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Course Overview

STA 2212S: Mathematical Statistics II
Tuesday, 10.00-13.00 January 7 – April 1 2025

Course description:
This course is a continuation of STA2112H. It is designed for graduate students in

statistics and biostatistics. Topics include: Likelihood inference, Bayesian methods,
Significance testing, Hypothesis testing, Goodness-of-fit, Robust inference, Causal-
ity, Classification.
Prerequisite: STA2112H

Course content
The course Quercus page has

• A regularly updated syllabus

• Lecture notes

• Discussion pages

• Electronic copies of source texts

Grading:
The course grade will be 60% homework, 40% project. There will be ten weekly

homework questions assigned each Tuesday, due the following Tuesday. The two
lowest homework marks will be dropped. The project will comprise a written report
and a class presentation on a relevant research paper.

Academic Integrity:
Discussion about your work with your classmates is encouraged, but the home-

work solutions you submit must be written, and coded, independently. You may use
code provided by by me without attribution, but you must acknowledge code taken
from any other source using a proper bibliographic reference. To protect yourself
from potential academic integrity offences, do not share your code and written sub-
missions. The University of Toronto’s Code of Behaviour on Academic Matters is
available at http://academicintegrity.utoronto.ca.

Texts:
**[MS] Knight, K. (1999). Mathematical Statistics. Cambridge University Press,

Cambridge.
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... Course Overview

STA 2212S: Mathematical Statistics II
Syllabus Spring 2025

Week Date Methods References

1 Jan 7 Likelihood inference: review of ML
estimation; mis-specified models;
computation; nonparametric mle

MS §§5.1–7, SM Ch 4

2 Jan 14 Bayesian estimation; Bayesian in-
ference

MS §5.8; AoS §§ 11.1–4; SM
§§11.1,2

3 Jan 21 Optimality in estimation MS Ch 6; AoS Ch 12; SM §7.1,
11.5.2

4 Jan 28 Interval estimation; Confidence
bands

MS §§7.1,2; AoS Ch 7; SM §7.1.4

5 Feb 4 Hypothesis testing; likelihood ratio
tests

MS §§7.1–4 AoS Ch 10.6, SM

6 Feb 11 Significance testing MS §7.5; AoS §10.2,6; SM Ch 4,
§7.3.1

Feb 18 Break

7 Feb 25 Significance testing SM 7.3.1

8 Mar 4 Goodness-of-fit testing MS Ch 9; AoS §§10.3,4,5,8; SM
p.327-8 (hard)

9 Mar 11 Multiple testing and FDR AoS Ch 10.7, EH Ch 15.1,2

10 Mar 18 Intro to causal inference AoS Ch 16, 17 SM Ch 9.1.2

11 Mar 25 Aspects of analysis with missing
data

SM 5.3,5 AoS Eg. 11.9

12 Apr 1 Loose Ends, Recap, and Project
Presentations

Subject to adjustment as the course progresses.

References

MS: Mathematical Statistics by K. Knight (Chapman & Hall/CRC).

AoS: All of Statistics by L. Wasserman (Springer) If your copy has a Chapter 1. Introduction,
then all Chapter numbers increase by 1.

SM: Statistical Models by A.C. Davison (Cambridge University Press)
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... Course Overview

HW Question Week 1 STA 2212S 2025

Due January 14 MS, Exercise 5.2

Suppose (X1, Y1), . . . , (Xn, Yn) are independent pairs of random variables where Xi

and Yi are i.i.d. N(µ, σ2) random variables:

f(xi;µ, σ
2) =

1√
2πσ

exp{− 1

2σ2
(xi−µ)2}; f(yi;µ, σ

2) =
1√
2πσ

exp{− 1

2σ2
(yi−µ)2};

(a) Find the maximum likelihood estimators µ̂ and σ̂2 of µ and σ2.

(b) Show that σ̂2 p→ σ2 as n → ∞.

(c) Suppose now that each pair (Xi, Yi) has a different expected value, µi, i =

1, . . . , n. Show that the maximum likelihood estimator σ̂2 p→ σ2/2 as n → ∞.

(d) Define Zi = Xi − Yi. Find the maximum likelihood estimator of σ2 based on
Z1, . . . , Zn, and show that it converges in probability to σ2.
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... Course Overview

Project Guidelines STA 2212S: Mathematical Statistics II 2025

The final project involves reading and reporting on a paper in the statistical literature, or a paper that
uses statistical methods from the course. A list of potential papers will be provided. You will work in
teams of two.

