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Today

. Recap Jan  marginal posterior, hierarchical Bayes
. Optimality in estimation: eciency, CRLB MS .
. Optimality in estimation: decision theory MS .
. HW
. Oce Hour today . - .
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Choosing priors MS p. 

• conjugate priors

• non-informative priors at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Marginal posterior distributions

• Bayes posterior carries all the information about θ, given x by denition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =

A π(θ | x)dθ

• if θ = (ψ,λ), πm(ψ | x) =


π(ψ,λ | x)dλ =


L(ψ,λ; x)π(ψ,λ)dλ
L(ψ,λ; x)π(ψ,λ)dψdλ

• or, if ψ = ψ(θ), πm(ψ | x) =

A π(θ | x)dθ, A = {θ ∈ Θ : ψ(θ) = ψ}

• with marginalization, ‘at’ priors can have a large inuence on the marginal
posterior
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Example: many normal means Stein, 
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Bayesian hierarchical models SM ., Eg. .

• xi | θi ∼ N(θi, vi) vi known

• θi | µ ∼ N(µ,σ) σ known

• µ ∼ N(µ, τ ) hyperparameters

• f (x | θ, µ)
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Bayesian hierarchical models SM .. Eg. .

• xi | θi ∼ N(θi, vi)

• θi | µ ∼ N(µ,σ)

• µ ∼ N(µ, τ ) hyperparameters

• π(θ, µ | x)
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Bayesian hierarchical models SM .. Eg. .

E(µ | x) =

var(µ | x) =

E(θi | x) =
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Bayesian hierarchical models SM .. Eg. .

•
E(θi | x) = xi

σ

σ + vi
+ E(µ | x)(− σ

σ + vi
)

•
E(µ | x) = µ/τ

 +

xi/(σ + vi)

/τ  +

/(σ + vi)

• If σ unknown, then need to sample from the posterior, no closed form available

• Figure . applies similar ideas, plus sampling from the posterior, in logistic
regression
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Optimality of estimators MS Ch 

• recall, in regular models, I(θ) denition

√
n(θ̂ − θ)

d→ N{, I−(θ)}

• smaller variance means more precise estimation
• Is I−(θ) small?
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Optimality of estimators MS Ch 

• recall, in regular models, I(θ) denition

√
n(θ̂ − θ)

d→ N{, I−(θ)}

• smaller variance means more precise estimation
• Is I−(θ) small?
• Yes, there’s a sense in which it is “as small as possible”
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Optimality of estimators MS Ch 

• recall, in regular models, I(θ) denition

√
n(θ̂ − θ)

d→ N{, I−(θ)}

• smaller variance means more precise estimation
• Is I−(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step : suppose X = X, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• Let U = U(X) = ℓ′(θ;X) score function

• Let S = S(X) be an unbiased estimator of g(θ) Eθ{S(X)} = g(θ)

• then varθ(S) ≥ {Covθ(S,U)}/Varθ(U) proof: Cauchy-Schwarz
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Cramer-Rao lower bound MS Ch .; AoS Ch .

• Cauchy-Schwartz inequality: Z, Z, with E(Z ) < ∞,E(Z) < ∞, MS Ex .; HW STAF

{Cov(Z, Z)} ≤ var(Z)var(Z)

• take Z = S(X), an unbiased estimator of g(θ)
• take Z = U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)} ≤ varθ(S)varθ(U)

•
varθ(S) ≥

Covθ(S,U)
In(θ)
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... Cramer-Rao lower bound MS Ch .; AoS Ch .

•
varθ(S) ≥

Covθ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?

Mathematical Statistics II February   



... Cramer-Rao lower bound MS Ch .; AoS Ch .

•
varθ(S) ≥

Covθ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?

• special case, g(θ) = θ

Mathematical Statistics II February   



... Cramer-Rao lower bound MS Ch .; AoS Ch .

• CRLB attained ⇐⇒ U(θ; X) = A(θ)S(X) + B(θ) MS: Uθ(x) (p. )

• MS Example .: X, . . . , Xn i.i.d. Poisson(λ)
• X̄ = λ̂ has variance = /I(θ)
• For estimating λ three estimators are proposed

an unbiased estimator T =

n


Xi(Xi − ) λ
n +

λ
n

the best unbiased estimator T = E(T | X̄)
λ
n +

λ
n

the MLE T = λ̂
λ
n +

λ
n +

λ

n
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... Cramer-Rao lower bound MS Ch .; AoS Ch .

