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1. Recap Jan 28 marginal posterior, hierarchical Bayes
2. Optimality in estimation: efficiency, CRLB MS §6.4
3. Optimality in estimation: decision theory MS §6.2
4. HW4

5. Office Hour today 3.30 - 4.30
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Choosing priors MS p.287 ff

* conjugate priors

 non-informative priors flat, “ignorance”
* convenience priors

« minimally/weakly informative priors

« hierarchical priors
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Marginal posterior distributions

+ Bayes posterior carries all the information about 9, given x by definition
- probabilities for any set A computed using the posterior distribution

*pr(@cA|x)= [,7(6|x)do

J L@, Xix)m (), A)dA
J L@, X X)m (1), ) dipd A

conify=9(0), mm(y|x)=[,7(0]x)d0, A={0cO:y(0)=1}

S0 = (0 A), (%) = [ 70X 0dA =

« with marginalization, ‘flat’ priors can have a large influence on the marginal
posterior
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Example: many normal means Stein, 1959

Normal Circle, k=2, 5, 10
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Bayesian hierarchical models SM 11.4, Eg. 11.25

« Xi | 0; ~ N(6;,v;) v; known
© 0; | p~ N(u,o0?) o2 known
o p~ N(uo, ) hyperparameters
< f(x|0,p)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

* X | 0; ~ N(6;,v;)
< 0 | n~ N(N702)
o p~ N(uo, ) hyperparameters

* (0, | X)
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Bayesian hierarchical models

SM 11.4. ES. 11.25

(| ) =
var(y: | x) =
(01 %) =
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H (31/215)
B (18/148)
K (29/256)
J (8/97)

C (8/119)

1 (14/207)
F (13/196)
L (24/360)
G (9/148)
D (46/810)
E (8/211)
A (0/47)

11 - Bayesian Models

10
Death rate (%)

20

Figure 11.11  Posterior
summaries for mortality
rates for cardiac surgery
data. Posterior means and
0.95 equitailed credible
intervals for separate
analyses for cach hospital
are shown by hollow
circles and dotted lines,
while blobs and solid lines
show the corresponding
quantities for a
hierarchical model. Note
the shrinkage of the
estimates for the
hierarchical model
towards the overall
posterior mean rate,
shown as the solid vertical
line; the hierarchical
intervals are slightly
shorter than those for the
simpler model.



Bayesian hierarchical models SM 11.4,. Eg. 11.25

B0 %) = s + B [ 001 - )
' _ 1o/7 + Txi/(0% + %)
R Y I LI/ E")

+ If 02 unknown, then need to sample from the posterior, no closed form available

- Figure 1111 applies similar ideas, plus sampling from the posterior, in logistic
regression
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Optimality of estimators MS Ch 6

- recall, in regular models, 1(0) definition

V(@ - 0) 5 N{o,I7"(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?
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Optimality of estimators MS Ch 6

- recall, in regular models, 1(0) definition

V(@ - 0) 5 N{o,I7"(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?

* Yes, there's a sense in which it is “as small as possible”
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Optimality of estimators MS Ch 6

recall, in regular models, 1(0) definition

V(@ - 0) 5 N{o,17'(8)}

- smaller variance means more precise estimation
« Is 17'(0) small?

* Yes, there's a sense in which it is “as small as possible”

« Step 1: suppose X = X;,..., X, is an i.i.d. sample from a density f(x; 6)

« LetU=U(X) = ¢(6;X) score function
« Let S = S(X) be an unbiased estimator of g(6) Eo{S(X)} = g(6)
« then vary(S) > {Covy(S, U)}?/Vary(U) proof: Cauchy-Schwarz

Mathematical Statistics 11 February 42025 9



Cramer-Rao lower bound MS Ch 6.4; AoS Ch 9.8

« Cauchy-Schwartz inequality: Z,, Z,, with E(Z2) < 00, E(Z3) < 0o,  MS Ex 2.7; HW2 STA2112F
{Cov(Z,,2,)}? < var(Z,)var(Z,)

- take Z, = S(X), an unbiased estimator of g(0)

« take Z, = U(X) = Z¢'(0; X;) score function

« then
{Covy(S, U)}* < varg(S)varg(U)

Cov3 (S, U)

vary (S) > I,,(6)
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... Cramer-Rao lower bound MS Ch 6.4; AoS Ch 9.8

Covy(S, V)
1n(0)

vary(S) >

« Covy(S, V)

- when would we get equality?
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... Cramer-Rao lower bound MS Ch 6.4; AoS Ch 9.8

Covy(S, V)
1n(0)

vary(S) >

« Covy(S, V)
- when would we get equality?

