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Today

. Upcoming seminars of interest
. Recap Jan   KL-divergence  delta method
. Likelihood ratio tests and prole likelihood SM ., MS .
. computing MLEs, EM algorithm, nonparametric MLE, misspecied models MS
Ch. .,,; .

. Bayesian inference and estimation MS Ch..
. HW, Statistics in the News

Upcoming seminars

• Department Seminar Thursday January  . – .
Hydro Building, Room 
Deanna Needell, UCLA “Fairness and Foundations in Machine Learning ”

• CANSSI Ontario online
Genevieve Gauthier, HEC “Enhancing deep hedging of options”
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https://www.statistics.utoronto.ca/events/fairness-and-foundations-machine-learning
https://canssiontario.utoronto.ca/event/cast-genevieve-gauthier/


Recap

• data xn = (x, . . . , xn) independent observations; model f (xn; θ) =

f (xi; θ), θ ∈ R

• limit theorem
√
n(θ̂ − θ)

d→ N(, I−(θ)) In(θ) = nI(θ) = varθ{ℓ′(θ; Xn)}

• approximation θ̂
.∼ N{θ, I−n (θ̂)}, or θ̂ .∼ N{θ, j−(θ̂)} j(θ) = −ℓ′′(θ; xn)
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Recap

• data xn = (x, . . . , xn) independent observations; model f (xn; θ) =

f (xi; θ), θ ∈ R

• limit theorem
√
n(θ̂ − θ)

d→ N(, I−(θ)) In(θ) = nI(θ) = varθ{ℓ′(θ; Xn)}

• approximation θ̂
.∼ N{θ, I−n (θ̂)}, or θ̂ .∼ N{θ, j−(θ̂)} j(θ) = −ℓ′′(θ; xn)

• data xn = (x, . . . , xn) independent observations; model f (x;θ) =

f (xi;θ), θ ∈ Rp

• limit theorem
√
n{I(θ)}/(θ̂ − θ)

d→ Np(, Ip)
• approximation θ̂

.∼ Np{θ, I−n (θ̂)}, or θ̂ .∼ Np{θ, j−(θ̂)} Check Cheatsheet
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Recap

• data xn = (x, . . . , xn) independent observations; model f (xn; θ) =

f (xi; θ), θ ∈ R

• limit theorem
√
n(θ̂ − θ)

d→ N(, I−(θ)) In(θ) = nI(θ) = varθ{ℓ′(θ; Xn)}

• approximation θ̂
.∼ N{θ, I−n (θ̂)}, or θ̂ .∼ N{θ, j−(θ̂)} j(θ) = −ℓ′′(θ; xn)

• data xn = (x, . . . , xn) independent observations; model f (x;θ) =

f (xi;θ), θ ∈ Rp

• limit theorem
√
n{I(θ)}/(θ̂ − θ)

d→ Np(, Ip)
• approximation θ̂

.∼ Np{θ, I−n (θ̂)}, or θ̂ .∼ Np{θ, j−(θ̂)} Check Cheatsheet

• Theorem .
• data xn = (x, . . . , xn) independent observations J(θ) = Eθ{−ℓ′′(θ; X)}/n

• limit theorem
√
n(θ̂ − θ)

d→ N{, J−(θ)I(θ)J−(θ)} slightly more general

• In MS Examples . and ., I(θ) = J(θ)
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... Recap

• proof requires many smoothness conditions on underlying model
• proof requires θ̂ p→ θ MS p.; Thm .,

• i.i.d. can oen be weakened to independent (not i.d.) observations,
or even dependent need WLLN and CLT

• MS Theorem ., p. has a careful proof for θ ∈ R
see also likelihood cheatsheet long version

• key step is
√
n(θ̂ − θ) ≃

−n−/Σn
i=ℓ

′(Xi; θ)
n−Σn

i=ℓ
′′(Xi; θ)

and
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... Recap

• proof requires many smoothness conditions on underlying model
• proof requires θ̂ p→ θ MS p.; Thm .,

