
STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density
f(x; θ), θ ∈ Θ ⊂ Rk, we have the following definitions:

likelihood function L(θ; x) = c(x)f(x; θ) L(θ)
log-likelihood function ℓ(θ; x) = logL(θ; x) = log f(x; θ) + a(x)
score function u(θ) = ∂ℓ(θ; x)/∂θ ℓ′(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT J(θ) = Eθ{j(θ)}
expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (p.245)

Independent observations: When we have Xi independent, identically dis-
tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we
have:

likelihood function L(θ;x) =
n

i=1 f(xi; θ) L(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

n
i=1 ℓ(θ; xi) ℓ(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) S(X)
score function U(θ) = ℓ′(θ) =


Ui(θ) S(θ) (p.273)

observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x) nJ(θ) = Eθ{−ℓ′′(x; θ)}
observed (Fisher) information j(θ̂) nI(θ) (p.254)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0. Lazy notation is θ̂, but for asymptotics θ̂n is preferred.

2. It doesn’t really matter for the definitions above if the observations are in-
dependent and identically distributed (i.i.d.), or only independent, but the
theorems that are proved in MS Ch. 5 and AoS Ch. 9 assume i.i.d..

3. There are important distinctions to be careful about in the notation for like-
lihood and its quantities:

(a) Are we working with a single observation x,X or n observations x,X?

(b) Do we want to find the distribution of something; so ℓ(θ;X) or calculate
data summaries; ℓ(θ; x)?

1U(θ) = u(θ;X)
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B. First order asymptotic theory MS §5.4

1. θ is a scalar
If the components of X are i.i.d., then the score function U(θ;X) is a sum of

i.i.d. random variables, and we can show that it has expected value 0 and variance
In(θ) (or i(θ) in my notation). Under some regularity conditions on the density
f(xi; θ) (MS A1-A6, p.245), the central limit theorem gives

U(θ)

I
1/2
n (θ)

d→ N(0, 1), equivalently
1√
n
U(θ)

d→ N{0, I(θ)}. (1)

Almost everything else follows from this result and Slutsky’s theorem. For ex-
ample, we can show that

(θ̂ − θ)I1/2n (θ) = U(θ)/I1/2n (θ) + op(1),

where op(1) means a remainder term that goes to 0 in probability as n → ∞, so we
have the second result

(θ̂ − θ)I1/2n (θ)
d→ N(0, 1). (2)

These limit theorems give us two corresponding approximations to use with n
fixed:

U(θ)
.∼ N (0, In(θ)) , (3)

and
θ̂ − θ

.∼ N (0, 1/In(θ)) . (4)

The notation
.∼ is read as “is approximately distributed as”.

The proof of MS Theorem 5.3 allows that I(θ) = var{ℓ′(θ;Xi)} and J(θ) =
E{−ℓ′′(θ);Xi} might be different, which is handy later for the study of misspecified
models.

Having the unknown quantity θ in the variance in (3) and (4) is inconvenient,
but to the same order of approximation, we can replace In(θ) by In(θ̂) or by j(θ̂);

the latter is denoted In(θ) in MS, p. 254. In AoS, I
−1/2
n (θ) is called se and I

−1/2
n (θ̂)

is called se, but the use of j(θ̂) = −ℓ′′(θ̂;x) is not mentioned.
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