Presentation on April 1, 2025.
Report submission due April 15, 2025.

Part 1: Presentation [10 points]

On the last day of class (April 1), your team will present your final project; presentations will be 10 minutes
long. Detailed guidance on the presentation will be provided.

Part 2: Write-up [40 points]

Your write-up should be: (1): no more than 10 pages, 12 point font, 1.5 vertical spacing; (2) Contain
the four sections below, each partner to complete two sections; (3) Include a title page with the title and
authors of the paper, the first and last names of the report authors and which section they wrote. (4)
Include a list of references.
The title page and references, and any figures, do not count towards the 10 page limit.

Details on the sections to include and the questions to answer in each section will be provided.

Selected Papers

A list of papers to choose from will be available in advance of the February break, Feb 17–21.
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Review of likelihood MS Ch. 󱸳

STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density

f(x; θ), θ ∈ Θ ⊂ Rk
, we have the following definitions:

likelihood function L(θ; x) = c(x)f(x; θ) L(θ)
log-likelihood function ℓ(θ; x) = logL(θ; x) = log f(x; θ) + a(x)
score function u(θ) = ∂ℓ(θ; x)/∂θ ℓ′(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT J(θ) = Eθ{j(θ)}
expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (p.245)

Independent observations: When we have Xi independent, identically dis-

tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we

have:

likelihood function L(θ;x) =
!n

i=1 f(xi; θ) L(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

"n
i=1 ℓ(θ; xi) ℓ(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) S(X)

score function U(θ) = ℓ′(θ) =
"

Ui(θ) S(θ) (p.273)
observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x) nJ(θ) = Eθ{−ℓ′′(x; θ)}
observed (Fisher) information j(θ̂) n#I(θ) (p.254)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0. Lazy notation is θ̂, but for asymptotics θ̂n is preferred.

2. It doesn’t really matter for the definitions above if the observations are in-

dependent and identically distributed (i.i.d.), or only independent, but the

theorems that are proved in MS Ch. 5 and AoS Ch. 9 assume i.i.d..

3. There are important distinctions to be careful about in the notation for like-

lihood and its quantities:

(a) Are we working with a single observation x,X or n observations x,X?

(b) Do we want to find the distribution of something; so ℓ(θ;X) or calculate

data summaries; ℓ(θ; x)?

1U(θ) = u(θ;X)

1
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... Review of likelihood last term
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... Review of likelihood last term
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... Review of likelihood last term
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... Review of likelihood last term
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... Review of likelihood last term

Example 󱸯: Xi ∼ Geom(θ), i = 󱸯, . . . ,n f (x) = θ(󱸯− θ)x−󱸯, x = 󱸯, . . . ,󱸮 < θ < 󱸯

Example 󱸰: Xi ∼ LocExp(θ), i = 󱸯, . . . ,n f (x) = exp{−(x − θ)}, x > θ, θ > 󱸮
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Simulated Example

geomlik <- function(theta,x){

theta^length(x)*(1-theta)^(sum(x)-length(x))}

geomllik <- function(theta, x){

log(geomlik(theta,x))-max(log(geomlik(theta,x)))}

n <- 10; prob <- 0.5

x <- rgeom(n, prob) + 1 #R definition different from mine

thvals <- seq(0,1,length=100)

plot(thvals,geomllik(thvals, x), type="l", lwd=2)

for(i in 1:15){

x <- rgeom(n,prob)+1

lines(thvals,geomllik(thvals,x), col="gray") }
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Likelihood quantities scalar parameter
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Vector parameters MS 󱺕󱸳.󱸲 (p.󱸰󱸳󱸴󰎎)

• model X ∼ f (x; θ), θ ∈ Rp θ is a column vector X ∈ Rn

• L(θ; x) map from Rp → R

• ℓ′(θ; x) p× 󱸯 vector

• −ℓ′′(θ; x) p× p matrix
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... Vector parameters MS 󱺕󱸳.󱸲 (p.󱸰󱸳󱸴󰎎)

• model X ∼ f (x; θ), θ ∈ Rp θ is a column vector

• L(θ; x) map from Rp → R

• ℓ′(θ; x) p× 󱸯 vector

• −ℓ′′(θ; x) p× p matrix

I = E(J)
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Example: logistic regression

