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Today

󱸯. Recap Jan 󱸰󱸶 marginal posterior, hierarchical Bayes
󱸰. Optimality in estimation: e󰎏ciency, CRLB MS 󱺕󱸴.󱸲
󱸱. Optimality in estimation: decision theory MS 󱺕󱸴.󱸰
󱸲. HW󱸲
󱸳. O󰎏ce Hour today 󱸱.󱸱󱸮 - 󱸲.󱸱󱸮

Department Seminar Thursday February 󱸴 󱸯󱸯.󱸮󱸮 – 󱸯󱸰.󱸮󱸮
Hydro Building, Room 󱸷󱸮󱸯󱸲
“ Numerical integration in statistical problems ”
Alex Stringer, U Waterloo
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Choosing priors MS p.󱸰󱸶󱸵 󰎎

• conjugate priors

• non-informative priors 󰎐at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Marginal posterior distributions

• Bayes posterior carries all the information about θ, given x by de󰎓nition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =
󰁕
A π(θ | x)dθ

• if θ = (ψ,λ), πm(ψ | x) =
󰁝

π(ψ,λ | x)dλ =

󰁕
L(ψ,λ; x)π(ψ,λ)dλ󰁕
L(ψ,λ; x)π(ψ,λ)dψdλ

• or, if ψ = ψ(θ), πm(ψ | x) =
󰁕
A π(θ | x)dθ, A = {θ ∈ Θ : ψ(θ) = ψ}

• with marginalization, ‘󰎐at’ priors can have a large in󰎐uence on the marginal
posterior
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Example: many normal means Stein, 󱸯󱸷󱸳󱸷
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Bayesian hierarchical models SM 󱸯󱸯.󱸲, Eg. 󱸯󱸯.󱸰󱸳

• xi | θi ∼ N(θi, vi) vi known

• θi | µ ∼ N(µ,σ󱸰) σ󱸰 known

• µ ∼ N(µ󱸮, τ 󱸰) hyperparameters

• f (x | θ, µ)
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Bayesian hierarchical models SM 󱸯󱸯.󱸲. Eg. 󱸯󱸯.󱸰󱸳

• xi | θi ∼ N(θi, vi)

• θi | µ ∼ N(µ,σ󱸰)

• µ ∼ N(µ󱸮, τ 󱸰) hyperparameters

• π(θ, µ | x)

Mathematical Statistics II February 󱸲 󱸰󱸮󱸰󱸳 󱸴



Bayesian hierarchical models SM 󱸯󱸯.󱸲. Eg. 󱸯󱸯.󱸰󱸳

E(µ | x) =

var(µ | x) =

E(θi | x) =
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Bayesian hierarchical models SM 󱸯󱸯.󱸲. Eg. 󱸯󱸯.󱸰󱸳

•
E(θi | x) = xi

σ󱸰

σ󱸰 + vi
+ E(µ | x)(󱸯− σ󱸰

σ󱸰 + vi
)

•
E(µ | x) = µ󱸮/τ

󱸰 +
󰁓
xi/(σ󱸰 + vi)

󱸯/τ 󱸰 +
󰁓
󱸯/(σ󱸰 + vi)

• If σ󱸰 unknown, then need to sample from the posterior, no closed form available

• Figure 󱸯󱸯.󱸯󱸯 applies similar ideas, plus sampling from the posterior, in logistic
regression
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Optimality of estimators MS Ch 󱸴

• recall, in regular models, I(θ) de󰎓nition

√
n(θ̂ − θ)

d→ N{󱸮, I−󱸯(θ)}

• smaller variance means more precise estimation
• Is I−󱸯(θ) small?
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Optimality of estimators MS Ch 󱸴

• recall, in regular models, I(θ) de󰎓nition

√
n(θ̂ − θ)

d→ N{󱸮, I−󱸯(θ)}

• smaller variance means more precise estimation
• Is I−󱸯(θ) small?
• Yes, there’s a sense in which it is “as small as possible”
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Optimality of estimators MS Ch 󱸴

