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Recap signicance functions θ = (ψ,λ)

• approximate pivotal quantities q, r, s

• signicance function Φ{ },Φ{ },Φ{ },
• meaning?

• exact pivotal quantity nX̄θ ∼ Γ(n, )
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Example: the ANDROMEDA Trial Hernandez et al., 
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A p-value function Fraser 

Died Lived

New   
Old   

Total   

-sided p-value  .

likelihood ratio test
no adjustment for covariates

 condence interval: [−.,−. ]
 condence interval: [ −., . ]
 condence interval: [ −., . ]
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... Recap misspecied models MS Thm .

• model assumption X, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model: ℓ(θ; xi) = log f (xi; θ) ( obs)

ℓ′(θ;X) =
n

i=

ℓ′(θ̂n; Xi) = 

• dene the parameter θ(F) by
∞
−∞ ℓ′{θ(F); x}dF(x) = 

√
n{θ̂n − θ(F)} d→ Np{,G−(F)}

• sandwich variance estimate estimate of G−/n

a. var (θ̂n)
.
= {̂J(θ̂n)}− Î(θ̂n) {̂J(θ̂n)}−

• Godambe information one observation

G(F) = J(F)I−(F)J(F),

• MS denes I, J for one observation; see Thm ., and last para. before .Mathematical Statistics II January   



Bayesian estimation MS .; AoS 

model f (x; θ), θ ∈ Θ; x ∈ X

prior π(θ) density π : Θ −→ (,∞)

posterior π(θ | x) ∝ f (x; θ)π(θ)

sample x, . . . , xn

π(θ | x) ∝ f (x; θ)π(θ) = L(θ; x)π(θ)
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Frequentist and Bayesian contrast

Frequentist:

• There is a xed parameter (unknown) we are trying to learn
• Our methods are evaluated using probabilities based on f (x; θ)

Bayesian:

• The parameter can be treated as a random variable
• We model its distribution π(θ)

• Combine this with a model f (x | θ)
• Update prior belief on the basis of the data
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Example: censored exponential MS Exs ., .

X, . . . , Xn i.i.d. Exponential (λ) π(λ) ∼ Exp(α)

censored at r smallest x; let Yi = X(i), i = , . . . , r

f (y | λ) =
r

i=

λr exp(−λyi)
n

i=r+

exp(−λyr) = λr exp[−λ{Σr
i=yi + (n− r)yr}]
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... Example: censored exponential MS MS Exs ., .

f (y | λ) =
r

i=

λr exp(−λyi)
n

i=r+

exp(−λyr) = λr exp[−λ{Σr
i=yi+(n−r)yr}], π(λ) = α exp(−αλ)

π(λ | y)

posterior mean and and mode
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Exponential families and conjugate priors MS p.,

f (x; θ) = exp{c(θ)S(x)− d(θ) + h(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}
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Choosing priors MS p. 

• conjugate priors

• non-informative priors at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Flat priors MS p.

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indierence’

• example: Beta (,) prior for Bernoulli probability

• example .: X ∼ N(µ, ),π(µ) ∝ 
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Flat priors MS p.

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indierence’

• example: Beta (,) prior for Bernoulli probability

• example .: X ∼ N(µ, ),π(µ) ∝ 

• improper priors can lead to proper posteriors ntbc

• priors at in one parameterization are not at in another
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... Flat priors

• Example: X ∼ Bin(n, θ), < θ < ; θ ∼ U(, )

• log-odds ratio ψ = ψ(θ) = log{θ/(− θ)}

• π(ψ) =
eψ

(+ eψ) ,−∞ < ψ < ∞

• prior probability − < ψ <  ≈ .

• an invariant prior: π(θ) ∝ I/(θ)
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Jereys’ prior MS p 

• π(θ) ∝ I/(θ)

• Example: X ∼ Bin(n, θ) I(θ) = n/{θ(− θ)},  < θ < 

• Example .: X ∼ Poisson(λ), I(λ) = /λ, λ >  posterior proper?

• Jereys’ prior for multiparameter θ: π(θ) ∝ |I(θ)|/ not recommended even by Jereys

• Example: X, . . . , Xn i.i.d. N(µ,σ) I(µ,σ) =
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ANDROMEDA, revisited Zampieri et al 

Died Lived

New   
Old   

Total   

-sided p-value  .

likelihood ratio test
no adjustment for covariates

 condence interval: [−.,−. ]
 condence interval: [ −., . ]
 condence interval: [ −., . ]
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ANDROMEDA, revisited Zampieri et al 

Died Lived

New   
Old   

Total   

-sided p-value  .

likelihood ratio test
no adjustment for covariates

a range of normal priors for the log-odds
ratioMathematical Statistics II January   



ANDROMEDA, revisited Zampieri et al 

• the posterior probability that the odds-ratio is less than  treatment is benecial
• ranges from . to . most pessimistic to most optimistic prior
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ANDROMEDA, revisited Zampieri et al 

Died Lived

New   
Old   

Total   

-sided p-value  .

likelihood ratio test
no adjustment for covariates

• -day mortality, Cox proportional
hazards model

• adjustment for  baseline covariates
• estimated hazard ratio . (., .)

