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https://www.ipcc.ch/report/sixth-assessment-report-cycle/


Today

1. Recap
2. Directed acyclic graphs
3. Aspects of classi$cation

Upcoming

• April 4 10.00 – 13.00 Math Stat II Project presentations
please submit slides (pdf) by April 3

• April 11 9.30 – 12.30 Hydro Room 9016
Informal discussion of large language models
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Recap

• observational studies can provide some evidence towards causality

• but care must be taken re confounding variables Simpson’s “paradox”

• if all confounding variables are adjusted for, we have stronger evidence of the
causal e)ect of a treatment on outcome

• this requires an assumption of “no unmeasured confounding”

• Bradford-Hill guidelines for strengthening support for causality
in the absence of randomized treatment assignment
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... Recap

• one popular approach to causality is through the notion of counterfactuals

• the causal treatment e)ect is θ = Y(1)− Y(0); the di)erence in outcome for an
individual with X = 1 compared to her outcome with X = 0 C0, C1

• also called the causal risk di)erence

• since both outcomes cannot be observed, we must assume that in our data the
units are “similar enough” that we can average over the treated and control to
estimate θ

• α = E(Y | X = 1)− E(Y | X = 0) estimated by Ȳ1 − Ȳ0 association
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... Recap

• causal risk di)erence θ = Y(1)− Y(0)

• causal risk di)erence as a function of an additional covariate Z

θ(z) = E(Y(1) | Z = z)− E(Y(0) | Z = z) = E(C1 | Z = z)− E(C0 | Z = z)

Thm 16.6: no unmeasured confounding

• causal regression function continuous exposure X

θ(x) = E{C(x)}

• association function
r(x) = E(Y | X = x)

• Thm 16.4: If X assigned at random θ(x) = r(x)
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Directed graphs AoS 17; HR 6; SM 6.2

• graphs can be useful for clarifying dependence relations among random variables
SM Markov random $elds

• a Directed Acyclic Graph has random variables on the vertices and edges joining
random variables

Mathematical Statistics II March 28 2023 4

D

potcause finey ZW

I
yT y

potms flwlz fzingy
fluffly

modelsays encodes a catMarko
property ofcont'dindy



Directed graphs and conditional independence AoS Ch.17
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Directed graphs and causality AoS 17.8

• variables at parent nodes are potential causes for responses at child nodes

• probability distribution on a DAG represents causality if and only if the probability
distribution is Markov wrt the DAG AoS 17.5; HR Ch 6

• DAGs can be used to represent confounders
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Classi!cation AoS 22; ISLR 4

• covariate space X ⊂ Rd; prediction space Y = {0, 1} or Y = {1, . . . , K}

• a classi$cation rule
h : X → Y

• data (X1, Y1), . . . , (Xn, Yn); Xi ∈ X ⊂ Rd, Yi ∈ Y supervised learning
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0− 1 Loss function AoS 22.2

• loss function for classi$er h:

L(h) = pr{h(X) ∕= Y}

• empirical error rate training error rate

L̂n(h) =
1
n

n!

i=1
1{h(Xi) ∕= Yi}

• special case Y = {0, 1} L̂n(h) = symmetric

• Bayes theorem
pr(Y = 1 | X = x) =
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0− 1 Loss function AoS 22.2

• loss function for classi$er h:

L(h) = pr{h(X) ∕= Y}

• empirical error rate training error rate

L̂n(h) =
1
n

n!

i=1
1{h(Xi) ∕= Yi}

• special case Y = {0, 1} L̂n(h) = symmetric

• Bayes theorem
pr(Y = 1 | X = x) = f1(x)π

f1(x)π + f0(x)(1− π)
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Bayes classi!er AoS 22.2

• Bayes theorem

pr(Y = 1 | X = x) = f1(x)π
f1(x)π + f0(x)(1− π)

= r(x)

• Bayes classi$er

h∗(x) =
"
1 r(x) > 1/2
0 otherwise =

"
1 πf1(x) > (1− π)f0(x)
0 otherwise =

• decision boundary

D = {x : pr(Y = 1 | X = x) = pr(Y = 0 | X = x)}

• Thm 22.5: if h is another classi$cation rule

L(h∗) ≤ L(h)
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Gaussian special case AoS 22.3

• Bayes classi$er:

h∗(x) = 1{r(x) > 1/2}, r(x) = f1(x)π
f1(x)π + f0(x)(1− π)

• multivariate normal

fk(x) =
1

(2π)d/2 |Σk|−1/2 exp{−
1
2 (x − µi)

TΣ−1
k (x − µk)}

• r(x) > 1/2 ⇐⇒
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... Gaussian special case AoS 22.3