- special case, g(0) = 0
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... Cramer-Rao lower bound MS Ch 6.4; AoS Ch 9.8

+ CRLB attained <= U(6;X) = A(8)S(X) + B(9) MS: Ug () (p. 323)

« MS Example 612: X, ..., Xy i.i.d. Poisson(\)
« X = X has variance = 1/I(0)
« For estimating \? three estimators are proposed

. . 1 4N 2)2
an unbiased estimator T = - § Xi(X; — 1) - + -
. . = A3 2)2
the best unbiased estimator T, = E(T, | X) AT —
2 A3 A2
the MLE T, = 32 A 5 A

n n2 +n3
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... Cramer-Rao lower bound MS Ch 6.4; AoS Ch 9.8

« A more interesting example, logistic density

o exp(x — 0)
fx:6) = {1+ exp(x —0)}?

- CRLB of an unbiased estimator of 0 is 3/n

+ by previous argument, not attained in finite samples
« e.g. X is unbiased for 6,

N
S|w

var(X) =

24
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What about maximum likelihood estimator? MS Ch. 6.5

- Suppose f, is a sequence of estimators with
Vn(, — 0) % N{o,%(0)}

« Isa3(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6
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What about maximum likelihood estimator? MS Ch. 6.5

- Suppose f, is a sequence of estimators with

Vn(, — 0) % N{o,%(0)}

Is a2(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6

¢ Isthe MLE ‘regular’?

* Yes, under the ‘usual regularity conditions’
« And, its a.var = lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. 6.5

- Suppose f, is a sequence of estimators with

Vn(, — 0) % N{o,%(0)}

Is a2(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6

¢ Isthe MLE ‘regular’?
* Yes, under the ‘usual regularity conditions’
« And, its a.var = lower bound “BAN”

there are other regular estimators that are also asymptotically fully efficient
- and might be better in finite samples
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Asymptotic efficiency MS 4.8

« comparison of two consistent estimators via limiting distributions

o V(T — 0) % N{0,02(0)},  /A(Ton — 0) 5 N{0,02(0)}

3(9)
a3(0)

- asymptotic relative efficiency of T,, relative to T, is
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Asymptotic efficiency MS 4.8

« comparison of two consistent estimators via limiting distributions

o V(T — 0) % N{0,02(0)},  /A(Ton — 0) 5 N{0,02(0)}

+ asymptotic relative efficiency of T,, relative to T, is Z’:EEZ;

« if T,y is the MLE @, then 02(6) = I7'(6) as small as possible
« the MLE is fully efficient

+ the asymptotic efficiency of T, is 1/07(6)1(6) relative to the MLE implicit
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Decision theory and Bayes estimators AoS Ch 12, MS Ch 6.2

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, Kullback-Liebler
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Decision theory and Bayes estimators AoS Ch 12, MS Ch 6.2

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, Kullback-Liebler

Risk function of 4 is expected loss:
Ro(0) = Eo{L(6,6)}

MSE, MAE, bias/variance trade-off
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Decision theory and Bayes estimators AoS Ch 12, MS Ch 6.2

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, Kullback-Liebler

Risk function of 8 is expected loss:
Ro(6) = Eo{L(B,0)}

MSE, MAE, bias/variance trade-off

* Risk function depends on 6, and on the form of the estimator
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Examples: squared error loss A0S 12.2, 12.3; MS EX.6.1

X ~ N(6,1)

Mathematical Statistics 11

12.2 Comparing Risk Functions 195

3 1
5 1 R(6,0)
1 R(0.6,)
0 : \+/ —

0 1 2 3 4 5

FIGURE 12.1. Comparing two risk functions. Neither risk function dominates the
other at all values of 6.

