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Today

!. Recap Jan "# marginal posterior, hierarchical Bayes
". Optimality in estimation: e$ciency, CRLB MS %&.'
(. Optimality in estimation: decision theory MS %&."
'. HW'
). O$ce Hour today (.(* - '.(*

Department Seminar Thursday February & !!.** – !".**
Hydro Building, Room +*!'
“ Numerical integration in statistical problems ”
Alex Stringer, U Waterloo
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Choosing priors MS p.!"# $

• conjugate priors

• non-informative priors !at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Marginal posterior distributions

• Bayes posterior carries all the information about θ, given x by de"nition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =
!
A π(θ | x)dθ

• if θ = (ψ,λ), πm(ψ | x) =
"

π(ψ,λ | x)dλ =

!
L(ψ,λ; x)π(ψ,λ)dλ!
L(ψ,λ; x)π(ψ,λ)dψdλ

• or, if ψ = ψ(θ), πm(ψ | x) =
!
A π(θ | x)dθ, A = {θ ∈ Θ : ψ(θ) = ψ}

• with marginalization, ‘,at’ priors can have a large in,uence on the marginal
posterior
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Example: many normal means Stein, %&'&
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Bayesian hierarchical models SM %%.(, Eg. %%.!'

• xi | θi ∼ N(θi, vi) vi known

• θi | µ ∼ N(µ,σ") σ! known

• µ ∼ N(µ#, τ ") hyperparameters

• f (x | θ, µ)
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Bayesian hierarchical models SM %%.(. Eg. %%.!'

• xi | θi ∼ N(θi, vi)

• θi | µ ∼ N(µ,σ")

• µ ∼ N(µ#, τ ") hyperparameters

• π(θ, µ | x)
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Bayesian hierarchical models SM %%.(. Eg. %%.!'

E(µ | x) =

var(µ | x) =

E(θi | x) =
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Bayesian hierarchical models SM %%.(. Eg. %%.!'

•
E(θi | x) = xi

σ"

σ" + vi
+ E(µ | x)(!− σ"

σ" + vi
)

•
E(µ | x) = µ#/τ

" +
#
xi/(σ" + vi)

!/τ " +
#
!/(σ" + vi)

• If σ" unknown, then need to sample from the posterior, no closed form available

• Figure !!.!! applies similar ideas, plus sampling from the posterior, in logistic
regression
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Optimality of estimators MS Ch )

• recall, in regular models, I(θ) de"nition

√
n(θ̂ − θ)

d→ N{*, I−%(θ)}

• smaller variance means more precise estimation
• Is I−%(θ) small?
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Optimality of estimators MS Ch )

• recall, in regular models, I(θ) de"nition

√
n(θ̂ − θ)

d→ N{*, I−%(θ)}

• smaller variance means more precise estimation
• Is I−%(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

Mathematical Statistics II February ! "#"$ *

Cramer Rao
lower bound



Optimality of estimators MS Ch )

• recall, in regular models, I(θ) de"nition

√
n(θ̂ − θ)

d→ N{*, I−%(θ)}

• smaller variance means more precise estimation
• Is I−%(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step !: suppose X = X%, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• Let U = U(X) = ℓ′(θ;X) score function

• Let S = S(X) be an unbiased estimator of g(θ) Eθ{S(X)} = g(θ)

• then varθ(S) ≥ {Covθ(S,U)}"/Varθ(U) proof: Cauchy-Schwarz
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Cramer-Rao lower bound MS Ch ).(; AoS Ch &."

• Cauchy-Schwartz inequality: Z%, Z", with E(Z"% ) < ∞,E(Z"") < ∞, MS Ex #.$; HW# STA#%%#F

{Cov(Z%, Z")}" ≤ var(Z%)var(Z")

• take Z% = S(X), an unbiased estimator of g(θ)
• take Z" = U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)}" ≤ varθ(S)varθ(U)

•
varθ(S) ≥

Cov"θ(S,U)
In(θ)
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... Cramer-Rao lower bound MS Ch ).(; AoS Ch &."

•
varθ(S) ≥

Cov"θ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?
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... Cramer-Rao lower bound MS Ch ).(; AoS Ch &."

•
varθ(S) ≥

Cov"θ(S,U)
In(θ)

• Covθ(S,U)

• when would we get equality?

• special case, g(θ) = θ

Mathematical Statistics II February ! "#"$ %%

foreveryvalueof
n

only if ulo aloS 1 b10 L10

Ttrictly a statistic
eco x Alois 1 BD

f x o
Alois BIO k X



... Cramer-Rao lower bound MS Ch ).(; AoS Ch &."

• CRLB attained ⇐⇒ U(θ; X) = A(θ)S(X) + B(θ) MS: Uθ(x) (p. &#&)

• MS Example &.!": X%, . . . , Xn i.i.d. Poisson(λ)
• X̄ = λ̂ has variance = !/I(θ)
• For estimating λ" three estimators are proposed

an unbiased estimator T% =
!
n
$

Xi(Xi − !) 'λ&
n +

"λ"
n

the best unbiased estimator T" = E(T% | X̄)
'λ&
n +

"λ"
n"

the MLE T& = λ̂"
'λ&
n +

)λ"
n" +

λ

n&
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... Cramer-Rao lower bound MS Ch ).(; AoS Ch &."

