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1. Recap
2. Directed acyclic graphs
3. Aspects of classification

Upcoming

« April 4 10.00 - 13.00 Math Stat Il Project presentations
please submit slides (pdf) by April 3

« April 11 9.30 - 12.30 Hydro Room 9016
Informal discussion of large language models
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+ observational studies can provide some evidence towards causality
« but care must be taken re confounding variables Simpson’s “paradox”

- if all confounding variables are adjusted for, we have stronger evidence of the
causal effect of a treatment on outcome

« this requires an assumption of “no unmeasured confounding”

« Bradford-Hill guidelines for strengthening support for causality

in the absence of randomized treatment assignment

Mathematical Statistics Il March 28 2023 1



- one popular approach to causality is through the notion of counterfactuals

« the causal treatment effect is § = Y(1) — Y(0); the difference in outcome for an
individual with X = 1 compared to her outcome with X = o G &

+ also called the causal risk difference

* since both outcomes cannot be observed, we must assume that in our data the
units are “similar enough” that we can average over the treated and control to
estimate 6

«a=E(Y|X=1)—E(Y|X=0)estimated by Y, — Y association
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« causal risk difference 6 = Y(1) — Y(0)

+ causal risk difference as a function of an additional covariate Z
0(z) =E(Y(1)|Z=2)-E(Y(0)|Z=2)=E(¢,|Z=2)-E(C | Z=2)

Thm 16.6: no unmeasured confounding

« causal regression function continuous exposure X
0(x) = E{C(x)}

« association function
r(x) =E(Y | X=X)

« Thm 16.4: If X assigned at random 6(x) = r(x)
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Directed graphs

- graphs can be useful for clarifying dependence relations among random variables
SM Markov random fields

+ a Directed Acyclic Graph has random variables on the vertices and edges joining
random variables

X
overweight smoking \
\ / \ z v
Y
heart disease cough
FIGURE 17.2. DAG for Example 17.4. FIGURE 17.3. Another DAG.
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Directed graphs and conditional independence AoS Chaz

overweight smoking

heart disease cough

FIGURE 17.2. DAG for Example 17.4.

17.4 Example. Figure 17.2 shows a DAG with four variables. The probability
function for this example factors as

f(overweight, smoking, heart disease, cough)
= f(overweight) x f(smoking)
% f(heart disease | overweight, smoking)
% f(cough|smoking). m

17.5 Example. For the DAG in Figure 17.3, P € M(G) if and only if its
probability function f has the form

Mathematical Statistics I~ March 28 2023 f@,y,20) = @Iz w]z). = 5



Directed graphs and causality AosS 17

- variables at parent nodes are potential causes for responses at child nodes

- probability distribution on a DAG represents causality if and only if the probability
distribution is Markov wrt the DAG A0S 17.5; HR Ch 6

 DAGs can be used to represent confounders

276 17. Directed Graphs and Conditional Independence

AR

FIGURE 17.11. Randumlzed study Observamonal study with measured con-
founders; Observational study with unmeasured confounders. The circled variables
are unobserved.
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Classification A0S 22; ISLR 4

- covariate space X c R% prediction space Y = {0,1} ory={1,...,K}

« a classification rule
h:x —=Y

« data (X4, Ya),...,(Xn, Yn); XieXCR? Ye)y supervised learning

350 22. Classification

o o

~~
~
~ £

FIGURE 22.1. Two covariates and a lincar decision boundary. A means Y = 1.
O means ¥ = 0. These two groups are perfectly separated by the linear decision
boundary; you probably won't see real data like this.
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O — 1 Loss function A0S 22.2

« loss function for classifier h:

L(h) = pr{h(X) Y}

« empirical error rate training error rate

n

Lo(h) = = " 1{h(X) # ¥i}

i=1
- special case Y = {0,1}  Ln(h) = symmetric
+ Bayes theorem

pr(Y=1[|X=x) =
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O — 1 Loss function A0S 22.2

« loss function for classifier h:

L(h) = pr{h(X) Y}

« empirical error rate training error rate

n

Lo(h) = = " 1{h(X) # ¥i}

i=1

- special case Y = {0,1}  Ln(h) = symmetric

+ Bayes theorem

o fix)m
PrY =11 X =X) = o o =)
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Bayes classifier AoS 22.2

« Bayes theorem

f1(X)7T _ r(X)

prlY =V IX =X = o fol0( )

- Bayes classifier

h*(x) = { 1) >1/20 { 1 7fi(x) > (1 — 7)fo(x)

0 otherwise 0 otherwise
« decision boundary
D={x:pr(Y=1|X=x)=pr(Y=0|X=x)}
« Thm 22.5: if h is another classification rule
L(h*) < L(h)
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Gaussian special case AoS 22.3

+ Bayes classifier:

_ fbom
F00m + fol)(1 — )

h*(x) = 1{r(x) > 1/2}, r(x)

« multivariate normal

o) = Gyl el 0 ) g = )

cr(x) >1/2 <
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... Gaussian special case A0S 22.3

cr(x) >1/2 —=
(X = ) E (X = 1) < (X = 110) 25" (X — p1o) + log(|Tol/|%4]) + 2log{m/(1 — m)}

- estimates of 7, i, Xg:
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K-class prediction

« If Y ={1,...,K}, the optimal classification rule is
h(x) = arg max pr(Y=R| X =Xx)

rfe(X)
= argmaxX ——————
g kR Zrﬂ'rfr(x)

= argmax m fi(x)

- if fp(x) is Gaussian, then
h*(x) = arg max Ir(X)

