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Microplastics – the tiny particles of plastic shed when litter breaks down – are everywhere, from the

deep sea to Mount Everest, and many researchers worry that they could harm human health.

I am a machine learning researcher. With a team of scientists, I have developed a tool to make

identification of microplastics using their unique chemical fingerprint more reliable. We hope that

this work will help us learn about the types of microplastics floating through the air in our study area,

Microplastics are tiny bits of plastic that show up in the environment. Svetlozar Hristov/iStock via Getty Images Plus

What’s that microplastic? Advances in machine learning are
making identifying plastics in the environment more reliable
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Today

!. Recap Mar " choosing test stats, hypothesis/sign#cance testing, multiple testing
$. Nonparametric tests, goodness-of-#t
%. Introduction to causal inference
". Reviewing project guidelines
&. Conformal prediction

Upcoming seminar

Department Seminar Thursday March ' !!.(( – !$.((
Hydro Building, Room )(!"
Bayesian modelling in neuroimaging
Michele Guindani, UCLA
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Project Guidelines

link

Project Guidelines STA 2212S: Mathematical Statistics II 2025

Presentation on April 1, 2025.
Report submission due April 16, 2025.

Part 1: Presentation [10 points]

On the last day of class (April 1), you will present your final project. This includes:

• Emailing a .pdf version of your team’s slide deck pdf to
nancym.reid@utoronto.ca by 09.00 April 1. You are responsible for
the slides corresponding to your sections of the write-up. Please email one
complete version for each team.

• Presenting the slides in no more than 10 minutes; each team member to present
for no more than 5 minutes.
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Recap

X!, . . . , Xn ∼ f (x; θ), θ ∈ Θ ⊂ Rp

• testing H# : θ ∈ Θ# against some alternative
simple or composite H

• rejection region {x : t(x) > cα} prH!{t(X) > cα} ≤ α

• p-value:
prH!{t(X) ≥ t(xobs)}

large values

• signi#cance function (θ ∈ R)

p(θ) = prθ{t(X) ≥ t(xobs)}
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Recap: Choosing test statistics t(·)

!. Optimal choice – Neyman-Pearson lemma Might be UMP (HW !)

$. Pragmatic choice – likelihood-based test statistics

%. Pragmatic choice – nonparametric test statistics

(a) Need to know distribution of test statistic under H#
(b) Test statistic should be large when H# is not true in probability

(c) Test statistic should have maximum power to detect departures from H#
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... power of sign test
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Recap: Hypothesis tests and signi!cance tests

• Hypothesis tests typically means:
• H!, H"
• critical/rejection region R ⊂ X ,
• level α, power "− β

• conclusion: “reject H! at level α” or “do not reject H! at level α”
• planning: maximize power for some relevant alternative minimize type II error

• Signi#cance tests typically means:
• H!,
• test statistic T
• observed value tobs,
• p-value pobs = Pr(T ≥ tobs;H!)
• alternative hypothesis o&en only implicit large T points to alternative
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Multiple testing EH !".#, AoS !$.%

leukemia_big <- read.csv

("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")

dim(leukemia_big)

[1] 7128 72

• each row is a di'erent gene; () AML responses and #% ALL responses
• we could compute )"#* t-statistics for the mean di'erence between AML and ALL

tvals <- rep(0,7128)

for (i in 1:7128){

leukemia_big[i,] %>% select(starts_with("ALL")) %>% as.numeric() -> x

leukemia_big[i,] %>% select(starts_with("AML")) %>% as.numeric() -> y

tvals[i] <- t.test(x,y,var.equal=T)$statistic

}
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Multiple testing EH !.#, !".#

summary(tvals)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-13.52611 -1.20672 -0.08406 0.02308 1.20886 12.26065
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Benjamini-Hochberg AoS !$.%; EH !".#

• order the p-values p(!), . . . ,p(m)

• #nd imax, the largest index for which

p(i) ≤
i
mq

• Let BHq be the rule that rejects H#i for i ≤ imax, not rejecting otherwise

• Theorem: If the p-values corresponding to valid null hypotheses are independent
of each other, then

FDR(BHq) = π#q ≤ q, where π# = m#/m

π! unknown but close to "
• change the bound under dependence

p(i) ≤
i

mCm
q Cm =

m!

i=!

