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Simpson’s Paradox ChatGPT:Coding
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Today

1. Recap
2. Introduction to causal inference

Upcoming

• March 23 2.30 – 3.30 Zoom
“Valid statistical inference with privacy constraints”
Aleksandra Slavković, Penn State
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https://us02web.zoom.us/j/87143217789?pwd=VzRTWlRWT3ZseU4rcnJvYVBxS3VLdz09#success


Recap

• BH-q procedure: imax = argmax{i : p(i) ≤ i
mq}

• BHq : reject H0i for i ≤ imax
• Theorem: If the p-values corresponding to valid null hypotheses are independent
of each other, then m0 = #true H0

FDR(BHq) =
m0
m q ≤ q

• Proof: ... E{A(s) | A(t)} = A(t), s < t;
H0 not rejected H0 rejected

H0 true U V m0
truth

H1 true T S m1
m − R R m

A(t) = V(t)/t, V(t) = #{pi ≤ t;H0i}

• V(s) | V(t) ∼ Binom(V(t), st ), under H0
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... Recap

• Robust linear regression yi = xTi β + "i

min
β

n!

i=1
ρ(yi − xTi β), ↔

n!

i=1
ψ(yi − xTi β) = 0

ρ(·), to be determined; ψ(·) = ρ′(·)
•

β̂
.∼ Np

"
β,σ2(XTX)−1E{ψ

2("i)}
E2{ψ′(")}

#

correction from last week
• this is an example of M-estimation
• An M-estimate is a solution of the estimating equation Assume E{g(Y; θ)} = 0

n!

i=1
g(Yi; θ̃g) = 0

• under regularity conditions θ̃g .∼ N{θ,G−1(θ)}, G(θ) = J(θ)I−1(θ)J(θ)
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... Recap

• p∗ approximation j(θ) = J(θ) = −ℓ′′(θ)

f (θ̂; θ) .
= c|j(θ̂)|1/2 exp{ℓ(θ)− ℓ(θ̂)}

• r∗ approximation

F(θ̂; θ) .
= Φ(r∗), r∗(θ) = r(θ) + 1

r(θ) log
$
q(θ)
r(θ)

%

• r is signed-square root of likelihood ratio statistic
• in exponential families, q is Wald statistic
• in location families, q is score statistic
• in Bayesian posterior, q is score statistic × prior ratio
• derived using saddlepoint approximation

or Laplace approximation, depending on context
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Causality AoS 16,17; SM 9.1.2; Cox & Donnelly 9.2

• randomization; confounding; observational studies; experiments;
“correlation is not causation”, Simpson’s ‘paradox’

• counterfactuals; average treatment e%ect; conditional average treatment e%ect; ...

• graphical models; directed acyclic graphs; causal graphs; Markov assumptions...

• The Book
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non technical

Hernan Robins

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


Confounding variables

Men Women
Number of Number Percent Number of Number Percent

Major applicants admitted admitted applicants admitted admitted
A 825 512 62 108 89 82
B 560 353 63 25 17 68
C 325 120 37 593 202 34
D 417 138 33 375 131 35
E 191 53 28 393 94 24
F 373 22 6 341 24 7

Total 2691 1198 44 1835 557 30
data(UCBAdmissions)
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... Confounding variables

LinkMathematical Statistics II March 21 2023 7
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http://euclid.psych.yorku.ca/www/psy6136/R/output/berkeley-logit.html


... Confounding variables Radelet 1981

race of death penalty death penalty
defendant imposed not imposed percentage
white 19 141 11.88%
black 17 149 10.24%

race of death penalty death penalty
white victim defendant imposed not imposed percentage

white 19 132 12.58%
black 11 52 17.46%

race of death penalty death penalty
black victim defendant imposed not imposed percentage

white 0 9 0%
black 6 97 5.83%
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Simpson’s ‘paradox’ SM 6.3
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Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

• X – binary treatment indicator “treatment”
• Y – binary outcome could be continuous
• “X causes Y” to be distinguished from “X is associated with Y”
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Causality and Counterfactuals AoS Ch. 16; Cox & D 9.2

• X – binary treatment indicator “treatment”
• Y – binary outcome could be continuous
• “X causes Y” to be distinguished from “X is associated with Y”

• introduce potential outcomes C0, C1

Y =

&
C0 if X = 0
C1 if X = 1

• equivalently Y = CX or Y = C0(1− X) + C1X consistency equation

• causal treatment e%ect θ = E(C1)− E(C0) want to estimate this
• association α = E(Y | X = 1)− E(Y | X = 0) have data to estimate α

• if (C0, C1) ⊥ X, then θ = α randomization ensures ⊥
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Counterfactual: Examples AoS Ch.16; HR Ch.1
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Causal E!ect and Association AoS HR Ch.1
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Counterfactuals CD 9.2.1

“For most statistical purposes an explanatory variable C, considered for simplicity to
have just two possible values, 0 and 1, has a causal impact on the response Y of a set of
study individuals if, for each individual:

• conceptually at least, C might have taken either of its allowable values and thus
been di%erent from the value actually observed; and

• there is evidence that, at least in an aggregate sense, Y values are obtained fro
C = 1 that are systematically di%erent from those that would have been obtained
on the same individuals had C = 0, other things being equal

The de-nition of the word ‘causal’ thus involves the counterfactual notion that, for any
individual, C might have been di%erent from its measured value.

