
STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density
f(x; θ), θ ∈ Θ ⊂ Rp, we have the following definitions:

likelihood function L(θ; x) = c(x)f(x; θ) L(θ)
log-likelihood function ℓ(θ; x) = logL(θ; x) = log f(x; θ) + a(x)
score function u(θ) = ∂ℓ(θ; x)/∂θ ℓ′(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT J(θ) = Eθ{j(θ)}
expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (p.245)

Independent observations: When we have Xi independent, identically dis-
tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we
have:

likelihood function L(θ;x) =
n

i=1 f(xi; θ) L(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

n
i=1 ℓ(θ; xi) ℓ(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) S(X)
score function U(θ) = ℓ′(θ) =


Ui(θ) S(θ) (p.273)

observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x) nJ(θ) = Eθ{−ℓ′′(x; θ)}
observed (Fisher) information j(θ̂) nI(θ) (p.254)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0. Lazy notation is θ̂, but for asymptotics θ̂n is preferred.

2. It doesn’t really matter for the definitions above if the observations are in-
dependent and identically distributed (i.i.d.), or only independent, but the
theorems that are proved in MS Ch. 5 and AoS Ch. 9 assume i.i.d.. What
really. matters is that we have a central limit theorem for the first derivative;
everything follows from that.

3. There are important distinctions to be careful about in the notation for like-
lihood and its quantities:

(a) Are we working with a single observation x,X or n observations x,X?

(b) Do we want to find the distribution of something; so ℓ(θ;X) or calculate
data summaries; ℓ(θ;x)?

1U(θ) = u(θ;X)
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B. First order asymptotic theory MS §5.4

1. θ is a scalar
If the components of X are i.i.d., then the score function U(θ;X) is a sum of

i.i.d. random variables, and we can show that it has expected value 0 and variance
In(θ) (or i(θ) in my notation). Under some regularity conditions on the density
f(xi; θ) (MS A1-A6, p.245), the central limit theorem gives

U(θ)

I
1/2
n (θ)

d→ N(0, 1), equivalently
1√
n
U(θ)

d→ N{0, I(θ)}. (1)

Almost everything else follows from this result and Slutsky’s theorem. For ex-
ample, we can show that

(θ̂ − θ)I1/2n (θ) = U(θ)/I1/2n (θ) + op(1),

where op(1) means a remainder term that goes to 0 in probability as n → ∞, so we
have the second result

(θ̂ − θ)I1/2n (θ)
d→ N(0, 1). (2)

These limit theorems give us two corresponding approximations to use with n
fixed:

U(θ)
.∼ N (0, In(θ)) , (3)

and
θ̂ − θ

.∼ N (0, 1/In(θ)) . (4)

The notation
.∼ is read as “is approximately distributed as”.

The proof of MS Theorem 5.3 allows that I(θ) = varθ{ℓ′(θ;Xi)} and J(θ) =
Eθ{−ℓ′′(θ);Xi} might be different, which is handy later for the study of misspecified
models.

Having the unknown quantity θ in the variance in (3) and (4) is inconvenient,
but to the same order of approximation, we can replace In(θ) by In(θ̂) or by j(θ̂);

the latter is denoted nI(θ) in MS, p. 254. In AoS, I
−1/2
n (θ) is called se and I

−1/2
n (θ̂)

is called se, but the use of j(θ̂) = −ℓ′′(θ̂;x) is not mentioned. The approximation
with the Hessian at the maximum (in my notation j(θ̂) = −ℓ′′(θ̂;x) is then

θ̂ − θ
.∼ N{0, j−1(θ̂)}, (5)

Proof of (2)
The score equation ℓ′(θ̂) = 0 is expanded using Taylor series with remainder:

0 = ℓ′(θ̂) = ℓ′(θ) + (θ̂ − θ)ℓ′′(θ) +
1

2
(θ̂ − θ)2ℓ′′′(θ∗n), (6)

where |θ∗n − θ| ≤ |θ̂ − θ| in the remainder term. Re-arranging terms gives

− ℓ′(θ)

