512 62 108 89 82

B 560 353 63 25 17 68

C 325 120 37 593 202 34

D 17 138 33 375 131 35

E 191 53 28 393 94 24

F 373 22 6 341 24 7
Total 2691 1198 4Lt 1835 557 30

data(UCBAdmissions)

Mathematical Statistics Il March 112025 26



... Confounding variables

.
14 Gender
® - Male
o ¢ -* Female
=
£ o-
k=]
<
3
B -1+ L
o
o
o
|
2
: B c D E F
Dept
Mathematical Statistics Il March 112025

Link %


http://euclid.psych.yorku.ca/www/psy6136/R/output/berkeley-logit.html

... Confounding variables Radelet 1981

race of death penalty death penalty

defendant imposed not imposed  percentage
white 19 145 11.88%
black 17 149 10.24%

Mathematical Statistics Il March 112025 28



... Confounding variables

Radelet 1981

race of death penalty death penalty

defendant imposed not imposed  percentage

white 19 1 11.88%

black 17 149 10.24%
race of death penalty death penalty

white victim  defendant imposed not imposed percentage
white 19 132 12.58%
black 11 52 17.46%
race of death penalty  death penalty

black victim  defendant imposed not imposed percentage
white o 9 0%
black 6 97 5.83%

Mathematical Statistics Il

March 112025
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... Confounding variables

258 6 - Stochastic Models

Table 6.8 Twenty-year
survival and smoking
status for 1314 women
(Appleton et al., 1996).
Overall 139/582(24)  230/732(31) The smoker and
non-smoker columns
contain number dead/total

Age (years) Smokers Non-smokers

18-24 2/55 (4) 1762 (2)
25-34 3/124 (2) 5/157 (3) (% dead).
35-44 14/109 (13) 7121 (6)
45-54 27/130 (21) 12/78 (15)
55-64 SIS (44) 407121 (33)
65-74 20/36 (81)  101/129 (78)
75+ 13/13(100) 64764 (100)

Mathematical Statistics Il March 112025 29



Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

+ X - binary treatment indicator “treatment”
+ Y - binary outcome could be continuous
+ “X causes Y" to be distinguished from “X is associated with Y”

Mathematical Statistics Il March 112025 30



Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

+ X - binary treatment indicator “treatment”
+ Y - binary outcome could be continuous
+ “X causes Y" to be distinguished from “X is associated with Y”

- introduce potential outcomes Co, C,

Y:{ C ifX=o0

- equivalently Y = Cx or Y = Co(1 — X) + C:X consistency equation
+ causal treatment effect 6 = E(C;) — E(Co) want to estimate this
+ association a=EY|X=1)—-EY|X=0) have data to estimate «

Mathematical Statistics Il March 112025 30



Counterfactual: Examples A0S Ch:16; HR Cha

Potential outcomes C,, C, Potential outcomes Y©°, Y"
X Y G G Table 2.1 —
0 44 R0 T
* ela !

0 7 7 Kronos 0 1 1 ?
0 2 2 * Demeter 0o 0 O ?
0 8 8 * Hades 0 0 0 ?
Hestia 1 0 ? 0

r 3 * 3 Poseidon 1 0 2 0
1 5 * 5 Hera 1 0 ? 0
* Zeus 1 1 ? 1

1 8 * 8 Artemis 0 1 1 ?
19 9 Apollo 001 1 ?
Leto 0 0 0 ?

treatment X, response Y Ares 17 1
Athena 1 1 ? 1

Hephaestus 1 1 7 1

Aphrodite 11 7 1

Cyclope 11 7 1

Persephone 1 1 7 1

Hermes 1 0 ? 0

Hebe 1 0 ? 0

Mathematical Statistics Il March 11 2025 Dionysus 1 0 ? 0 3




Causal Effect and Association A0S HR Ch

Potential outcomes Observed outcomes
Table 1.1 Table 1.2

Ya:O Ya:l A Y
Rheia 0 1 Rheia 0 0
Kronos 1 0 Kronos 0 1
Demeter 0 0 Demeter 0 0
Hades 0 0 Hades 0 0
Hestia 0 0 Hestia 1 0
Poseidon 1 0 Poseidon 1 0
Hera 0 0 Hera 1 0
Zeus 0 1 Zeus 1 1
Artemis 1 1 Artemis 0 1
Apollo 1 0 Apollo 0 1
Leto 0 1 Leto 0 0
Ares 1 1 Ares 1 1
Athena 1 1 Athena 1 1
Hephaestus 0 1 Hephaestus 1 1
Aphrodite 0 1 Aphrodite 1 1
Cyclope 0 1 Cyclope 1 1
Persephone 1 1 Persephone 1 1
Hermes 1 0 Hermes 1 0
Hebe 1 0 Hebe 1 0