• A more interesting example, logistic density

f (x; θ) = exp(x − θ)

{!+ exp(x − θ)}"

• CRLB of an unbiased estimator of θ is (/n

• by previous argument, not attained in "nite samples

• e.g. X̄ is unbiased for θ,
var(X̄) = π"

(n >
(
n
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What about maximum likelihood estimator? MS Ch. ).'

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{*,σ"(θ)}

• Is σ"(θ) ≥ !/I(θ)?
• Yes, if θ̃n is “regular”, and σ"(θ) continuous in θ see MS '(.), and Thm. (.(
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What about maximum likelihood estimator? MS Ch. ).'

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{*,σ"(θ)}

• Is σ"(θ) ≥ !/I(θ)?
• Yes, if θ̃n is “regular”, and σ"(θ) continuous in θ see MS '(.), and Thm. (.(

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var - lower bound “BAN”
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What about maximum likelihood estimator? MS Ch. ).'

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{*,σ"(θ)}

• Is σ"(θ) ≥ !/I(θ)?
• Yes, if θ̃n is “regular”, and σ"(θ) continuous in θ see MS '(.), and Thm. (.(

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var - lower bound “BAN”

• there are other regular estimators that are also asymptotically fully e$cient
• and might be better in .nite samples
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Asymptotic e!ciency MS (."

• comparison of two consistent estimators via limiting distributions

•
√
n(T%n − θ)

d→ N{*,σ"% (θ)},
√
n(T"n − θ)

d→ N{*,σ""(θ)}

• asymptotic relative e$ciency of T%, relative to T" is
σ""(θ)

σ"% (θ)
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Asymptotic e!ciency MS (."

• comparison of two consistent estimators via limiting distributions

•
√
n(T%n − θ)

d→ N{*,σ"% (θ)},
√
n(T"n − θ)

d→ N{*,σ""(θ)}

• asymptotic relative e$ciency of T%, relative to T" is
σ""(θ)

σ"% (θ)

• if T"n is the MLE θ̂n, then σ""(θ) = I−%(θ) as small as possible

• the MLE is fully e$cient

• the asymptotic e$ciency of T% is !
%
σ"% (θ)I(θ) relative to the MLE implicit
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Decision theory and Bayes estimators AoS Ch %!, MS Ch ).!

• .nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, *-! loss, Kullback-Liebler
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Decision theory and Bayes estimators AoS Ch %!, MS Ch ).!

• .nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, *-! loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o*
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Decision theory and Bayes estimators AoS Ch %!, MS Ch ).!

• .nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, *-! loss, Kullback-Liebler

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o*

• Risk function depends on θ, and on the form of the estimator
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Examples: squared error loss AoS %!.!, %!.*; MS Ex.).%

X ∼ N(θ, !)
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Examples: squared error loss AoS %!.!, %!.*; MS Ex.).%

X ∼ Binom(n, θ)

α = β =
!
n/)
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Optimality MS ).!

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ!(θ̃) < Rθ!(θ̂), for some θ# ∈ Θ.
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Optimality MS ).!

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ!(θ̃) < Rθ!(θ̂), for some θ# ∈ Θ.

• MS Ex &.!; X ∼ λ exp(−λx): under squared-error loss, λ̂ is inadmissible:
Beat by λ̃ = (n− !)λ̂/n
But under a di/erent loss function the MLE has smaller risk than λ̃

L(θ̂, θ) = log( θ
θ̂
)− %− θ

θ̂
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Optimal Bayes estimators MS ).!

• the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

•
RB(θ̂) =

"
Rθ(θ̂)π(θ)dθ

• Optimal Bayes estimators minimize the expected posterior loss:
"
L{θ̂(x), θ)}π(θ | x)dθ

• Example: squared-error loss L(θ̂, θ) = (θ̂ − θ)" need to minimize over θ̂
"

(θ̂ − θ)"π(θ | x)dθ

• solution θ̂(x) = E(θ | x) posterior mean
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Bayes estimators are admissible MS ).!

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

"
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Bayes estimators are admissible MS ).!

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

"

• instead of minimizing the average (over π(θ)) of the risk function we could

minmaxRθ(θ̂)

De"nition '(.#
• such estimators are called minimax
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Decision theory

• .nding the ‘best’ point estimator θ̂

• best - smallest expected loss

• no asymptotic theory involved

• can .nd these using a Bayesian argument

• but the justi.cation is not Bayesian

• another non-asymptotic approach to ‘best’ estimators: UMVU MS (.&
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Bayesian philosophy AoS %%.%
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Bayesian philosophy AoS %%.%
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Bayes Rules! Johnson, Ott, Dogecu %,*,!
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Bayes Rules! Johnson, Ott, Dogecu %,*,%
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Bayes Rules! Johnson, Ott, Dogecu *,%

Mathematical Statistics II February ! "#"$ "(



Bayes Rules! Johnson, Ott, Dogecu *,%
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Some history
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... Some history
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This just in
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... This just in
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