!
i

Mathematical Statistics II March !! "#"$ !#

MIEC
E

t

0



Example AoS Ex.!$.#&

index 1 2 3 4 5 6 7 8 9 10

pval 0.00017 0.00448 0.00671 0.00907 0.01220 0.33626 0.3934 0.5388 0.5813 0.9862

cut1 0.00500 0.01000 0.01500 0.02000 0.02500 0.03000 0.0350 0.0400 0.0450 0.0500

cut2 0.00171 0.00341 0.00512 0.00683 0.00854 0.01024 0.0119 0.0137 0.0154 0.0171
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Multiple testing EH !.#, !".#

> summary(ttest)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-13.52611 -1.20672 -0.08406 0.02308 1.20886 12.26065
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Multinomial goodness of !t tests MS '.#; AoS !$.&

• X!, . . . , Xn i.i.d.
• H# : Xi ∼ f (x; θ); H! : Xi arbitrary distribution
• De#ne k sets A!, . . . ,Ak s.t.

pr(Xi ∈ ∪kj=!Aj} = !
• De#ne

Yj =
n!

i=!
!{Xi ∈ Aj}

number of obs in category j
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Multinomial goodness of !t tests MS '.#; AoS !$.&

• X!, . . . , Xn i.i.d.
• H# : Xi ∼ f (x; θ); H! : Xi arbitrary distribution
• De#ne k sets A!, . . . ,Ak s.t.

pr(Xi ∈ ∪kj=!Aj} = !
• De#ne

Yj =
n!

i=!
!{Xi ∈ Aj}

number of obs in category j
• Y = (Y!, . . . , Yk) ∼ Multk(n;p)

• pr(Y! = y!, . . . , Yk = yk;p) =

• H# : p = p(θ); H! : p arbitrary
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Multinomial goodness of !t tests MS '.#, AoS !$.&

• log-likelihood function

• generalized likelihood ratio test
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Multinomial goodness of !t tests MS '.#, AoS !$.&

• log-likelihood function

• generalized likelihood ratio test

• Theorem ).! (MS): Under H# p = dim(θ)

W = $
k!

j=!
Yj log

"
Yj

npj(θ̃)

#
d→ χ"k−!−p
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Multinomial goodness of !t tests MS '.#, AoS !$.&

• log-likelihood function

• generalized likelihood ratio test

• Theorem ).! (MS): Under H# p = dim(θ)

W = $
k!

j=!
Yj log

"
Yj

npj(θ̃)

#
d→ χ"k−!−p

• Theorem )$. (MS): Under H#

Q =
k!

j=!

{Yj − npj(θ̂)}"

npj(θ̂)
d→ χ"k−!−p

Mathematical Statistics II March !! "#"$ !&

heYpo log Ypo t

top a
be 4C

EEE



Multinomial goodness-of-!t tests AoS !$.&; MS '.#

p#(λ) = !−
&!

j=#
pj(λ); pj(λ) = e−λλj/j!, λ̃ = !.%!!*

Q = !!.(); W = !(.*+; pr(χ"& > [!!.(), !(.*+]) = [(.($',(.($*]

Mathematical Statistics II March !! "#"$ !$

OFICO 10 0
1 7 Wald

po p III outcome

ate



Multinomial goodness-of-!t tests SM Ex (.)&

Q = !&.+%;W = !+.'' (two-locus)
p < !(−$

Q = $.*$;W = %.!+ (single locus)
p = (.();(.(+
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Smooth goodness-of-!t tests MS '.), SM p.)#%-'

• X!, . . . , Xn i.i.d. F(·); H# : F = F# cumulative d.f.

• $Fn(t) = !
n
%n

i=! !{Xi ≤ t}

• three test statistics:
". supt | !Fn(t)− F!(t)|

#.
"
{ !Fn(t)− F!(t)}#dF!(t)

+.
#

{ !Fn(t)− F!(t)}#
F!(t){"− F!(t)}

dF!(t)

• SM Example +.$" testing N(µ,σ") distribution
• SM Example +.$%; '.!" testing U((, !) distribution

Mathematical Statistics II March !! "#"$ !(

simple eg 410,1
comp e.g Nlpo2 in

estimated
Kolmogorov Smirnov

Cramer vortlises

Anderson Darling



Smooth goodness-of-!t tests MS '.)

• Special case H# : F(t) = F#(t) = t Xi ∼ U(#, ")
• Recall

E#{ $Fn(t)} = F#(t) = t, var{ $Fn(t)} = t(!− t)/n
• What about distribution of
supt | $Fn(t)− t|

&
{ $Fn(t)− t}"dt

' { $Fn(t)− t}"
F#(t){!− F#(t)}

dt

• need joint density of $Fn(t) ∀ t
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Smooth goodness-of-!t tests MS '.)