Boston$crim2 <- Boston$crim > median(Boston$crim) # define binary response

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,

data = Boston) #fit logistic regression

summary(Boston.glm)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.103704 6.530014 -5.223 1.76e-07 ***

zn -0.079918 0.033731 -2.369 0.01782 *

indus -0.059389 0.043722 -1.358 0.17436

chas 0.785327 0.728930 1.077 0.28132

nox 48.523782 7.396497 6.560 5.37e-11 ***

rm -0.425596 0.701104 -0.607 0.54383

age 0.022172 0.012221 1.814 0.06963 .

dis 0.691400 0.218308 3.167 0.00154 **

rad 0.656465 0.152452 4.306 1.66e-05 ***

tax -0.006412 0.002689 -2.385 0.01709 *

ptratio 0.368716 0.122136 3.019 0.00254 **

black -0.013524 0.006536 -2.069 0.03853 *

lstat 0.043862 0.048981 0.895 0.37052

medv 0.167130 0.066940 2.497 0.01254 *
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... Example: logistic regression

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,

data = Boston) #fit logistic regression

confint(Boston.glm)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -47.480389822 -21.699753794

zn -0.152359922 -0.020567540

indus -0.149113408 0.024168460

chas -0.646429219 2.233443233

nox 34.967619055 64.088411260

rm -1.811639107 0.950196261

age -0.001231256 0.046865843

dis 0.280762523 1.140619391

rad 0.376833861 0.975898274

tax -0.012038221 -0.001324887

ptratio 0.136910471 0.618725856

black -0.029151201 -0.002990159

lstat -0.053062947 0.139446105

medv 0.040925281 0.304379859
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... Vector parameters

Waiting for profiling to be done – what’s pro󰎓ling?
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Pro󰎓le likelihood function

Mathematical Statistics II January 󱸵 󱸰󱸮󱸰󱸳 󱸯󱸷



Properties of maximum likelihood estimators MS 󱺕󱸳.󱸰

• maximum likelihood estimators are equivariant example

• maximum likelihood estimators are biased special exceptions

• maximum likelihood estimators have no explicit formula in general
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...Properties of maximum likelihood estimators MS 󱺕󱸳.󱸰

• maximum likelihood estimators minimize the KL-divergence to the data
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...Properties of maximum likelihood estimators MS 󱺕󱸳.󱸰

• maximum likelihood estimators minimize the KL-divergence to the data
• KL divergence from f󱸮 true to fθ model :

KL(fθ; f󱸮) ≡ Ef󱸮 log
󰀝
f󱸮(X)
fθ(X)

󰀞
= −Ef󱸮 log{f (X; θ)}+ Ef󱸮 log f󱸮(X)

• estimate of Ef󱸮 log{f (X; θ)}?
󱸯
n

n󰁛

i=󱸯

log{f (xi; θ)}

• minimize KL(fθ; f󱸮) same as maximize ℓ(θ; x󱸯, . . . , xn)
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Asymptotic properties of maximum likelihood estimators MS Thm 󱸳.󱸯–󱸳.󱸲

• maximum likelihood estimators are (i) consistent, (ii) asymptotically normal
• (ii) TS expansion p.󱸰󱸳󱸴
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Your friend the delta-method MS Th.󱸱.󱸲 and p.󱸯󱸲󱸶

Suppose θ ∈ Rp, x = (x󱸯, . . . , xp)

an(x − θ)
d→ Z,

and g(x) is continuously di󰎎erentiable at θ, then {g󱸯(x), . . . gk(x)}

an{g(x)− g(θ)} d→ D(θ)Z

where D(θ) =
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... Your friend the delta-method MS Th.󱸱.󱸲 and p.󱸯󱸲󱸶

√
n(θ̂n − θ)

d→ N{󱸮, I−󱸯(θ)}

√
n{g(θ̂n)− g(θ)} d→ N{󱸮,g′(θ)TI−󱸯(θ)g′(θ)}

See also AoS 󱺕󱸷.󱸷
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Example MS Ex.󱸳.󱸯󱸳

X󱸯, . . . , Xn i.i.d. Gamma (α,λ)

f (xi;λ,α) =
󱸯

Γ(α)
λαxα−󱸯i exp(−λxi)
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... Example

󰎓nd a.var(µ̂) via mv delta method
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Calculating maximum likelihood estimators MS 󱸳.󱸵; AoS 󱸷.󱸯󱸱.󱸲

Newton-Raphson:
󱸮 = ℓ′(θ̂) ≈ ℓ′(θ󱸮) + ℓ′′(θ󱸮)(θ̂ − θ󱸮)

