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Today

󱸯. Recap Jan 󱸰󱸯 signi󰎓cance functions, misspeci󰎓ed models
󱸰. Bayesian inference and estimation MS Ch.󱸳.󱸶
󱸱. Optimality in estimation MS 󱺕󱸴.󱸰 and 󱸴.󱸲
󱸲. HW󱸱, Statistics in the News

Upcoming seminar

Department Seminar Thursday January 󱸱󱸮 󱸯󱸯.󱸮󱸮 – 󱸯󱸰.󱸮󱸮
Hydro Building, Room 󱸷󱸮󱸯󱸲
“State-space models for animal movement”
Marie Auger-Méthé, UBC

Mathematical Statistics II January 󱸰󱸶 󱸰󱸮󱸰󱸳 󱸯



Recap signi󰎓cance functions θ = (ψ,λ)

• approximate pivotal quantities q, r, s

• signi󰎓cance function Φ{ },Φ{ },Φ{ },
• meaning?

• exact pivotal quantity nX̄θ ∼ Γ(n, 󱸯)
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Example: the ANDROMEDA Trial Hernandez et al., 󱸰󱸮󱸯󱸷
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Example: the ANDROMEDA Trial Hernandez et al., 󱸰󱸮󱸯󱸷

Died Lived

New 󱸵󱸲 󱸯󱸱󱸶 󱸰󱸯󱸰
Old 󱸷󱸰 󱸯󱸰󱸮 󱸰󱸯󱸰

Total 󱸯󱸴󱸴 󱸰󱸳󱸶 󱸲󱸰󱸲

󱸰-sided p-value 󱹫 󱸮.󱸮󱸵

likelihood ratio test
no adjustment for covariates
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Total 󱸯󱸴󱸴 󱸰󱸳󱸶 󱸲󱸰󱸲
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A p-value function Fraser 󱸯󱸷󱸷󱸯

Died Lived

New 󱸵󱸲 󱸯󱸱󱸶 󱸰󱸯󱸰
Old 󱸷󱸰 󱸯󱸰󱸮 󱸰󱸯󱸰

Total 󱸯󱸴󱸴 󱸰󱸳󱸶 󱸲󱸰󱸲

󱸰-sided p-value 󱹫 󱸮.󱸮󱸵

likelihood ratio test
no adjustment for covariates

󱸷󱸮󱹻 con󰎓dence interval: [−󱸮.󱸴󱸶󱸶,−󱸮.󱸮󱸱󱸮 ]
󱸷󱸳󱹻 con󰎓dence interval: [ −󱸮.󱸵󱸳󱸯, 󱸮.󱸮󱸱󱸲 ]
󱸷󱸷󱹻 con󰎓dence interval: [ −󱸮.󱸶󱸰󱸳, 󱸮.󱸯󱸮󱸵 ]
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... Recap misspeci󰎓ed models MS Thm 󱸳.󱸳󱹧

• model assumption X󱸯, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X󱸯, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model: ℓ(θ; xi) = log f (xi; θ) (󱸯 obs)

ℓ′(θ;X) =
n󰁛

i=󱸯

ℓ′(θ̂n; Xi) = 󱸮

• de󰎓ne the parameter θ(F) by
󰁕∞
−∞ ℓ′{θ(F); x}dF(x) = 󱸮

√
n{θ̂n − θ(F)} d→ Np{󱸮,G−󱸯(F)}

• sandwich variance estimate estimate of G−󱸯/n

a. var (θ̂n)
.
= {̂J(θ̂n)}−󱸯 Î(θ̂n) {̂J(θ̂n)}−󱸯

• Godambe information one observation

G(F) = J(F)I−󱸯(F)J(F),

• MS de󰎓nes I, J for one observation; see Thm 󱸳.󱸳, and last para. before 󱺕󱸳.󱸴Mathematical Statistics II January 󱸰󱸶 󱸰󱸮󱸰󱸳 󱸯󱸮