• i.i.d. can oen be weakened to independent (not i.d.) observations,
or even dependent need WLLN and CLT

• MS Theorem ., p. has a careful proof for θ ∈ R
see also likelihood cheatsheet long version

• key step is
√
n(θ̂ − θ) ≃

−n−/Σn
i=ℓ

′(Xi; θ)
n−Σn

i=ℓ
′′(Xi; θ)

and

• vector version is √
nΣp

k=(θ̂k − θk){n−ℓ′′jk(θ̂)} ≃ −n−/ℓ′j(θ),
j = , . . . , pMathematical Statistics II January   



... Recap MS .

• maximum likelihood estimators minimize the KL-divergence to the data
• KL divergence from f true to fθ model :

KL(fθ; f) ≡ Ef log

f(X)
fθ(X)


= −Ef log{f (X; θ)}+ Ef log f(X)

• estimate of Ef log{f (X; θ)}?

• minimize KL(fθ; f) same as maximize ℓ(θ; x, . . . , xn)
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Your friend the delta-method MS Th.. and p.

Suppose θ ∈ Rp, Xn = (Xn, . . . , Xpn) ∈ Rp

an(Xn − θ)
d→ Z,

and g(x) is continuously dierentiable at θ, then {g(x), . . . gk(x)} ∈ Rk

an{g(Xn)− g(θ)} d→ D(θ)Z

where D(θ) =

Mathematical Statistics II January   



... Your friend the delta-method MS Th.. and p.

√
n(θn − θ)

d→ Np{, I−(θ)}

√
n{g(θn)− g(θ)} d→ N{,g′(θ)TI−(θ)g′(θ)}

See also AoS .
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Example MS Ex..

X, . . . , Xn i.i.d. Gamma (α,λ)

f (xi;λ,α) =


Γ(α)
λαxα−i exp(−λxi)
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... Example

nd a.var(µ̂) via mv delta method
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Calculating maximum likelihood estimators MS .; AoS ..

Newton-Raphson:
 = ℓ′(θ̂) ≈ ℓ′(θ) + ℓ′′(θ)(θ̂ − θ)

θ̂ ≈ θ − {ℓ′′(θ)}−ℓ′(θ)

• suggests iteration

θ̂(k+) = θ̂(k) + {−ℓ′′(θ̂(k))}−ℓ′(θ̂(k)) = θ̂(k) +
S(θ̂(k))
H(θ̂(k))

MS p.; note change in notation
• requires reasonably good starting values for convergence
• need −ℓ′′(θ̂(k)) to be non-negative denite
• Fisher scoring replaces −ℓ′′(·) by its expected value
• N-R and F-S are gradient methods; many improvements have been developed
• solution is a global max only if ℓ(θ) is concave
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... Calculating maximum likelihood estimators MS .; AoS ..

E-M algorithm: procedure

• complete data X ∼ fX(x; θ)
• observed data y = (y, . . . , ym), with yi = gi(x) many-to-one

• joint density fY(y; θ) =

A(y) fX(x; θ)dx A(y) = {x; yi = gi(x), i = , . . . ,m}

• algorithm:
. (E step) estimate the complete data log-likelihood function for θ using current guess θ̂(k)

. (M step) maximize that function over θ and update to θ̂(k+) usually by N-R or Fisher scoring

• likelihood function increases at each step
• can be implemented in complex models
• doesn’t automatically provide an estimate of the asymptotic variance

but methods exist to obtain this as a side-product
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Max vs Sup MS .
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... Max vs Sup SM .
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Example MS Ex..