• Special case H# : F(t) = F#(t) = t Xi ∼ U(#, ")
• Recall

E#{ $Fn(t)} = F#(t) = t, var{ $Fn(t)} = t(!− t)/n
• What about distribution of
supt | $Fn(t)− t|

&
{ $Fn(t)− t}"dt

' { $Fn(t)− t}"
F#(t){!− F#(t)}

dt

• need joint density of $Fn(t) ∀ t

• de#ne stochastic process Bn(t) =
√
n( $Fn(t)− t)

• vector (Bn(t!), . . . ,Bn(tk))
d→ Nk((, C), Cij = min(ti, tj)− titj MS $.%

• a Brownian bridge is a continuous function on ((, !)
with all #nite-dimensional distributions as above
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Smooth goodness-of-!t tests MS '.)
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Smooth goodness-of-!t tests MS '.)

• Kolmogorov-Smirnov test
Kn = sup

#≤t≤!
|Bn(t)|

• Cramer-vonMises test
W"
n =

' !

#
B"n(t)dt

• Anderson-Darling test

A"n =
' !

#

B"n(t)
t(!− t)dt
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Smooth goodness-of-!t tests MS '.)

• Kolmogorov-Smirnov test
Kn = sup

#≤t≤!
|Bn(t)|

• Cramer-vonMises test
W"
n =

' !

#
B"n(t)dt

• Anderson-Darling test

A"n =
' !

#

B"n(t)
t(!− t)dt

• limit theorems

Kn d→ K, W"
n

d→
∞!

j=!

Z"j
j"π" , A"n

d→
∞!

j=!

Z"j
j(j+ !)

pr(K > x) = &
!∞

j="(−")j+" exp(−&j#x#)
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Example SM p.)#%-'

library(SMPracticals)

data(darwin)

cross <- seq(1,30,by=2)

self <- cross+1

diffs <- darwin[self,4]-darwin[cross,4]

qqnorm(diffs)
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Example: SM ".#$

SM Example +.$" testing N(µ,σ") distribution
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A note on Bayesian testing AoS !!.&

• Relatively simple case: X ∼ f (x; θ), H# : θ = θ#, H! : θ ∕= θ#

•

pr(H# | x) =
f (x | H#)pr(H#)

f (x | H#)pr(H#) + f (x | H!)pr(H!)

=
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A note on Bayesian testing AoS !!.&

• Relatively simple case: X ∼ f (x; θ), H# : θ = θ#, H! : θ ∕= θ#
•

pr(H# | x) =
f (x | H#)pr(H#)

f (x | H#)pr(H#) + f (x | H!)pr(H!)

=
f (x | θ#)pr(H#)

f (x | θ#)pr(H#) +
&
f (x | θ)π(θ)dθpr(H!)

=
Ln(θ#)

Ln(θ#) +
&
Ln(θ)π(θ)dθ

• can’t use improper priors; result is sensitive to the prior for θ
# ≤

"
Ln(θ)π(θ)dθ ≤ Ln(θ̂)Mathematical Statistics II March !! "#"$ "&
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Causality AoS !*,!%; SM '.!.#; Cox & Donnelly '.#

• randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson’s ‘paradox’

• counterfactuals; average treatment e,ect; conditional average treatment e,ect; ...

• graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

• The Book
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Confounding variables

Men Women
Number of Number Percent Number of Number Percent

Major applicants admitted admitted applicants admitted admitted
A *$& &!$ '$ !(* *) *$
B &'( %&% '% $& !+ '*
C %$& !$( %+ &)% $($ %"
D "!+ !%* %% %+& !%! %&
E !)! &% $* %)% )" $"
F %+% $$ ' %"! $" +

Total $')! !!)* "" !*%& &&+ %(
data(UCBAdmissions)
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... Confounding variables

LinkMathematical Statistics II March !! "#"$ "(
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... Confounding variables Radelet !'&!

race of death penalty death penalty
defendant imposed not imposed percentage
white !) !"! !!.**-
black !+ !") !(.$"-
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... Confounding variables Radelet !'&!

race of death penalty death penalty
defendant imposed not imposed percentage
white !) !"! !!.**-
black !+ !") !(.$"-

race of death penalty death penalty
white victim defendant imposed not imposed percentage

white "$ "%& "&.'()
black "" '& "!.*+)

race of death penalty death penalty
black victim defendant imposed not imposed percentage

white # $ #)
black + $! '.(%)
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... Confounding variables SM *.)
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Causality and Counterfactuals AoS Ch. !*; Cox & D '.#

• X – binary treatment indicator “treatment”

• Y – binary outcome could be continuous

• “X causes Y” to be distinguished from “X is associated with Y”

Mathematical Statistics II March !! "#"$ %#



Causality and Counterfactuals AoS Ch. !*; Cox & D '.#

• X – binary treatment indicator “treatment”

• Y – binary outcome could be continuous

• “X causes Y” to be distinguished from “X is associated with Y”

• introduce potential outcomes C#, C!