Bayesian estimation MS 󱸳.󱸶; AoS 󱸯󱸯

model f (x; θ), θ ∈ Θ; x ∈ X

prior π(θ) density π : Θ −→ (󱸮,∞)

posterior π(θ | x) ∝ f (x; θ)π(θ)

sample x󱸯, . . . , xn

π(θ | x) ∝ f (x; θ)π(θ) = L(θ; x)π(θ)
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Frequentist and Bayesian contrast

Frequentist:

• There is a 󰎓xed parameter (unknown) we are trying to learn
• Our methods are evaluated using probabilities based on f (x; θ)

Bayesian:

• The parameter can be treated as a random variable
• We model its distribution π(θ)

• Combine this with a model f (x | θ)
• Update prior belief on the basis of the data
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Example: censored exponential MS Exs 󱸳.󱸰󱸵, 󱸳.󱸱󱸮

X󱸯, . . . , Xn i.i.d. Exponential (λ) π(λ) ∼ Exp(α)

censored at r smallest x; let Yi = X(i), i = 󱸯, . . . , r

f (y | λ) =
r󰁜

i=󱸯

λr exp(−λyi)
n󰁜

i=r+󱸯

exp(−λyr) = λr exp[−λ{Σr
i=󱸯yi + (n− r)yr}]
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... Example: censored exponential MS MS Exs 󱸳.󱸰󱸵, 󱸳.󱸱󱸮

f (y | λ) =
r󰁜

i=󱸯

λr exp(−λyi)
n󰁜

i=r+󱸯

exp(−λyr) = λr exp[−λ{Σr
i=󱸯yi+(n−r)yr}], π(λ) = α exp(−αλ)

π(λ | y)

posterior mean and and mode
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Exponential families and conjugate priors MS p.󱸰󱸶󱸶,󱸷

f (x; θ) = exp{c(θ)S(x)− d(θ) + h(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}
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Exponential families and conjugate priors MS p.󱸰󱸶󱸶,󱸷
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Choosing priors MS p.󱸰󱸶󱸵 󰎎

• conjugate priors

• non-informative priors 󰎐at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Flat priors MS p.󱸰󱸷󱸮

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indi󰎎erence’

• example: Beta (󱸯,󱸯) prior for Bernoulli probability

• example 󱸳.󱸱󱸲: X ∼ N(µ, 󱸯),π(µ) ∝ 󱸯
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Flat priors MS p.󱸰󱸷󱸮

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indi󰎎erence’

• example: Beta (󱸯,󱸯) prior for Bernoulli probability

• example 󱸳.󱸱󱸲: X ∼ N(µ, 󱸯),π(µ) ∝ 󱸯

• improper priors can lead to proper posteriors ntbc

• priors 󰎐at in one parameterization are not 󰎐at in another
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... Flat priors

• Example: X ∼ Bin(n, θ),󱸮 < θ < 󱸯; θ ∼ U(󱸮, 󱸯)

• log-odds ratio ψ = ψ(θ) = log{θ/(󱸯− θ)}

• π(ψ) =
eψ

(󱸯+ eψ)󱸰 ,−∞ < ψ < ∞

• prior probability −󱸱 < ψ < 󱸱 ≈ 󱸮.󱸷

• an invariant prior: π(θ) ∝ I󱸯/󱸰(θ)
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Je󰎎reys’ prior MS p 󱸰󱸷󱸯

• π(θ) ∝ I󱸯/󱸰(θ)

• Example: X ∼ Bin(n, θ) I(θ) = n/{θ(󱸯− θ)}, 󱸮 < θ < 󱸯

• Example 󱸳.󱸱󱸳: X ∼ Poisson(λ), I(λ) = 󱸯/λ, λ > 󱸮 posterior proper?