February 4 2025 17



Examples: squared error loss

AoS 12.2, 12.3; MS Ex.64

Risk

X ~ Binom(n, 0)

r
FIGURE 12.2. Risk functions for p; and ps in Example 12.3. The solid curve is
R(p1). The dotted line is R(p2).

a=p=/n/4
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Optimality MS 6.2

» an estimator is admissible if no other estimator has a smaller risk function

- For a given loss function L, an estimator § is inadmissible if there is another
estimator 4 with
Ro(0) < Re(d), foralld e O,

and
Ro,(6) < Ry, (), forsome 6, € ©.
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Optimality MS 6.2

» an estimator is admissible if no other estimator has a smaller risk function

- For a given loss function L, an estimator § is inadmissible if there is another
estimator 4 with
Ro(0) < Re(d), foralld e O,

and
Ro,(6) < Ry, (), forsome 6, € ©.

« MS Ex 6.1; X ~ Xexp(—Ax): under squared-error loss, A is inadmissible:
Beat by A = (n —1)\/n
But under a different loss function the MLE has smaller risk than A
L(0,6) =log(§)—1-%
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Optimal Bayes estimators MS 6.2

- the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

Re() = [ Ra(O)r(0)do
« Optimal Bayes estimators minimize the expected posterior loss:
/ L{D(x), 0)}(6 | X)do
- Example: squared-error loss L(f,0) = (6 — 0)2 need to minimize over §
/ (6 — 0)*x(6 | x)do
- solution A(x) = E(A | x) posterior mean
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Bayes estimators are admissible MS 6.2

- Suppose f is a Bayes estimator and is unique

- Suppose we have another estimator 4 with a smaller frequentist risk function:

Rg(é, 9) < Rg(é, 9)

Re(f) = /

» The Bayes risk of § is
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Bayes estimators are admissible MS 6.2

- Suppose f is a Bayes estimator and is unique

- Suppose we have another estimator 4 with a smaller frequentist risk function:

Rg(é, 9) < Rg(é, 9)

Re(f) = /

instead of minimizing the average (over 7(9)) of the risk function we could

» The Bayes risk of § is

min max Ry(0)

Definition §6.2
» such estimators are called minimax
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Decision theory

- finding the ‘best’ point estimator §

* best = smallest expected loss

* no asymptotic theory involved

« can find these using a Bayesian argument
+ but the justification is not Bayesian

- another non-asymptotic approach to ‘best’ estimators: UMVU MS 6.3
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Bayesian philosophy AoS 114

F1 Probability refers to limiting relative frequencies. Probabilities are ob-
jective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not fluctu-
ating, no useful probability statements can be made about parameters.

F3 Statistical procedures should be designed to have well-defined long run
frequency properties. For example, a 95 percent confidence interval should
trap the true value of the parameter with limiting frequency at least 95
percent.
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Bayesian philosophy AoS 114

176 11. Bayesian Inference

B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just data
which are subject to random variation. For example, I might say that
“the probability that Albert Einstein drank a cup of tea on August 1,
1948” is .35. This does not refer to any limiting frequency. It reflects my
strength of belief that the proposition is true.

B2 We can make probability statements about parameters, even though
they are fixed constants.

B3 We make inferences about a parameter 6 by producing a probability
distribution for . Inferences, such as point estimates and interval esti-
mates, may then be extracted from this distribution.
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Bayes Rules! Johnson, Ott, Dogecu 1,3,2

JUESTION 1: Interpreting probability

P(Heads) = 0.5 means...
If | flip this coin over and over, roughly 50% will be Heads.
Heads and Tails are equally plausible.

L%

Both a and b make sense.
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https://www.bayesrulesbook.com/

Bayes Rules! Johnson, Ott, Dogecu 1,3,1

QUESTION 2: Interpreting probability (again)

P(candidate A wins) = 0.8 means...

a. If we observe this election over & over, candidate A will win
roughly 80% of the time.

b. Candidate A is 4 times more likely to win than to lose.

c. The pollster’s calculation is wrong.
Candidate A will either win or lose, thus their probability of
winning can only be 1 or O.
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Bayes Rules! Johnson, Ott, Dogecu 3,1

QUESTION 3: Bigger picture

| claim that | can predict the outcome of a coin flip.

Mine claims she can distinguish between non-vegan and vegan poutine.

