STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density
f(x;0), 6 €6 cRF we have the following definitions:

likelihood function L(0;x) = c(x) f(x;0) L0
log-likelihood function 0(0;2) =log L(0; x) = log f(x;0) + a(x)
score function u(0) = 0L(0;z)/00 U'(x;0)

observed information function 7(0) = —0%(0;2) /0006  J(0) = Ee{j(0)}
expected information (in one observation) i(6) = Eo{U(0)U(0)T}! 1(0) (p.245)

Independent observations: When we have X; independent, identically dis-

tributed from f(x;;0), then, denoting the observed sample * = (z1,...,z,) we
have:
likelihood function L(6;x) =11, f(z:;0) L(6)
log-likelihood function 0(0) = L(0;x) =1, L(0; x;) 0(0)

maximum likelihood estimate 6 = (x) = arg sup, £(0) S(X)
score function U@)=100)=> U6 S(0) (p.273)
observed information function j(0) = —¢"(0) = —{"(6; x) nJ(0) = Eo{—0"(z;0)}

observed (Fisher) information j(0) nl(0) (p.254)
expected (Fisher) information i(0) = Eo{U(0)U(0)"} = ni,(0) L,(0) = nI(0)

Comments:

1. the maximum likelihood estimate 6, is usually obtained by solving the score
equation ¢'(0; ) = 0. Lazy notation is 6, but for asymptotics 6, is preferred.

2. It doesn’t really matter for the definitions above if the observations are in-
dependent and identically distributed (i.i.d.), or only independent, but the
theorems that are proved in MS Ch. 5 and AoS Ch. 9 assume i.i.d..

3. There are important distinctions to be careful about in the notation for like-
lihood and its quantities:
(a) Are we working with a single observation z, X or n observations x, X7

(b) Do we want to find the distribution of something; so ¢(6; X) or calculate
data summaries; £(0; x)?

LU(0) = u(0; X)



B. First order asymptotic theory MS §5.4

1. @ is a scalar

If the components of X are i.i.d., then the score function U(6; X) is a sum of
i.i.d. random variables, and we can show that it has expected value 0 and variance
I,,(0) (or i(f) in my notation). Under some regularity conditions on the density
f(z;;0) (MS A1-A6, p.245), the central limit theorem gives

U(H) d . 1 d
1711/2(9) — N(0,1), equivalently ﬁU(Q) — N{0,1(0)}. (1)

Almost everything else follows from this result and Slutsky’s theorem. For ex-
ample, we can show that

(6 = 0)1,/%(8) = U(6)/1,/%(8) + 0,(1),

where 0,(1) means a remainder term that goes to 0 in probability as n — oo, so we

have the second result X
(60— 0)I}2(6) 5 N(0,1). (2)

These limit theorems give us two corresponding approximations to use with n
fixed:
U(®) ~ N(0,1,(0)), (3)

and
0—60~N(0,1/I(0)). (4)

The notation ~ is read as “is approximately distributed as”.

The proof of MS Theorem 5.3 allows that I(0) = var{¢'(0; X;)} and J(0) =
E{—0"(0); X;} might be different, which is handy later for the study of misspecified
models.

Having the unknown quantity 6 in the variance in (3) and (4) is inconvenient,

A A

but to the same order of approximation, we can replace I,,(6) by 1,(6) or by j(0);
the latter is denoted I,,(6) in MS, p. 254. In AoS, I, /*(8) is called se and I,'/*(0)

is called se, but the use of j(0) = —¢"(0; x) is not mentioned.