• recall, in regular models, I(θ) de󰎓nition

√
n(θ̂ − θ)

d→ N{󱸮, I−󱸯(θ)}

• smaller variance means more precise estimation
• Is I−󱸯(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step 󱸯: suppose X = X󱸯, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• Let U = U(X) = ℓ′(θ;X) score function

• Let S = S(X) be an unbiased estimator of g(θ) Eθ{S(X)} = g(θ)

• then varθ(S) ≥ {Covθ(S,U)}󱸰/Varθ(U) proof: Cauchy-Schwarz
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Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

• Cauchy-Schwartz inequality: Z󱸯, Z󱸰, with E(Z󱸰󱸯 ) < ∞,E(Z󱸰󱸰) < ∞, MS Ex 󱸰.󱸵; HW󱸰 STA󱸰󱸯󱸯󱸰F

{Cov(Z󱸯, Z󱸰)}󱸰 ≤ var(Z󱸯)var(Z󱸰)

• take Z󱸯 = S(X), an unbiased estimator of g(θ)
• take Z󱸰 = U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)}󱸰 ≤ varθ(S)varθ(U)

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

•
varθ(S) ≥

Cov󱸰θ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?

• special case, g(θ) = θ
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

• CRLB attained ⇐⇒ U(θ; X) = A(θ)S(X) + B(θ) MS: Uθ(x) (p. 󱸱󱸰󱸱)

• MS Example 󱸴.󱸯󱸰: X󱸯, . . . , Xn i.i.d. Poisson(λ)
• X̄ = λ̂ has variance = 󱸯/I(θ)
• For estimating λ󱸰 three estimators are proposed

an unbiased estimator T󱸯 =
󱸯
n
󰁛

Xi(Xi − 󱸯) 󱸲λ󱸱
n +

󱸰λ󱸰
n

the best unbiased estimator T󱸰 = E(T󱸯 | X̄)
󱸲λ󱸱
n +

󱸰λ󱸰
n󱸰

the MLE T󱸱 = λ̂󱸰
󱸲λ󱸱
n +

󱸳λ󱸰
n󱸰 +

λ

n󱸱
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... Cramer-Rao lower bound MS Ch 󱸴.󱸲; AoS Ch 󱸷.󱸶

• A more interesting example, logistic density

f (x; θ) = exp(x − θ)

{󱸯+ exp(x − θ)}󱸰

• CRLB of an unbiased estimator of θ is 󱸱/n

• by previous argument, not attained in 󰎓nite samples

• e.g. X̄ is unbiased for θ,

var(X̄) = π󱸰

󱸱n >
󱸱
n
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var 󱹫 lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. 󱸴.󱸳

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{󱸮,σ󱸰(θ)}

• Is σ󱸰(θ) ≥ 󱸯/I(θ)?
• Yes, if θ̃n is “regular”, and σ󱸰(θ) continuous in θ see MS 󱺕󱸴.󱸲, and Thm. 󱸴.󱸴

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var 󱹫 lower bound “BAN”

• there are other regular estimators that are also asymptotically fully e󰎏cient
• and might be better in 󰎓nite samples
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Asymptotic e󰎏ciency MS 󱸲.󱸶

• comparison of two consistent estimators via limiting distributions

•
√
n(T󱸯n − θ)

d→ N{󱸮,σ󱸰󱸯 (θ)},
√
n(T󱸰n − θ)

d→ N{󱸮,σ󱸰󱸰(θ)}

• asymptotic relative e󰎏ciency of T󱸯, relative to T󱸰 is
σ󱸰󱸰(θ)

σ󱸰󱸯 (θ)
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Asymptotic e󰎏ciency MS 󱸲.󱸶

• comparison of two consistent estimators via limiting distributions

•
√
n(T󱸯n − θ)

d→ N{󱸮,σ󱸰󱸯 (θ)},
√
n(T󱸰n − θ)

d→ N{󱸮,σ󱸰󱸰(θ)}

• asymptotic relative e󰎏ciency of T󱸯, relative to T󱸰 is
σ󱸰󱸰(θ)

σ󱸰󱸯 (θ)