• r(x) > 1/2 ⇐⇒

(x − µ1)
TΣ−1

1 (x − µ1) < (x − µ0)
TΣ−1

0 (x − µ0) + log(|Σ0|/|Σ1|) + 2 log{π/(1− π)}

• estimates of πk, µi,Σk:

• Σ0 = Σ1

• π0 = π1
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K-class prediction

• If Y = {1, . . . ,K}, the optimal classi$cation rule is

h(x) = argmax
k

pr(Y = k | X = x)

= argmax
k

πkfk(x)
Σrπrfr(x)

= argmax
k

πk fk(x)

• if fk(x) is Gaussian, then
h∗(x) = argmax

k
δk(x)

δk(x) =
1
2 log |Σk|−

1
2 (x − µk)

TΣ−1
k (x − µk) + log πk
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Fisher’s LDA AoS 22.3

• if Y = {0, 1} and Σ0 = Σ1 = Σ, and π1 = π0 = 1/2, then
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Fisher’s LDA AoS 22.3

• if Y = {0, 1} and Σ0 = Σ1 = Σ, and π1 = π0 = 1/2, then

• de$ne w = S−1W (X̄1 − X̄0), SW =

• estimated Bayes classi$er is

h∗(x) =
"
0 wTx > m
1 wTx < m m =

1
2 (X̄0 + X̄1)

•
w = argmax

w

wTSBw
wTSWw

• wTx ∈ R maximizes between-group variation, relative to within-group variation
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LDA ISLR 4.4
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Error rates AoS Ex 22.8

• confusion matrix

classi$ed as 0 classi$ed as 1
y = 0 277 25
y = 1 116 44

• misclassi$cation rate (25+ 116)/(25+ 116+ 277+ 44) = 0.31

• see ISLR §4.4 for discussion of changing cut-o) from 1/2 to other thresholds
• changing the loss function to be asymmetric
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QDA example ISLR 4.4
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Logistic regression AoS 22.5

• Model distribution of Y, given X

•
pr(Yi = 1 | xi) =

exp(β0 + xTi β)
1+ exp(β0 + xTi β)
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Logistic regression AoS 22.5

• Model distribution of Y, given X

•
pr(Yi = 1 | xi) =

exp(β0 + xTi β)
1+ exp(β0 + xTi β)

• equivalently
log

#
pr(Yi = 1 | xi)
pr(Yi = 0 | xi)

$
= β0 + xTi β

• compare LDA
log

#
pr(Yi = 1 | xi)
pr(Yi = 0 | xi)

$
= α0 + xTi α

αT = (µ1 − µ0)Tσ−1
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Naive Bayes AoS 22.6

• K-class again:

h(x) = argmax
k

pr(Y = k | X = x) = argmax
k

πkfk(x)

• we could estimate fk(x) instead of assuming Gaussian, but X ∈ Rd curse of
dimensionality

• pretend Xj are independent j = 1, . . . ,d
• one-dim density estimates from class k:

f̂k(x) =
d%

j=1
f̂kj(x)

• class probabilities
π̂k =

1
n
!

1{Yi = k}

• classi$er
h(x) = argmax

k
π̂k f̂k(x)Mathematical Statistics II March 28 2023 18
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Error rates AoS 22.8

• empirical error rate misclassi$cation rate

L̂n(h) =
1
n

n!

i=1
1{h(Xi) ∕= yi}

training set error
• increasing dimension of Xi decreases training error

e.g. adding variables in logistic regression
• true error rate

L(h) = pr{h(X) ∕= Y}
• test error rate

L(ĥ) = pr{ĥ(X0) ∕= Y0 | T }
• average test error rate

ET {L(ĥ)}
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... Error rates AoS 22.8
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... Error rates AoS 22.8

• estimate test error rate with

L̂m(h)
1
m

!

i∈V

1{ĥ(Xi) ∕= Yi}
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Cross-validation AoS 22.8
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Error rates ELSII 7.2
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Other classi!cation methods AoS 22.7,9,12; ISLR 2.2

• KNN: K– nearest neighbours ISLR 2.2
• choose a distance measure on X
• estimate pr(Y1 | x) by averaging over “nearest neighbours” of x
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KNN ISLR 2.2
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Classi!cation trees AoS 22.7; ISLR 8.1.2
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Other classi!cation methods AoS 22.9,12; ISLR 8,9

• tree-based methods: bagging, boosting, random forests ISLR 8; ELSII 10

• support vector machines; kernelized SVMs ISLR 9; ESLII 12

• smoothing logistic regression ISLR 7.7.2

• neural networks ELSII 13

• double-descent in deep learning link
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