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. Exponential family models
. Bayesian inference and estimation MS Ch..
. HW, Statistics in the News

Upcoming seminars

• CANSSI Ontario online
Je Rosenthal, U Toronto Friday Jan , . am

“Speeding up Metropolis using Theorems”

registration required
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https://canssiontario.utoronto.ca/event/cast-jeffrey-rosenthal/


Recap

• delta method: g : Rp → Rk

if θ .∼ N{θ, I−(θ)} then g(θ) .∼ N{g(θ),g′(θ)TI−(θ)g′(θ)}

• k = :
θ̂

.∼ N{θ,g′(θ)I−(θ)}

• as usual, I(θ) estimated by I(θ̂) or −ℓ′′(θ̂)
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Recap

• delta method: g : Rp → Rk

if θ .∼ N{θ, I−(θ)} then g(θ) .∼ N{g(θ),g′(θ)TI−(θ)g′(θ)}

• k = :
θ̂

.∼ N{θ,g′(θ)I−(θ)}

• as usual, I(θ) estimated by I(θ̂) or −ℓ′′(θ̂)

• Poisson example X ∼ Po(θ):

E(X/) .
= θ/, var(X/) .

= /

• variance stabilizing transformation note X/ biased

• Anscombe transformation
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https://en.wikipedia.org/wiki/Anscombe_transform


... Recap MS Thm .

• likelihood ratio statistic θ ∈ Rp

w(θ) = {ℓ(θ)− ℓ(θ)}

• limiting distribution model X ∼ f (x;θ), X ∈ Rn

w(θ) d→ χp, n→ ∞

• asymptotic equivalence regularity conditions

w(θ) = (θ − θ)TI(θ)(θ − θ) + op()

• inference H and CI
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... Nuisance parameters MS Thm .

• prole likelihood ratio statistic θ = (ψ,λ); ψ ∈ Rr

w(ψ) = {ℓp( ψ)− ℓp(ψ)} = {ℓ( ψ, λ)− ℓ(ψ, λψ)}

• limiting distribution model X ∼ f (x;θ), X ∈ Rn

w(ψ)
d→ χr , n→ ∞

• asymptotic equivalence lots of work

w(ψ) = (ψ −ψ)T{−ℓ′′p(
ψ)}(ψ −ψ)

• inference H and CI
most useful when r = 
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Signicance functions θ = (ψ,λ), ψ ∈ R

• approximations

• sanity check

• signicance function
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Example: geometric
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Example: exponential
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Misspecied models MS .

• model assumption X, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X, . . . , Xn i.i.d. F(x) notation

• maximum likelihood estimator based on model: ℓ(θ; xi) = log f (xi; θ) ( obs)

ℓ′(θ;X) =
n

i=

ℓ′(θ̂n; Xi) = 

• what is θ̂n estimating ?
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Misspecied models MS .

• model assumption X, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X, . . . , Xn i.i.d. F(x) notation

• maximum likelihood estimator based on model: ℓ(θ; xi) = log f (xi; θ) ( obs)

ℓ′(θ;X) =
n

i=

ℓ′(θ̂n; Xi) = 

• what is θ̂n estimating ?
• dene the parameter θ(F) by

 ∞

−∞
ℓ′{θ(F); x}dF(x) = 

•
√
n{θ̂n − θ(F)} d→ N(,σ), σ =


[ℓ′{θ(F); x}]dF(x)

(

[ℓ′′{θ(F); x}]dF(x))
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Misspecied models MS Thm .

•
√
n{θ̂n − θ(F)} d→ N(,σ) σ =


[ℓ′{x; θ(F)}]dF(x)

(

[ℓ′′{θ(F); x}]dF(x))

• more generally, for θ ∈ Rp,
√
n{θ̂n − θ(F)} d→ Np{,G−(F)}

• Godambe information
G(F) = J(F)I−(F)J(F),

•
J(F) =


−ℓ′′{θ(F); x}dF(x), I(F) =


{ℓ′(θ(F); x)}{ℓ′(θ(F); x)}TdF(x) (∗)

• estimate of G−(F) sandwich variance

{̂J(θ̂)}− Î(θ̂) {̂J(θ̂)}−

• MS denes I, J for one observation, as at (*); see Thm ., and last para. before .
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Examples MS .

• MS Ex .: true model N(µ,σ), tted model logistic density density ex−θ/(+ ex−θ)

• MS Ex .: true model U(,b), tted Gamma(α,λ)
• MS Ex .: true model Gamma(α,λ), tted log-N(µ,σ)

• true model has distribution F; tted model is N(µ,σ) X, . . . , Xn
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Examples MS .