θ̂ ≈ θ󱸮 − {ℓ′′(θ󱸮)}−󱸯ℓ′(θ󱸮)

• suggests iteration

θ̂(k+󱸯) = θ̂(k) + {−ℓ′′(θ̂(k))}−󱸯ℓ′(θ̂(k)) = θ̂(k) +
S(θ̂(k))
H(θ̂(k))

MS p.󱸰󱸵󱸮; note change in notation
• requires reasonably good starting values for convergence
• need −ℓ′′(θ̂(k)) to be non-negative de󰎓nite
• Fisher scoring replaces −ℓ′′(·) by its expected value J(·)
• N-R and F-S are gradient methods; many improvements have been developed
• solution is a global max only if ℓ(θ) is concave
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... Calculating maximum likelihood estimators MS 󱸳.󱸵; AoS 󱸷.󱸯󱸱.󱸲

E-M algorithm: procedure

• complete data X ∼ fX(x; θ)
• observed data y = (y󱸯, . . . , ym), with yi = gi(x) many-to-one

• joint density fY(y; θ) =
󰁕
A(y) fX(x; θ)dx A(y) = {x; yi = gi(x), i = 󱸯, . . . ,m}

• algorithm:
󱸯. (E step) estimate the complete data log-likelihood function for θ using current guess θ̂(k)

󱸰. (M step) maximize that function over θ and update to θ̂(k+󱸯) usually by N-R or Fisher scoring

• likelihood function increases at each step
• can be implemented in complex models
• doesn’t automatically provide an estimate of the asymptotic variance

but methods exist to obtain this as a side-product
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Example MS Ex.󱸳.󱸰󱸳

• fX(xi;λ, µ, θ) = α
e−λxλ
x! + (󱸯− α)

e−µxµ
x! , x = 󱸯, 󱸰, ...;λ, µ > 󱸮,󱸮 < θ < 󱸯

• Observed data: x󱸯, . . . , xn
• Complete data: (x󱸯, y󱸯), . . . , (xn, yn); yi ∼ Bernoulli(θ)
• Complete data log-likelihood function:

ℓc(α,λ, µ; y, x) =
n󰁛

i=󱸯

yi{log(α) + xi log(λ)− λ}+
n󰁛

i=󱸯

(󱸯− yi){log(󱸯− θ) + xi log(µ)− µ}

•

E
θ̂
(k){ℓc(α,λ, µ; y, x) | x} =

n󰁛

i=󱸯

ŷi{log(α)+xi log(λ)−λ}+
n󰁛

i=󱸯

(󱸯−ŷi){log(󱸯−α)+xi log(µ)−µ}

• ŷi = E(Yi | xi; θ̂
(k)

) see p.󱸰󱸶󱸮 for exact value
• maximizing values of α,λ, µ can be obtained in closed form p.󱸰󱸶󱸯

AoS likes to work with logLn(θ)/Ln(θ̂(k))
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... Example
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Optimization
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... Optimization Kolter et al.

Notes on optimization: Tibshirani, Pena, Kolter CO 󱸯󱸮-󱸵󱸰󱸳 CMU

• Goal: maxθ ℓ(θ; x)
• Solve: ℓ′(θ̂; x) = 󱸮
• Iterate: θ̂(t+󱸯) = θ̂(t) + {j(θ̂(t))}−󱸯ℓ′(θ̂(t))
• Rewrite: j(θ̂(t))(θ̂(t+󱸯) − θ̂(t)) = ℓ′(θ̂(t)) B∆θ = −∇ℓ(θ)

• Quasi-Newton:
• approximate j(θ̂(t)) with something easy to invert
• use information from j(θ̂(t)) to compute j(θ̂(t+󱸯))

• optimization notes add a step size to the iteration θ̂(t+󱸯) = θ̂(t) + 󰂃t{j(θ̂(t))}−󱸯ℓ′(θ̂(t))

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
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Regularity conditions MS Thm 󱸳.󱸲

• (B󱸯) The parameter space Θ is an open subset of Rp

• (B󱸰) The set A = {x : f (x; θ) > 󱸮} does not depend on θ

• (B󱸱) ℓ(θ) is three times continuously di󰎎erentiable on A
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Regularity conditions MS Thm 󱸳.󱸲