• Je󰎎reys’ prior for multiparameter θ: π(θ) ∝ |I(θ)|󱸯/󱸰 not recommended even by Je󰎎reys

• Example: X󱸯, . . . , Xn i.i.d. N(µ,σ󱸰) I(µ,σ󱸰) =

Mathematical Statistics II January 󱸰󱸶 󱸰󱸮󱸰󱸳 󱸯󱸷



ANDROMEDA, revisited Zampieri et al 󱸰󱸮󱸰󱸮

Died Lived

New 󱸵󱸲 󱸯󱸱󱸶 󱸰󱸯󱸰
Old 󱸷󱸰 󱸯󱸰󱸮 󱸰󱸯󱸰

Total 󱸯󱸴󱸴 󱸰󱸳󱸶 󱸲󱸰󱸲

󱸰-sided p-value 󱹫 󱸮.󱸮󱸵

likelihood ratio test
no adjustment for covariates

󱸷󱸮󱹻 con󰎓dence interval: [−󱸮.󱸴󱸶󱸶,−󱸮.󱸮󱸱󱸮 ]
󱸷󱸳󱹻 con󰎓dence interval: [ −󱸮.󱸵󱸳󱸯, 󱸮.󱸮󱸱󱸲 ]
󱸷󱸷󱹻 con󰎓dence interval: [ −󱸮.󱸶󱸰󱸳, 󱸮.󱸯󱸮󱸵 ]
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ANDROMEDA, revisited Zampieri et al 󱸰󱸮󱸰󱸮

Died Lived

New 󱸵󱸲 󱸯󱸱󱸶 󱸰󱸯󱸰
Old 󱸷󱸰 󱸯󱸰󱸮 󱸰󱸯󱸰

Total 󱸯󱸴󱸴 󱸰󱸳󱸶 󱸲󱸰󱸲

󱸰-sided p-value 󱹫 󱸮.󱸮󱸵

likelihood ratio test
no adjustment for covariates

a range of normal priors for the log-odds
ratioMathematical Statistics II January 󱸰󱸶 󱸰󱸮󱸰󱸳 󱸰󱸯



ANDROMEDA, revisited Zampieri et al 󱸰󱸮󱸰󱸮

• the posterior probability that the odds-ratio is less than 󱸯 treatment is bene󰎓cial
• ranges from 󱸮.󱸷󱸲 to 󱸮.󱸷󱸷 most pessimistic to most optimistic prior
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󱸰-sided p-value 󱹫 󱸮.󱸮󱸵

likelihood ratio test
no adjustment for covariates

• 󱸰󱸶-day mortality, Cox proportional
hazards model

• adjustment for 󱸳 baseline covariates
• estimated hazard ratio 󱸮.󱸵󱸳 (󱸮.󱸳󱸳, 󱸯.󱸮󱸰)

• Bayesian re-analysis based on logistic
regression

• focus on posterior probability β < 󱸮
log odds ratio

• equivalently P(hazard ratio < 󱸯 | data)

• added random e󰎎ect for center, used
default priors for covariates, change to
logistic regression
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ANDROMEDA, revisited Zampieri et al 󱸰󱸮󱸰󱸮
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Marginalization

• Bayes posterior carries all the information about θ, given x by de󰎓nition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =

• if θ = (ψ,λ), ...

• or, if ψ = ψ(θ)

• in this context, ‘󰎐at’ priors can have a large in󰎐uence on the marginal posterior
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Example: many normal means Stein, 󱸯󱸷󱸳󱸷
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Optimality of estimators MS Ch 󱸴

• recall, in regular models, I(θ) de󰎓nition

√
n(θ̂ − θ)

d→ N{󱸮, I−󱸯(θ)}

• smaller variance means more precise estimation
• Is I−󱸯(θ) small?
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√
n(θ̂ − θ)
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• smaller variance means more precise estimation
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Optimality of estimators MS Ch 󱸴

• recall, in regular models, I(θ) de󰎓nition

√
n(θ̂ − θ)

d→ N{󱸮, I−󱸯(θ)}

• smaller variance means more precise estimation
• Is I−󱸯(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step 󱸯: suppose X = X󱸯, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• Let U = U(X) = ℓ′(θ;X) score function

• Let S = S(X) be an unbiased estimator of g(θ) Eθ{S(X)} = g(θ)

• then varθ(S) ≥ {Covθ(S,U)}󱸰/Varθ(U) proof: Cauchy-Schwarz
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Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