1 1 B
Or(x) = 5 log |Zk| — E(X — pue) E R (X — ) + log
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Fisher's LDA A0S 22.3

«ify={0,1and X, =¥, =%, and m = 7, = 1/2, then
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Fisher's LDA A0S 22.3

if Yy ={0,1and X, =¥, =%, and m = 1o = 1/2, then

- definew =S, (X, —Xo),  Sw=

- estimated Bayes classifier is

o wx>m 1 -
() { 1 wx<m m 2( o+ %)

w'Sgw
wTSyw

W = arg max
g w

- w'x € R maximizes between-group variation, relative to within-group variation
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4.4 Linear Discriminant Analysis 143

FIGURE 4.6. An ezample with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matriz. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using

solid black lines. The Bayes decision boundaries are once again shown as dashed
1iMagch 28 2023
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Error rates AoS Ex 22.8

+ confusion matrix

classified as 0 classified as 1
y=0 277 25
y=1 116 IA
- misclassification rate (25 + 116) /(25 + 116 + 277 + 44) = 0.31

- see ISLR §4.4 for discussion of changing cut-off from 1/2 to other thresholds
- changing the loss function to be asymmetric
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QDA example

Mathematical Statistics Il

150 4. Classification

X

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 1 = Xa. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # Xo. Since the Bayes decision
boundary is non-linear, it is more accurately approzimated by QDA than by LDA.
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Logistic regression AoS 22.5

+ Model distribution of Y, given X

exp(fo + X,Tﬂ)
1+ exp(fo + X[ B)

pr(Yi=1]x) =
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Logistic regression AoS 22.5

+ Model distribution of Y, given X

exp(fo + X,Tﬂ)
1+ exp(fo + X[ B)

pr(Yi=1]x) =

- equivalently
pr(Yi=1[x)\ _ T
= <Pf(yi =o|x)) Pot %

* compare LDA
log (Pr(Yi =1[X)

.
pr(Yi=0|Xi)> Got X

al = (1 — po) o™
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Naive Bayes A0S 22.6

+ K-class again:
h(x) = arg max pr(Y =R|X=x) =arg max rfr(X)
« we could estimate fi(x) instead of assuming Gaussian, but X € RY curse of
dimensionality

* pretend X; are independentj =1,...,d
- one-dim density estimates from class k:

d
Fo(¥) = [ [ foix)
j=1
« class probabilities
.1 L
o= > oY=k}
« classifier

h(x) = arg max #gfr(X
Mathematical Statistics Il March 28 2023 ( ) & k kfk( )



Error rates AoS 22.8

« empirical error rate misclassification rate

n
~ 1
Lo(h) = — >~ 14h(X) # vi}
(=
training set error

- increasing dimension of X; decreases training error
e.g. adding variables in logistic regression

* true error rate
L(h) = pr{h(X) # Y}
 test error rate
L(F’) = PY{B(XO) #Yo | T}
* average test error rate
Er{L(h)}
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... Error rates AoS 22.8

error rate

0.341
0.30¢

0.26¢

5 number of terms in model 15

FIGURE 22.5. The solid line is the observed error rate and dashed line is the
Mathematical StatisticSTpss-yadidationoestimate of true error rate. 20



... Error rates AoS 22.8

Training Data 7T Validation Data V

h L

FIGURE 22.6. Cross-validation. The data are divided into two groups: the training
data and the validation data. The training data are used to produce an estimated
classifier h. Then, his applied to the validation data to obtain an estimate L of the
error rate of h.

- estimate test error rate with

Ln(h) - >~ 1{h(X) # i)

iey
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Cross-validation A0S 22.8

K-fold cross-validation.

1. Randomly divide the data into K chunks of approximately equal size.
A common choice is K = 10.

2. For k = 1 to K, do the following:

(a) Delete chunk k from the data.
(b) Compute the classifier Tz(k) from the rest of the data.

(c) Use ﬁ(k) to the predict the data in chunk k. Let E(k) denote
the observed error rate.

3. Let

K
-~ 1 -~
k=1
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Error rates ELSII 7.2

Prediction Error
06
I

0.4

02

00
1

Model Complexity (df)

FIGURE 7.1. Behavior of test sample and training sample error as the model
complezity is varied. The light blue curves show the training error ert, while the
light red curves show the conditional test error Errr for 100 training sets of size
50 each, as the model complezity is increased. The solid curves show the expected
test error Err and the expected training error E[ert].
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Other classification methods A0S 22.7,9,12; ISLR 2.2

« KNN: K- nearest neighbours ISLR 2.2
« choose a distance measure on X
« estimate pr(Y, | x) by averaging over “nearest neighbours” of x

40 2. Statistical Learning

FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with siz blue observations and siz orange obscrvations. Left: a lest ob-
servation at which a predicted class label is desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this evample is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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ISLR 2.2

38 2. Statistical Learning

FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.
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KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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Classification trees

AoS 22.7; ISLR 8.2

Mathematical Statistics Il

age
<315 >31.5
| |
age
’ |
< 50.5 > 50.5
1
I_ type A _I family history
< 68.5 > 68.5 no yes
| I tobacco |
0 1 1

MarcFIGHIRI> 22.7. Smaller classification tree with size chosen by cross-validation.
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Other classification methods A0S 22.9,12; ISLR 8,9

- tree-based methods: bagging, boosting, random forests ISLR 8; ELSII 10
« support vector machines; kernelized SVMs ISLR 9; ESLII 12
« smoothing logistic regression ISLR 7.7.2
 neural networks ELSII 13
 double-descent in deep learning link
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