• MS Ex .: true model N(µ,σ), tted model logistic density density ex−θ/(+ ex−θ)

• MS Ex .: true model U(,b), tted Gamma(α,λ)
• MS Ex .: true model Gamma(α,λ), tted log-N(µ,σ)

• true model has distribution F; tted model is N(µ,σ) X, . . . , Xn

• maximum likelihood estimates from tted model

• converge to?
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Example

true model has distribution F; tted model is N(µ,σ)

θ(F) =

J(F) = EF{−ℓ′′(θ; Xi)}

I(F) = cov{ℓ′(θ; Xi)}
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Example

true model has distribution F; tted model is N(µ,σ) true model has distribution F;
tted model is N(µ,σ)

θ(F) = ((EF(Xi), varF(Xi))T = {µ(F),σ(F)}

J(F) = EF{−ℓ′′(θ; Xi)} =


/σF 
 /(σF)



I(F) = cov{ℓ′(θ; Xi)} =


/σF γ/(σF)

γ/(σF) γ/(σF)
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Bayesian estimation MS .; AoS 

model

prior

posterior

sample
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Frequentist and Bayesian contrast

Frequentist:

• There is a xed parameter (unknown) we are trying to learn
• Our methods are evaluated using probabilities based on f (x; θ)

Bayesian:

• The parameter can be treated as a random variable
• We model its distribution π(θ)

• Combine this with a model f (x | θ)
• Update prior belief on the basis of the data

Mathematical Statistics II January   



Example: Binomial MS .; AoS Ex..

X, . . . , Xn i.i.d. Bernoulli (θ) π(θ;α,β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−(− θ)β−, < θ < 

posterior mean, mode
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Example: censored exponential MS .

X, . . . , Xn i.i.d. Exponential (λ) π(λ) ∼ Exp(α)

censored at r smallest x; let Yi = X(i), i = , . . . , r

f (y | λ) =
r

i=

λr exp(−λyi)
n

i=r+

exp(−λyr) = λr exp[−λ{Σr
i=yi + (n− r)yr}]
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... Example: censored exponential MS .

f (y | λ) =
r

i=

λr exp(−λyi)
n

i=r+

exp(−λyr) = λr exp{−λΣr
i=yi+(n−r)yr}, π(λ) = α exp(−αλ)

π(λ | y)

posterior mean and and mode
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Exponential families and conjugate priors MS p.,

f (x; θ) = exp{c(θ)S(x)− d(θ) + h(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}
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Exponential families and conjugate priors MS p.,

f (x; θ) = exp{c(θ)S(x)− d(θ) + h(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}

Example: f (x; θ) = θ(− θ)x, x = , , ...; < θ < 
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Exponential families and conjugate priors MS p.,

f (x; θ) = exp{c(θ)S(x)− d(θ) + h(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}

Example: f (x; θ) = θ(− θ)x, x = , , ...; < θ < 

Example: f (x;µ) = √
π exp{− 

 (x − µ)}
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Example: Bivariate normal EH .
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... Bivariate normal EH .

f (θ̂ | θ) = 
π
(n− )(− θ)(n−)/(− θ̂)(n−)/

 ∞




cosh(w)− θθ̂)

dw
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Example: Bivariate normal EH .
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Example: Binomial SM Ex..

prior for hospital A Beta(, ) posterior mean
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Example: Binomial SM Ex..

put all hospitals together;  failures ‘
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Choosing priors MS p. 

• conjugate priors

• non-informative priors at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Flat priors MS p.

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indierence’

• example: Beta (,) prior for Bernoulli probability

• example .: X ∼ N(µ, ),π(µ) ∝ 
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Flat priors MS p.

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indierence’

• example: Beta (,) prior for Bernoulli probability

• example .: X ∼ N(µ, ),π(µ) ∝ 

• improper priors can lead to proper posteriors ntbc

• priors at in one parameterization are not at in another
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... Flat priors

• Example: X ∼ Bin(n, θ), < θ < ; θ ∼ U(, )

• log-odds ratio ψ = ψ(θ) = log{θ/(− θ)}

• π(ψ) =
eψ

(+ eψ) ,−∞ < ψ < ∞

• prior probability − < ψ <  ≈ .

• an invariant prior: π(θ) ∝ I/(θ)
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Jereys’ prior MS p 

• π(θ) ∝ I/(θ)

• Example: X ∼ Bin(n, θ) I(θ) = n/{θ(− θ)},  < θ < 

• Example .: X ∼ Poisson(λ), I(λ) = /λ, λ >  posterior proper?

• Jereys’ prior for multiparameter θ: π(θ) ∝ |I(θ)|/ not recommended even by Jereys

• Example: X, . . . , Xn i.i.d. N(µ,σ) I(µ,σ) =
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Marginalization

• Bayes posterior carries all the information about θ, given x by denition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =

• if θ = (ψ,λ), ...

• or, if ψ = ψ(θ)

• in this context, ‘at’ priors can have a large inuence on the marginal posterior
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Example: many normal means Stein, 
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Statistics in the News

(Link)

• “The peer-reviewed statistical analysis was
conducted by academics at the London School of
Hygiene & Tropical Medicine, Yale University and
other institutions, using a statistical method
called capture-recapture analysis”

• “The study used death toll data from the health
ministry, an online survey launched by the
ministry for Palestinians to report relatives’
deaths, and social media obituaries”

• “Patrick Ball, a statistician at the US-based
Human Rights Data Analysis Group not involved
in the research, has used capture-recapture
methods to estimate death tolls for conicts in
Guatemala, Kosovo, Peru and Colombia.
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https://www.theguardian.com/world/2025/jan/10/gaza-death-toll-40-higher-than-official-number-lancet-study-finds
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