Y =

(
C# if X = (
C! if X = !

• equivalently Y = CX or Y = C#(!− X) + C!X consistency equation

• causal treatment e,ect θ = E(C!)− E(C#) want to estimate this

• association α = E(Y | X = !)− E(Y | X = () have data to estimate α

Mathematical Statistics II March !! "#"$ %#



Counterfactual: Examples AoS Ch.!*; HR Ch.!

Potential outcomes C#, C!

treatment X, response Y

Potential outcomes Y#, Y!
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Causal E%ect and Association AoS HR Ch.!

Potential outcomes Observed outcomes
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Causal treatment e%ect AoS Eq. (!*.#)

θ = E(C!)− E(C#) risk di,erence; ratio; odds

α = E(Y | X = !)− E(Y | X = ()

If X is is independent of (C#, C!), θ = α

If X is randomly assigned, then X ⊥ (C#, C!)
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Example &'.#

θ = (; α = ! θ = (, α = "/+ < !

(C#, C!) not independent of X thought experiment
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Causal E%ect and Association AoS HR Ch.!

Potential outcomes Observed outcomes
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Three types of causal statements SM +'.!.#

!. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its e,ect

$. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

%. observed association may be linked to causal e,ect via counterfactuals if
(C#, C#) ⊥ X not usually testable
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Conditional and marginal e%ects AoS +!*.)

• typically have additional explanatory variables (covariates) Z

• causal e,ect of treatment when Z = z

θz = E(C! | Z = z)− E(C# | Z = z)

• marginal causal e,ect
θ = EZ{E(C! | Z)− E(C# | Z)}
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Example HR Ch#

θL=#

θL=!

L = ! critical condition

L = ( stable condition
conditional randomization
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Causal regression function AoS +!*.#

• continuous “treatment” variable X ∈ R

• counterfactual outcome (C#, C!) →
counterfactual function C(x)

• observed response Y = C(X) consistency

• causal regression function
θ(x) = E{C(x)}

• association regression function
r(x) = E(Y | X)
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No unmeasured confounding AoS +!*.)

• in observational studies treatment is not randomly assigned =⇒ θ(x) ∕= r(x)
• group subjects based on additional confounding variables
• No unmeasured confounding:

{C(x); x ∈ X} ⊥ X | Z

• under the assumption of no unmeasured confounding,
the causal regression function typo in ("+.!)

θ(x) =
'

E(Y | X = x, Z = z)dFZ(z)

can be estimated by the association function

θ̂(x) = !
n

n!

i=!
r̂(x, Zi) = β̂# + β̂!x + β̂"Z̄n

causal reg function ≡ adjusted treatment e,ectMathematical Statistics II March !! "#"$ &#



No unmeasured confounding SM +'.!.!
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No unmeasured confounding SM +'.!.!

C!(x)− C#(x) ≡ !

Le.: ȳ! − ȳ# = (.$± (.% Right: ȳ! − ȳ# = −!.$± (.%

adjust for covariate: y = β# + β!x + δt+ ε

Le.: δ̂ = −(.+± (.% Right: δ̂ = −!.$&± (.!' right randomized within pairs; matched on x
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Causality and observational data CD '.#.(

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

• the association is strong
• the association is found consistently over a number of independent studies

• the association is speci#c to the outcome studied
• the observation of a potential cause occurs earlier in time than the outcome
• there is a dose-response relationship
• there is subject-matter theory that makes a causal e,ect plausible
• the association is based on a suitable natural experiment

see also AoS -"+.%
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Simpson’s paradox revisited AoS !*.(

confusion of causal e,ect
with association
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Directed graphs AoS !%; HR *; SM *.#

• graphs can be useful for clarifying dependence relations among random variables
SM Markov random .elds

• a Directed Acyclic Graph has random variables on the vertices and edges joining
random variables
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Directed graphs and causality AoS !%.&

• variables at parent nodes are potential causes for responses at child nodes

• directed graphs o.en helpful adjunct to modelling with baseline variables,
intermediate responses, and outcome variables of interest

• much hard to study the full joint distribution than the usual supervised learning
approaches

• DAGs can be used to represent confounders
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DAGs and confounders AoS !%.&

randomized study observational study E(Y | x) =
&
E(Y | X, Z = z)dFZ(z)

unobserved confounder: θ ∕= α
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