• Bayesian re-analysis based on logistic
regression

• focus on posterior probability β < 
log odds ratio

• equivalently P(hazard ratio <  | data)

• added random eect for center, used
default priors for covariates, change to
logistic regression
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ANDROMEDA, revisited Zampieri et al 
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Marginalization

• Bayes posterior carries all the information about θ, given x by denition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =

• if θ = (ψ,λ), ...

• or, if ψ = ψ(θ)

• in this context, ‘at’ priors can have a large inuence on the marginal posterior
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Example: many normal means Stein, 
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Optimality of estimators MS Ch 

• recall, in regular models, I(θ) denition

√
n(θ̂ − θ)

d→ N{, I−(θ)}

• smaller variance means more precise estimation
• Is I−(θ) small?
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Optimality of estimators MS Ch 

• recall, in regular models, I(θ) denition

√
n(θ̂ − θ)

d→ N{, I−(θ)}

• smaller variance means more precise estimation
• Is I−(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step : suppose X = X, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• Let U = U(X) = ℓ′(θ;X) score function

• Let S = S(X) be an unbiased estimator of g(θ) Eθ{S(X)} = g(θ)

• then varθ(S) ≥ {Covθ(S,U)}/Varθ(U) proof: Cauchy-Schwarz
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Cramer-Rao lower bound MS Ch .; AoS Ch .

• Cauchy-Schwartz inequality: for random variables Z, Z, with E(Z ) < ∞,E(Z) < ∞,

{Cov(Z, Z)} ≤ var(Z)var(Z)

• take Z = S(X), an unbiased estimator of g(θ)
• take Z = U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)} ≤ varθ(S)varθ(U)

•
varθ(S) ≥

Covθ(S,U)
In(θ)
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... Cramer-Rao lower bound MS Ch .; AoS Ch .

•
varθ(S) ≥

Covθ(S,U)
In(θ)

• Cov(S,U)
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... Cramer-Rao lower bound MS Ch .; AoS Ch .

•
varθ(S) ≥

Covθ(S,U)
In(θ)

• Cov(S,U)

• when would we get equality?

• special case, g(θ) = θ
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Example: Poisson MS Ex..

Unbiased estimator of λ: S(X) = (/n)ΣXi(Xi − ) ntbc

Maximum likelihood estimator of λ: S(X) = {(/n)ΣXi}

var(S) =
λ
n +

λ
n

var(S) =
λ
n +

λ
n +

λ

n

Cramer-Rao lower bound: {g′(λ)}/nI(λ) = (λ)/(n/λ) = λ/n

Note: CRLB cannot be attained even by an unbiased estimator
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What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .

Mathematical Statistics II January   



What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var  lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var  lower bound “BAN”

• there are other regular estimators that are also asymptotically fully ecient
• and might be better in nite samples
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Asymptotic eciency MS .

• comparison of two consistent estimators via limiting distributions

•
√
n(Tn − θ)

d→ N{,σ (θ)},
√
n(Tn − θ)

d→ N{,σ(θ)}

• asymptotic relative eciency of T, relative to T is
σ(θ)

σ (θ)
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Asymptotic eciency MS .

• comparison of two consistent estimators via limiting distributions

•
√
n(Tn − θ)

d→ N{,σ (θ)},
√
n(Tn − θ)

d→ N{,σ(θ)}

• asymptotic relative eciency of T, relative to T is
σ(θ)

σ (θ)

• if Tn is the MLE θ̂n, then σ(θ) = I−(θ) as small as possible

• the MLE is fully ecient

• the asymptotic eciency of T is 

σ (θ)I(θ) relative to the MLE implicit
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Statistics in the News

• “... a survey of , adults from Aug.,
to Sept. , , using a commercial
survey panel provider. Seventy-eight
per cent of Canadians said they would
like to see the CBC/Radio-Canada
continue if it addresses major
criticisms”

• “the margin of error for a comparable
probability-based sample of the same
size is plus or minus . percentage
points,  times out of ”
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Statistics in the News

• “According to the Edelman Trust
Barometer  annual survey, only 
per cent of Canadians trust AI – 
points below the global average”

• “The sample includes ,
respondents from Canada. The margin
of error for the Canadian data is plus or
minus . to plus or minus .
percentage points,  times out of ”
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