We both succeed in 10 of 10 trials! What do you conclude?

a. My claim is ridiculous. You're still more confident in Mine’s
claim than in my claim.

b. 10-out-of-10is 10-out-of-10 no matter the context. Thus the
evidence supporting my claim is just as strong as the evidence
supporting Mine’s claim.
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Bayes Rules! Johnson, Ott, Dogecu 3,1

QUESTION 4: Asking questions

You've tested positive for a very rare genetic trait.
If you only get to ask the doctor one question, which would it be?

a. P(rare trait | +)
Given the positive test result, what's the probability | actually
have the trait?

b. P(+|rare trait)
If I don’t have the trait, what's the chance | would have tested
positive anyway?
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LII. An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
Myr. Bayes, F. R.S. communicated by My
Price, in a Letter to John Canton, A. M.
F.R. S.

Dear Sir,

Read Dec. 23, J Now fend you an effay which I have

1765 I found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.
Experimental philofophy, you will find, is nearly in-
terefted in the fubjec of it; and on this account there
feems to be particular reafon for thinking that a com~
munication of it to the Royal Society cannot be im-

propet. ) Ll A
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... Some history

528 Dr Fisher, Inverse probability

Inverse Probability. By R. A. FisHER, Se.D., F.R.S,, Gonville and
Caius College; Statistical Dept., Rothamsted Experimental Stati

[Received 23 July, read 28 July 1930.]

I know only one case in mathematics of a doctrine which has
been accepted and developed by the most eminent men of their
time, and is now perhaps accepted by men now living, which at the
same time hrs appeared to a succession of sound writers to be
fundamentally false and devoid of foundation. Yet that is quite
exactly the position in respect of inverse probability. Bayes, who
seems to have first attempted to apply the notion of probability,
not only to effects in relation to their causes but also to causes in
relation to their effects, invented a theory, and evidently doubted
its soundness, for he did not publish it during his life. It was
posthumously published by Price, who seems to have felt no doubt
of its soundness. It and its applications must have made great
headway during the next 20 years, for Laplace takes for granted
in a highly generalised form what Bayes tentatively wished to
postulate in a special case.

Before zoing over the formal mathematical relationships in
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This just in

“The trifle in my hand that I wanted to mention is that you may remember, that in the dittoed draft
of my book [Savage, 1954], one of the earliest ditto drafts, I attributed to R. A. Fisher the expres-
sion of the idea that since the a priori distribution washes out in a large sample, that there ought to
be some intrinsic way of analyzing the data in itself without ever postulating a prior distribution
atall. Idon’t remember whether I criticized that argument on the spot, butit’s not valid, of course,
because the prior distribution does wash out, does so only exponentially, and the rate at which it
washes out does depend considerably on what prior distribution it is. Thus for example, since 'm
firmly convinced that extrasensory perception does not exist, it would take tremendous amounts
of data, of relevant opposing data, to bring me to the opposite point of view. Well, the thing was,
we couldn’t find this passage anywhere in Fisher and, when I wrote him, he said it was ridiculous,
he never could’ve said any such thing, but Bob Schlaifer has found the reference for me, and it’s in
Paper 24 of Fisher’s collected papers, it’s the passage that straddles pages 286 and 287 and I just
thought you might like to look at it for yourself.”

Here is the relevant paragraph from Fisher (1934):

‘As an axiom this supposition [a uniform prior distribution] of Bayes fails, since the truth of an
axiom should be manifest to all who clearly apprehend its meaning, and to many writers, includ-
ing, it would seem, Bayes himself, the truth of the supposed axiom has not been apparent. It has,
however, been frequently pointed out that, even if our assumed form for f(x)dx be somewhat in-
accurate, our conclusions, if based on a considerable sample of observations, will not greatly be
affected; and, indeed, subject to certain restrictions as to the true form of f(x)dx, it may be shown
that our errors from this cause will tend to zero as the sample of observations is increased indef-
initely. The conclusions drawn will depend more and more entirely on the facts observed, and less
and less upon the supposed knowledge a priori introduced into the argument. This property of
increasingly large samples has been sometimes put forward as a reason for accepting the postulate
of knowledge a priori. It appears, however, more natural to infer from it that it should be possible
to draw valid conclusions from the data alone, and without a priori assumptions.—If the justifi-
cation for any particular form of f(x) is merely that it makes no difference whether the form is
Mathematical Statistics 11 Februéﬁ? gg, we may well ask what the expression is doing in our reasoning at all, and whether, 32

were a togethe( omitted, we could not without its aid draw whatever inferences may, with

validity, be inferred from the data. In particular we may question whether the whole difficulty