• fX(xi;λ, µ,α) = α
e−λλx

x! + (− α)
e−µµx

x! , x = , , ...;λ, µ > , < α < 
• Observed data: x, . . . , xn
• Complete data: (x, y), . . . , (xn, yn); yi ∼ Bernoulli(α)
• Complete data log-likelihood function:

ℓc(α,λ, µ; y, x) =
n

i=

yi{log(α) + xi log(λ)− λ}+
n

i=

(− yi){log(− α) + xi log(µ)− µ}

•

E
θ̂
(k){ℓc(α,λ, µ; y, x) | x} =

n

i=

ŷi{log(α)+xi log(λ)−λ}+
n

i=

(−ŷi){log(−α)+xi log(µ)−µ}

• ŷi = E(Yi | xi; θ̂
(k)

) see p. for exact value

• maximizing values of θ = (α,λ, µ) can be obtained in closed form p.
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... Example
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Likelihood ratio statistic SM ., MS .

• model f (x;θ), θ ∈ Rp

• likelihood and log-likelihood function L(θ; x), ℓ(θ; x)
• maximum likelihood estimator θ = θ(x)

• hypothesized value θ for θ
• likelihood ratio statistic w(θ) = {ℓ(θ)− ℓ(θ)}

• Theorem: Under ... regularity conditions on the model ... if θ is the true value

w(θ)
d→ χp, n→ ∞,

• Approximation: {θ : w(θ) ≥ χp(α)/} is a − α condence set for θ
pr{χp ≥ χp(α)} = α

Mathematical Statistics II January   



Likelihood quantities scalar parameter
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... Likelihood ratio statistic SM ., MS .

likelihood ratio statistic w(θ) = {ℓ(θ)− ℓ(θ)}
d→ χp
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... Likelihood ratio statistic SM ., MS .

likelihood ratio statistic w(θ) = {ℓ(θ)− ℓ(θ)}
d→ χp
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Aside: prole version
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Nonparametric MLE , Lec ; MS .

• sample x, . . . , xn independent, identically distributed, with cdf F
no parametric model assumed

• likelihood function L(F) =

f (xi)

• assume solution puts mass only at x, . . . , xn
• log-likelihood function ℓ(p) =

n
i= log(pi)

Mathematical Statistics II January   



Nonparametric MLE , Lec ; MS .

• sample x, . . . , xn independent, identically distributed, with cdf F
no parametric model assumed

• likelihood function L(F) =

f (xi)

• assume solution puts mass only at x, . . . , xn
• log-likelihood function ℓ(p) =

n
i= log(pi)

• maximized at pi = /n, i = , . . . ,n Lagrange

• gives empirical cdf

F̂n(x) =

n

n

i=

(Xi ≤ x)

• plug-in principle: if θ = T(F), θ̂ = T(F̂n) T(F) =

h(x)dF(x), e.g.
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Misspecied models MS .

• model assumption X, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n

i=

ℓ′(θ̂n; Xi) = 

• what is θ̂n estimating ?
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Misspecied models MS .

• model assumption X, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n

i=

ℓ′(θ̂n; Xi) = 

• what is θ̂n estimating ?
• dene the parameter θ(F) by

 ∞

−∞
ℓ′{x; θ(F)}dF(x) = 

• √
n{θ̂n − θ(F)} d→ N(,σ)

•
σ =


[ℓ′{x; θ(F)}]dF(x)

(

[ℓ′′{x; θ(F)}]dF(x))Mathematical Statistics II January   



Misspecied models MS .

• √
n{θ̂n − θ(F)} d→ N(,σ)

•
σ =


[ℓ′{x; θ(F)}]dF(x)

(

[ℓ′′{x; θ(F)}]dF(x))

• more generally, for θ ∈ Rp,
√
n{θ̂n − θ(F)} d→ Np{,G−(F)}

•
G(F) = J(F)I−(F)J(F),

•
J(F) =


−ℓ′′{θ(F); xi}dF(xi), I(F) =


{ℓ′(θ(F); xi)}{ℓ′(θ(F); xi)}TdF(xi)

Godambe information
sandwich variance
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Misspecied models MS .
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Bayesian estimation MS .; AoS 

model

prior

posterior

sample
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Frequentist and Bayesian contrast

Frequentist:

• There is a xed parameter (unknown) we are trying to learn
• Our methods are evaluated using probabilities based on f (x; θ)

Bayesian:

• The parameter can be treated as a random variable
• We model its distribution π(θ)

• Combine this with a model f (x | θ)
• Update prior belief on the basis of the data
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Example: Binomial MS .; AoS Ex..