• A more interesting example, logistic density

f (x; θ) = exp(x − θ)

{+ exp(x − θ)}

• CRLB of an unbiased estimator of θ is /n

• by previous argument, not attained in nite samples

• e.g. X̄ is unbiased for θ,

var(X̄) = π

n >

n
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What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .
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What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var  lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. .

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{,σ(θ)}

• Is σ(θ) ≥ /I(θ)?
• Yes, if θ̃n is “regular”, and σ(θ) continuous in θ see MS ., and Thm. .

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var  lower bound “BAN”

• there are other regular estimators that are also asymptotically fully ecient
• and might be better in nite samples
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Asymptotic eciency MS .

• comparison of two consistent estimators via limiting distributions

•
√
n(Tn − θ)

d→ N{,σ (θ)},
√
n(Tn − θ)

d→ N{,σ(θ)}

• asymptotic relative eciency of T, relative to T is
σ(θ)

σ (θ)
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Asymptotic eciency MS .

• comparison of two consistent estimators via limiting distributions

•
√
n(Tn − θ)

d→ N{,σ (θ)},
√
n(Tn − θ)

d→ N{,σ(θ)}

• asymptotic relative eciency of T, relative to T is
σ(θ)

σ (θ)

• if Tn is the MLE θ̂n, then σ(θ) = I−(θ) as small as possible

• the MLE is fully ecient

• the asymptotic eciency of T is 

σ (θ)I(θ) relative to the MLE implicit
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Decision theory and Bayes estimators AoS Ch , MS Ch .

• nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, - loss, Kullback-Liebler
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Decision theory and Bayes estimators AoS Ch , MS Ch .

• nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, - loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o
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Decision theory and Bayes estimators AoS Ch , MS Ch .

• nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, - loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o

• Risk function depends on θ, and on the form of the estimator
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Examples: squared error loss AoS ., .; MS Ex..

X ∼ N(θ, )
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Examples: squared error loss AoS ., .; MS Ex..

X ∼ Binom(n, θ)

α = β =

n/

Mathematical Statistics II February   



Optimality MS .

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ(θ̃) < Rθ(θ̂), for some θ ∈ Θ.
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Optimality MS .

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ(θ̃) < Rθ(θ̂), for some θ ∈ Θ.

• MS Ex .; X ∼ λ exp(−λx): under squared-error loss, λ̂ is inadmissible:
Beat by λ̃ = (n− )λ̂/n
But under a dierent loss function the MLE has smaller risk than λ̃

L(θ̂, θ) = log( θ
θ̂
)− − θ

θ̂
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Optimal Bayes estimators MS .

• the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

•
RB(θ̂) =


Rθ(θ̂)π(θ)dθ

• Optimal Bayes estimators minimize the expected posterior loss:

L{θ̂(x), θ)}π(θ | x)dθ

• Example: squared-error loss L(θ̂, θ) = (θ̂ − θ) need to minimize over θ̂

(θ̂ − θ)π(θ | x)dθ

• solution θ̂(x) = E(θ | x) posterior mean
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Bayes estimators are admissible MS .

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =
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Bayes estimators are admissible MS .

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =



• instead of minimizing the average (over π(θ)) of the risk function we could

minmaxRθ(θ̂)

Denition .

• such estimators are called minimax
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Decision theory

• nding the ‘best’ point estimator θ̂

• best  smallest expected loss

• no asymptotic theory involved

• can nd these using a Bayesian argument

• but the justication is not Bayesian

• another non-asymptotic approach to ‘best’ estimators: UMVU MS .
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Bayesian philosophy AoS .
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Bayesian philosophy AoS .
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Bayes Rules! Johnson, Ott, Dogecu ,,
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https://www.bayesrulesbook.com/


Bayes Rules! Johnson, Ott, Dogecu ,,
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Bayes Rules! Johnson, Ott, Dogecu ,
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Bayes Rules! Johnson, Ott, Dogecu ,
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Some history
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... Some history
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This just in
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... This just in
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