• if T󱸰n is the MLE θ̂n, then σ󱸰󱸰(θ) = I−󱸯(θ) as small as possible

• the MLE is fully e󰎏cient

• the asymptotic e󰎏ciency of T󱸯 is 󱸯
󰀑
σ󱸰󱸯 (θ)I(θ) relative to the MLE implicit

Mathematical Statistics II February 󱸲 󱸰󱸮󱸰󱸳 󱸯󱸳



Decision theory and Bayes estimators AoS Ch 󱸯󱸰, MS Ch 󱸴.󱸰

• 󰎓nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 󱸮-󱸯 loss, Kullback-Liebler
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Decision theory and Bayes estimators AoS Ch 󱸯󱸰, MS Ch 󱸴.󱸰

• 󰎓nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 󱸮-󱸯 loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o󰎎
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Decision theory and Bayes estimators AoS Ch 󱸯󱸰, MS Ch 󱸴.󱸰

• 󰎓nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 󱸮-󱸯 loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o󰎎

• Risk function depends on θ, and on the form of the estimator
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Examples: squared error loss AoS 󱸯󱸰.󱸰, 󱸯󱸰.󱸱; MS Ex.󱸴.󱸯

X ∼ N(θ, 󱸯)
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Examples: squared error loss AoS 󱸯󱸰.󱸰, 󱸯󱸰.󱸱; MS Ex.󱸴.󱸯

X ∼ Binom(n, θ)

α = β =
󰁳
n/󱸲
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Optimality MS 󱸴.󱸰

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ󱸮(θ̃) < Rθ󱸮(θ̂), for some θ󱸮 ∈ Θ.
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Optimality MS 󱸴.󱸰

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ󱸮(θ̃) < Rθ󱸮(θ̂), for some θ󱸮 ∈ Θ.

• MS Ex 󱸴.󱸯; X ∼ λ exp(−λx): under squared-error loss, λ̂ is inadmissible:
Beat by λ̃ = (n− 󱸯)λ̂/n
But under a di󰎎erent loss function the MLE has smaller risk than λ̃

L(θ̂, θ) = log( θ
θ̂
)− 󱸯− θ

θ̂
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Optimal Bayes estimators MS 󱸴.󱸰

• the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

•
RB(θ̂) =

󰁝
Rθ(θ̂)π(θ)dθ

• Optimal Bayes estimators minimize the expected posterior loss:
󰁝
L{θ̂(x), θ)}π(θ | x)dθ

• Example: squared-error loss L(θ̂, θ) = (θ̂ − θ)󱸰 need to minimize over θ̂
󰁝
(θ̂ − θ)󱸰π(θ | x)dθ

• solution θ̂(x) = E(θ | x) posterior mean

Mathematical Statistics II February 󱸲 󱸰󱸮󱸰󱸳 󱸰󱸮



Bayes estimators are admissible MS 󱸴.󱸰

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

󰁝
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Bayes estimators are admissible MS 󱸴.󱸰

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

󰁝

• instead of minimizing the average (over π(θ)) of the risk function we could

minmaxRθ(θ̂)

De󰎓nition 󱺕󱸴.󱸰

• such estimators are called minimax
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Decision theory

• 󰎓nding the ‘best’ point estimator θ̂

• best 󱹫 smallest expected loss

• no asymptotic theory involved

• can 󰎓nd these using a Bayesian argument

• but the justi󰎓cation is not Bayesian

• another non-asymptotic approach to ‘best’ estimators: UMVU MS 󱸴.󱸱
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Bayesian philosophy AoS 󱸯󱸯.󱸯
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Bayesian philosophy AoS 󱸯󱸯.󱸯
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Bayes Rules! Johnson, Ott, Dogecu 󱸯,󱸱,󱸰
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https://www.bayesrulesbook.com/


Bayes Rules! Johnson, Ott, Dogecu 󱸯,󱸱,󱸯
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Bayes Rules! Johnson, Ott, Dogecu 󱸱,󱸯
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Bayes Rules! Johnson, Ott, Dogecu 󱸱,󱸯
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Some history
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... Some history
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This just in
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... This just in
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