X, . . . , Xn i.i.d. Bernoulli (θ) π(θ;α,β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−(− θ)β−, < θ < 

posterior mean, mode
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Statistics in the News

• “For decades, moderate drinking was said to help
prevent heart attacks and strokes.”

• “But growing research has linked drinking,
sometimes even within the recommended limits,
to various types of cancer”

• “But alcohol directly contributes to ,
cancer cases and , related deaths each
year, the surgeon general, Dr. Vivek Murthy, said.

• He called for updating the labels to include a
heightened risk of breast cancer, colon cancer
and at least ve other malignancies now linked
by scientic studies to alcohol consumption.”

• “The current warning label has not been changed
since it was adopted in , even though the
link between alcohol and breast cancer has been
known for decades.”

NY TimesMathematical Statistics II January   

https://www.nytimes.com/2025/01/03/health/alcohol-surgeon-general-warning.html
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We now know that even a small amount of alcohol 
can be damaging to health.
Science is evolving, and the recommendations about alcohol use need to change.

Research shows that no amount or kind of alcohol is good for your health. 
It doesn’t matter what kind of alcohol it is—wine, beer, cider or spirits.

Drinking alcohol, even a small amount, is damaging to everyone, 
regardless of age, sex, gender, ethnicity, tolerance for alcohol or lifestyle.

That’s why if you drink, it’s better to drink less. 

Drinking less is better 

It’s time to pick a new target

Tips to help you stay on target
• Stick to the limits you’ve set for yourself.

• Drink slowly.

• Drink lots of water.

• For every drink of alcohol, have one non-alcoholic drink.

• Choose alcohol-free or low-alcohol beverages.

• Eat before and while you’re drinking.

• Have alcohol-free weeks or do alcohol-free activities.

What will your weekly drinking target be?

Count how many drinks you have in a week.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

TOTAL

Drinking less benefits you and others. It reduces your risk 
of injury and violence, and many health problems that can 
shorten life.

Set a weekly drinking target. If you’re going to drink, 
make sure you don’t exceed 2 drinks on any day.

A standard 
drink means:

Aim to drink less

Here is a good way to do it

No risk 0
0 drinks per week    
Not drinking has benefits, such as better health, 
and better sleep.  

 

 

4

5

6

3

Moderate
risk

3 to 6 standard drinks per week  
Your risk of developing several different types of cancer, 
including breast and colon cancer, increases.

Increasingly
high risk

7 or more standard drinks per week   
Your risk of heart disease or stroke increases. 

Each additional standard drink   
Radically increases the risk of these alcohol-related 
consequences. 

 

7

8

+ ++

Alcohol consumption per week
Drinking alcohol has negative consequences. The more alcohol you 
drink per week, the more the consequences add up. 

341 ml (12 oz) of beer 
5% alcohol 

Beer

43 ml (1.5 oz) of spirits 
40% alcohol 

Spirits 
(whisky, vodka, gin, etc.)

or

or

341 ml (12 oz) of drinks
5% alcohol

Cooler, cider, 
ready-to-drink

142 ml (5 oz) of wine
12% alcohol 

Wine
or

During 
pregnancy,
none is the only 
safe option.

1 to 2 standard drinks per week     
You will likely avoid alcohol-related consequences 
for yourself and others.

1

2
Low
risk

0 1 2 3 4 5 6

Good to know
You can reduce your drinking in steps! Every drink counts: 
any reduction in alcohol use has benefits.

The Canadian Centre on Substance Use and Addiction was commissioned by Health Canada
to produce Canada's Guidance on Alcohol and Health.

This document is a summary for the public of the new guidance. For more information, please visit www.ccsa.ca.

© Canadian Centre on Substance Use and Addiction, 2023
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