Mathddienyeus Statistiks 11 March 11 2025 Dionysus 1 0 32




Causal treatment effect AoS Eq. (16.2)

0 =E(G) — E(Co) risk difference; ratio; odds

a=E(Y|X=1)—E{Y|X=0)

If X is is independent of (Co, Cy), 0 = «

If X is randomly assigned, then X L (Co, C,)

Mathematical Statistics Il March 112025 33



Example 16.2

XY ¢ ¢ X Y Cy C
0 0 O 0* 0 0 O 0*
0O 0 O 0* 1 0 0 0*
0O 0 O 0* 1 0 0 0*
0 0 O 0* 1 0 0 0*
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
=0; a=1 =0, a=4/7<1
(Co, Cy) not independent of X thought experiment

Mathematical Statistics Il March 112025 34



Causal Effect and Association A0S HR Ch

Potential outcomes Observed outcomes
Table 1.1 Table 1.2

Yu:O Ya:l A Y
Rheia 0 1 Rheia 0 0
Kronos 1 0 Kronos 0 1
Demeter 0 0 Demeter 0 0
Hades 0 0 Hades 0 0
Hestia 0 0 Hestia 1 0
Poseidon 1 0 Poseidon 1 0
Hera 0 0 Hera 1 0
Zeus 0 1 Zeus 1 1
Artemis 1 1 Artemis 0 1
Apollo 1 0 Apollo 0 1
Leto 0 1 Leto 0 0
Ares 1 1 Ares 1 1
Athena 1 1 Athena 1 1
Hephaestus 0 1 Hephaestus 1 1
Aphrodite 0 1 Aphrodite 1 1
Cyclope 0 1 Cyclope 1 1
Persephone 1 1 Persephone 1 1
Hermes 1 0 Hermes 1 0
Hebe 1 0 Hebe 1 0

Mathematical Statistics Il March 113ienysus 1 0 Dionysus 1 0 35




Three types of causal statements SM §9.1.2

1. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its effect

2. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

3. observed association may be linked to causal effect via counterfactuals if
(Co,Co) L X not usually testable

Mathematical Statistics Il March 112025 36



Conditional and marginal effects AoS §16.3

« typically have additional explanatory variables (covariates) Z

- causal effect of treatment when Z = z
0, =E(C,|Z=2)-E(C, | Z=2)

- marginal causal effect
6= Ez{B(C, | 2) ~ E(Co | 2)}

Mathematical Statistics Il March 112025 37



Example

Table 2.2

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo

Leto

Ares
Athena
Hephaestus
Aphrodite
Cyclope
Persephone
Hermes
Hebe
Dionysus

o - - OO0 0000 O O
HHEHRHERHERRRRFOOORKRKRKROOO O
COOFRHRHRERFEFOHRRKHOOOOOR O

Mathematical Statistics Il
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OL—o

OL—1

L = 1 critical condition

L = o stable condition
conditional randomization
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Causal regression function

AoS §16.2

continuous “treatment” variable X € R

counterfactual outcome (Co, ;) —
counterfactual function C(x)

observed response Y = C(X) consistency

causal regression function

0(x) = E{C(x)}

association regression function
r(x) = E(Y | X)

Mathematical Statistics Il March 112025
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FIGURE 16.2. The top plot shows the counterfactual function C(z) for four sub-
jects. The dots represent their X values. Since C;(x) is constant over  for all i, there
is no causal effect. Changing the dose will not change anyone’s outcome. The lower
plot shows the causal regression function 8(x) = (C1 () + Ca(w) + Ca(w) + Ca(x)) /4.
The four dots represent the observed data points Y1 = Ci(X1), Y2 = Ca(Xa),
Ys = C3(Xs), Ya = Ci(X4). The dotted line represents the regression
r(z) = E(Y|X = a). There is no causal effect since C;(z) is constant for all i.
But there is an association since the regression curve r(x) is not constant.
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No unmeasured confounding A0S §16.3