• Cauchy-Schwartz inequality: for random variables Z󱸯, Z󱸰, with E(Z󱸰󱸯 ) < ∞,E(Z󱸰󱸰) < ∞,

{Cov(Z󱸯, Z󱸰)}󱸰 ≤ var(Z󱸯)var(Z󱸰)

• take Z󱸯 = S(X), an unbiased estimator of g(θ)
• take Z󱸰 = U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)}󱸰 ≤ varθ(S)varθ(U)

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)

• Cov(S,U)
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)

• Cov(S,U)

• when would we get equality?
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)

• Cov(S,U)

• when would we get equality?

• special case, g(θ) = θ
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Example: Poisson MS Ex.󱸴.󱸯󱸰

Unbiased estimator of λ󱸰: S󱸯(X) = (󱸯/n)ΣXi(Xi − 󱸯) ntbc

Maximum likelihood estimator of λ󱸰: S󱸰(X) = {(󱸯/n)ΣXi}󱸰

var(S󱸯) =
󱸲λ󱸱
n +

󱸰λ󱸰
n

var(S󱸰) =
󱸲λ󱸱
n +

󱸳λ󱸰
n󱸰 +

λ

n󱸱

Cramer-Rao lower bound: {g′(λ)}󱸰/nI(λ) = (󱸰λ)󱸰/(n/λ) = 󱸲λ󱸱/n

Note: CRLB cannot be attained even by an unbiased estimator
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var 󱹫 lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var 󱹫 lower bound “BAN”

• there are other regular estimators that are also asymptotically fully e󰎏cient
• and might be better in 󰎓nite samples
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Asymptotic e󰎏ciency MS 󱸲.󱸶

• comparison of two consistent estimators via limiting distributions

•
√
n(T󱸯n − θ)

d→ N{󱸮,σ󱸰󱸯 (θ)},
√
n(T󱸰n − θ)

d→ N{󱸮,σ󱸰󱸰(θ)}

• asymptotic relative e󰎏ciency of T󱸯, relative to T󱸰 is
σ󱸰󱸰(θ)

σ󱸰󱸯 (θ)
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Asymptotic e󰎏ciency MS 󱸲.󱸶

• comparison of two consistent estimators via limiting distributions

•
√
n(T󱸯n − θ)

d→ N{󱸮,σ󱸰󱸯 (θ)},
√
n(T󱸰n − θ)

d→ N{󱸮,σ󱸰󱸰(θ)}

• asymptotic relative e󰎏ciency of T󱸯, relative to T󱸰 is
σ󱸰󱸰(θ)

σ󱸰󱸯 (θ)

• if T󱸰n is the MLE θ̂n, then σ󱸰󱸰(θ) = I−󱸯(θ) as small as possible

• the MLE is fully e󰎏cient

• the asymptotic e󰎏ciency of T󱸯 is 󱸯
󰀑
σ󱸰󱸯 (θ)I(θ) relative to the MLE implicit
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Statistics in the News

• “... a survey of 󱸰,󱸮󱸳󱸳 adults from Aug.󱸰󱸶,
to Sept. 󱸴, 󱸰󱸮󱸰󱸲, using a commercial
survey panel provider. Seventy-eight
per cent of Canadians said they would
like to see the CBC/Radio-Canada
continue if it addresses major
criticisms”

• “the margin of error for a comparable
probability-based sample of the same
size is plus or minus 󱸰.󱸯󱸴 percentage
points, 󱸯󱸷 times out of 󱸰󱸮”
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Statistics in the News

• “According to the Edelman Trust
Barometer 󱸰󱸮󱸰󱸲 annual survey, only 󱸱󱸯
per cent of Canadians trust AI – 󱸯󱸷
points below the global average”

• “The sample includes 󱸯,󱸳󱸮󱸮
respondents from Canada. The margin
of error for the Canadian data is plus or
minus 󱸱.󱸱 to plus or minus 󱸱.󱸷
percentage points, 󱸷󱸷 times out of 󱸯󱸮󱸮”
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