A central point in the de-nition of causality ... concerns the requirement
other things being equal”
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Causal treatment e!ect AoS Eq. (16.2)

θ = E(C1)− E(C0) risk di,erence; ratio; odds

α = E(Y | X = 1)− E(Y | X = 0)

If X is randomly assigned, then (C0, C1) is independent of X

θ = E(C1)− E(C0) =
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Example 16.2

θ = 0; α = 1 thought experiment

(C0, C1) not independent of X α = 4/7 < 1
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Three types of causal statements SM §9.1.2

1. A well-understood evidence-based mechanism, or set of mechanisms, that links a
cause to its e%ect

2. two phenomena are linked by a stable association, whose direction is established
and which cannot be explained by mutual dependence on some other allowable
variable

3. observed association may be linked to causal e%ect via counterfactuals if
(C0, C0) ⊥ X not usually testable
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Conditional and marginal e!ects AoS §16.3

• typically have additional explanatory variables (covariates) Z

• causal e%ect of treatment when Z = z

θz = E(C1 | Z = z)− E(C0 | Z = z)

• marginal causal e%ect
θ = EZ{E(C1 | Z)− E(C0 | Z)}
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Example HR Ch2

θL=0

θL=1
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Causal regression function AoS §16.2

• continuous “treatment” variable X ∈ R

• counterfactual outcome (C0, C1) →
counterfactual function C(x)

• observed response Y = C(X) consistency

• causal regression function
θ(x) = E{C(x)}

• association regression function
r(x) = E(Y | X)
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No unmeasured confounding AoS §16.3

• in observational studies treatment is not randomly assigned =⇒ θ(x) ∕= r(x)
• group subjects based on additional confounding variables
• No unmeasured confounding:

{C(x); x ∈ X} ⊥ X | Z

• under the assumption of no unmeasured confounding,
the causal regression function typo in (16.7)

θ(x) =
'

E(Y | X = x, Z = z)dFZ(z)

can be estimated by the association function

θ̂(x) = 1
n

n!

i=1
r̂(x, Zi) = β̂0 + β̂1x + β̂2Z̄n

causal reg function ≡ adjusted treatment e,ectMathematical Statistics II March 21 2023 20
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No unmeasured confounding SM §9.1.1
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Causality and observational data CD 9.2.4

“Bradford-Hill guidelines” Evidence that an observed association is causal is
strengthened if:

• the association is strong
• the association is found consistently over a number of independent studies

• the association is speci-c to the outcome studied
• the observation of a potential cause occurs earlier in time than the outcome
• there is a dose-response relationship
• there is subject-matter theory that makes a causal e%ect plausible
• the association is based on a suitable natural experiment
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Simpson’s paradox revisited AoS 16.4

confusion of causal e%ect
with association
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Directed graphs AoS 17; HR 6; SM 6.2

• graphs can be useful for clarifying dependence relations among random variables
SM Markov random -elds

• a Directed Acyclic Graph has random variables on the vertices and edges joining
random variables
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Directed graphs and conditional independence AoS Ch.17
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Probability on DAGs AoS 17.4

• notation: G graph; V = (X1, . . . , Xn) vertices
• The probability distribution on V is Markov if πi are parents of Xi

f (v) =
k(

i=1
f (xi | πi)
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DAGs and independence AoS 17.4,5

If the probability distribution is Markov then !W other vars except parents and desc

W ⊥ )W | πW

f (a,b, c,d, e) = f (a)f (b | a)f (c | a)f (d | b, c)f (e | d)

D ⊥ A | {B, C}, E ⊥ {A,B, C} | D, B ⊥ C | A

deducing conditional independence relations from DAGs requires more de-nitions
colliders, d-separators, ...
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Directed graphs and causality AoS 17.8

• variables at parent nodes are potential causes for responses at child nodes

• directed graphs o.en helpful adjunct to modelling with baseline variables,
intermediate responses, and outcome variables of interest

• much hard to study the full joint distribution than the usual supervised learning
approaches

• DAGs can be used to represent confounders
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DAGs and confounders AoS 17.8

randomized study observational study E(Y | x) =
*
E(Y | X, Zz)dFZ(z)

unobserved confounder: θ ∕= α

E(Y | X := x);E(Y | X = x) conditioning by intervention
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