+ in observational studies treatment is not randomly assigned —> 6(x) # r(x)
- group subjects based on additional confounding variables
« No unmeasured confounding:

{C(x);xe X} LX|Z

« under the assumption of no unmeasured confounding,
the causal regression function typo in (16.7)

0(x) = /E(Y | X =x,Z = 2)dF;(2)

can be estimated by the association function
n
~ 1 R A . -
000 = 2D FxZ) = fo+ bx+ oy
1=

. . reg function = adj reatment eff
Mathematical Statistics Il March 112025 ol I G i il LR B 40



No unmeasured confounding SM §9.11

< < Figure 9.2 Simulated
results from experiments
to compare the effect of a
treatment 7" on a response
Y that varies with a
covariate X. The lines
show the mean response
for T = 0 (solid) and

T =1 (dots). Left: the
effect of T is confounded
with dependence on X.
Right: the experiment is
balanced, with random
allocation of 7' dependent

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 on X.

Mathematical Statistics Il March 112025 A



No unmeasured confounding

SM §9.14

Figure 9.2 Simulated
results from experiments
to compare the effect of a
treatment 7" on a response
Y that varies with a
covariate X. The lines
show the mean response
for T = 0 (solid) and

T =1 (dots). Left: the
effect of T is confounded
with dependence on X.
Right: the experiment is
balanced, with random

Left: y; — Yo =02+ 0.3

adjust for covariate: y = 8o + 81X + 6t + ¢
Left: § = —0.7 + 0.3 Right: § = —1.25 + 0.16

Mathematical Statistics Il March 112025

llocation of T depend
on X.

Right: ¥, — Vo = —1.2+ 0.3

CGi(x) — Co(x) =1

right randomized within pairs; matched on x



Causality and observational data CD9.2.4

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

« the association is strong

- the association is found consistently over a number of independent studies

- the association is specific to the outcome studied

- the observation of a potential cause occurs earlier in time than the outcome

« there is a dose-response relationship

- there is subject-matter theory that makes a causal effect plausible

« the association is based on a suitable natural experiment

see also AoS §16.3
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Simpson’s paradox revisited

AoS 16.4

260 16. Causal Inference

Y=1|Y=0||Y=1|Y=0
X =1/ .1500 | .2250 .1000 .0250
X=0] .0375 | .0875 2625 1125
Z =1 (men) Z =0 (women)
The marginal distribution for (X,Y) is
Y=1 Y=0

X=1 25 25 | .50

X=0 .30 .20 | .50

.55 45 1

From these tables we find that,

PY=1X=1)-PY =1X=0)
PY=1X=1Z=1)-PY =1X=0,Z=1)
PY=1X=1,Z=0-PY =1X=0,Z=0)

To summarize, we seem to have the following information:

Mathematical Statistics Il March 112025
Mathematical Statement

English Statement?

confusion of causal effect

—0.1
0.1

0.1.

with association




Directed graphs

- graphs can be useful for clarifying dependence relations among random variables
SM Markov random fields

+ a Directed Acyclic Graph has random variables on the vertices and edges joining
random variables

X
overweight smoking \
\ / \ z v
Y
heart disease cough
FIGURE 17.2. DAG for Example 17.4. FIGURE 17.3. Another DAG.
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Directed graphs and causality AoS 17.8

variables at parent nodes are potential causes for responses at child nodes

- directed graphs often helpful adjunct to modelling with baseline variables,
intermediate responses, and outcome variables of interest

« much hard to study the full joint distribution than the usual supervised learning
approaches

« DAGs can be used to represent confounders

276 17. Directed Graphs and Conditional Independence

AN

FIGURE 17.11. Random_\zed study Observauonal study with measured con-
Math emati Cal Statistics Il Ma rch 112025 founders; Observational study with unmeasured confounders. The circled variables ll6

are unobserved.




DAGs and confounders AoS 17.8

276 17. Directed Graphs and Conditional Independence

RVANA

X m—Y X —Y X —Y

FIGURE 17.11. Randomized study; Observational study with measured con-
founders; Observational study with unmeasured confounders. The circled variables
are unobserved.

randomized study observational study E(Y | x) = [E(Y | X,Z = z)dF;(2)

unobserved confounder: 6 # «
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