ℓ′′(θ)
= (θ̂ − θ)


1 +

1

2
(θ̂ − θ)

ℓ′′′(θ∗n)

ℓ′′(θ̂)


, (7)
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and introducing dependence on n explicitly gives

ℓ′(θ)/
√
n

−ℓ′′(θ)/n
·
√
n

I(θ)

I1/2(θ)
=

√
nI1/2(θ)(θ̂ − θ)


1− 1

2
(θ̂ − θ)

ℓ′′′(θ∗n)/n

−ℓ′′(θ̂)/n


,

ℓ′(θ)

{nI(θ)}1/2


I(θ)

−ℓ′′(θ)/n


= {nI(θ)}1/2(θ̂ − θ)(1 + Zn), (8)

where Zn is shorthand for the remainder term.
The term in brackets on the left hand side of (8) converges in probability to 1,

by the weak law of large numbers. To see that the remainder term Zn converges
in probability to 0, we assume θ̂ converges in probability to θ, which implies that
θ∗n does as well. The limit in probability of ℓ′′′(θ∗n)/n is Eθ{ℓ′′′(θ;Y )}and that of
−ℓ′′(θ̂)/n is I1(θ), which gives the desired result. Thus

√
n(θ̂ − θ)I1/2(θ) =

1√
n

ℓ′(θ)

I1/2(θ)
{1 + op(1)}, (9)

showing that the standardized maximum likelihood estimator converges to a stan-
dard normal distribution.

An equivalent result to (2) is

√
n(θ̂ − θ)

d→ N{0, I(θ)},

always remembering that I(θ) is the expected information with one observation,
and In(θ) = nI(θ) is the total information in the sample (X1, . . . , Xn). This follows
from (7) using Slutsky’s theorem, or from (8) multiplying both sides by I(θ).

It wouldn’t be correct though to write θ̂
d→ N{θ, I−1

n (θ)}, even though it sort
of looks right, because both the LHS and RHS depend on n. In asymptotic theory,
you have to get all the n-dependence on one side of the limit.

2. θ is a vector of length p MS 5.4 pp256ff
The results above all generalize directly to a vector θ of unknown parameters.

The notation on p.1 already includes this case. The score function is a p× 1 vector
and the observed and expected Fisher information are p × p matrices. The limit
theorems corresponding to (1) and (2) are

I−1/2
n (θ)Un(θ)

d→ Np(0, Ip), I1/2n (θ)(θ̂ − θ)
d→ Np(0, Ip), (10)

where Np(0, Ip) is the multivariate standard normal distribution and Ip is the p× p
identity matrix. Because this limit statement involves taking the square root of the
matrix In, the results in (5) are rarely used in this form. So Theorem 5.4 in MS is
stated as √

n(θ̂ − θ)
d→ Np{0, J−1(θ)I(θ)J−1(θ)}; (11)

where J(θ) = Eθ{ℓ′′(θ;X1)} and I(θ) = var{ℓ′(θ;X1)}, i.e. the information about θ
in a single observation. The notation ℓ′ and ℓ′′ is lazy shorthand for the vector of
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first derivatives and matrix of second derivatives, and “var” is short for variance-
covariance matrix. Under our regularity conditions on the density f(x; θ), I(θ) =
J(θ) and (11) becomes

√
n(θ̂ − θ)

d→ Np{0, I−1(θ)} (12)

The approximation obtained from this result is

θ̂
.∼ N{θ, j−1(θ̂)}, (13)

or in MS notation (see (5) above)

θ̂
.∼ N


θ, {nI(θ)}−1


. (14)

This approximation is for the whole vector θ̂ but that’s not so useful in practice.
However we can specialize the result to a single component, giving, for example,

θ̂j − θj
.∼ N


0, {j−1(θ̂)}jj


, (15)

i.e. the jth diagonal element of the inverse matrix is the approximate variance of
the jth component of the vector θ̂. We also have that {j−1(θ̂)}jk is the asymptotic

covariance of θ̂j, θ̂k.
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