• (B󱸯) The parameter space Θ is an open subset of Rp

• (B󱸰) The set A = {x : f (x; θ) > 󱸮} does not depend on θ

• (B󱸱) ℓ(θ) is three times continuously di󰎎erentiable on A

• (B󱸲) Eθ{ℓ′(θ; Xi)} = 󱸮 ∀ θ and Cov{ℓ′(θ; Xi)} = I(θ) is positive de󰎓nite ∀ θ
• (B󱸳) Eθ{−ℓ′′(θ; Xi)} = J(θ) is positive de󰎓nite ∀θ
• (B󱸴) For each θ, δ > 󱸮, 󱸯 ≤ j, k, l,≤ p,

󰀏󰀏󰀏󰀏
∂󱸱ℓ(θ∗; xi)
∂θj∂θk∂θl

󰀏󰀏󰀏󰀏 ≤ Mjkl(θ
∗),

for ||θ − θ∗|| ≤ δ, where Eθ{Mjkl(Xi)} < ∞
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Regularity conditions MS Thm 󱸳.󱸲

• (B󱸯) The parameter space Θ is an open subset of Rp

• (B󱸰) The set A = {x : f (x; θ) > 󱸮} does not depend on θ

• (B󱸱) ℓ(θ) is three times continuously di󰎎erentiable on A

• (B󱸲) Eθ{ℓ′(θ; Xi)} = 󱸮 ∀ θ and Cov{ℓ′(θ; Xi)} = I(θ) is positive de󰎓nite ∀θ
• (B󱸳) Eθ{−ℓ′′(θ; Xi)} = J(θ) is positive de󰎓nite ∀ θ
• (B󱸴) For each θ, δ > 󱸮, 󱸯 ≤ j, k, l,≤ p,

󰀏󰀏󰀏󰀏
∂󱸱ℓ(θ∗; xi)
∂θj∂θk∂θl

󰀏󰀏󰀏󰀏 ≤ Mjkl(θ
∗),

for ||θ − θ∗|| ≤ δ, where Eθ{Mjkl(Xi)} < ∞
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Regularity conditions MS Thm 󱸳.󱸲
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Misspeci󰎓ed models MS 󱸳.󱸳

• model assumption X󱸯, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X󱸯, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n󰁛

i=󱸯

ℓ′(θ̂n; Xi) = 󱸮

• what is θ̂n estimating ?
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Misspeci󰎓ed models MS 󱸳.󱸳

• model assumption X󱸯, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X󱸯, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n󰁛

i=󱸯

ℓ′(θ̂n; Xi) = 󱸮

• what is θ̂n estimating ?
• de󰎓ne the parameter θ(F) by

󰁝 ∞

−∞
ℓ′{x; θ(F)}dF(x) = 󱸮

• √
n{θ̂n − θ(F)} d→ N(󱸮,σ󱸰)

•
σ󱸰 =

󰁕
[ℓ′{x; θ(F)}]󱸰dF(x)

(
󰁕
[ℓ′′{x; θ(F)}]󱸰dF(x))󱸰Mathematical Statistics II January 󱸵 󱸰󱸮󱸰󱸳 󱸱󱸶



Misspeci󰎓ed models MS 󱸳.󱸳

• √
n{θ̂n − θ(F)} d→ N(󱸮,σ󱸰)

•
σ󱸰 =

󰁕
[ℓ′{x; θ(F)}]󱸰dF(x)

(
󰁕
[ℓ′′{x; θ(F)}]󱸰dF(x))󱸰

• more generally, for θ ∈ Rp,
√
n{θ̂n − θ(F)} d→ Np{󱸮,G−󱸯(F)}

•
G(F) = J(F)I−󱸯(F)J(F),

•
J(F) =

󰁝
−ℓ′′{θ(F); xi}dF(xi), I(F) =

󰁝
{ℓ′(θ(F); xi)}{ℓ′(θ(F); xi)}TdF(xi)

Godambe information
sandwich variance
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Statistics in the News
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Original study British J Medicine December 󱸰󱸮󱸰󱸲
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... Original study British J Medicine December 󱸰󱸮󱸰󱸲

Results: A󰎗er adjusting for personal,
lifestyle, and dietary risk factors,
participants consuming ≥ 󱸳 servings/week
of any chocolate showed a signi󰎓cant 󱸯󱸮󱹻
(󱸷󱸳󱹻 CI 󱸰󱹻 to 󱸯󱸵󱹻; P trend󱹫󱸮.󱸮󱸵) lower rate
of T󱸰D compared with those who never or
rarely consumed chocolate
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