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New alcohol guidance warns more than 2 drinks per week risky
days ago 1 3:13




Drinking less is better

‘We now know that even a small amount of alcohol
can be damaging to health.

It Gosen't matter wht ki of Scohol 5 wing, bee ciceror epts
Oriking sicohol,even a small amount, s damaging to everyone,

Thats why ifyou drink it better to drink less.

Alcohol consumption per week

Driking acohol has negative consequences. The more alcohol you
ik par sk the more the Consaquences add up
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Aim to drink less It's time to pick a new target

of injry and vickence, nd many heath problems that can

EEEE 0-0-0-0-0-0-0

Here is a good way to do it Tips to help you stay on target

+ Dok sowy.
« ik otsof e
« For everydrink o icohol, have one non-lcohase gk

make sure you dont exceed 2 drnks on any day.

« Eat before and whio you'e drnking

« Have aiconol.foe weeks o do slcohol-roe acrtes.
Good to know

You can reduce yourdrinking i seps! Every drink counts:
any roducton i scohol e nas benelts.

link


https://ccsa.ca/canadas-guidance-alcohol-and-health

Today Start Recording

. Recap

. Bayesian Inference

. Optimality in Estimation MS 6

. H3: comments on HW1, 2; Examples ...

> W N A

Upcoming seminars of interest

* January 30 3.30 - 4.30 Chiara Sabatti Details
“Human populations and gene mapping”

* January 30 6.00 - 7.00 pm Vera Liao Details
“Introduction to Explainable Al”
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https://canssiontario.utoronto.ca/event/data-science-ares-chiara-sabatti/
https://www.eventbrite.ca/e/introduction-to-explainable-ai-techniques-and-design-tickets-489928277667

« K-L divergence K(f : fo) = [ log ];?(()):))fo(x)dx re consistency of mle

« empirical c.d.f. is nonparametric MLE of F(x)

- profile likelihood and log-likelihood functions £, (¥) = £(¥, Ay)
+ constrained MLE S\w = argsup, 4(1, \) parameter of interest; nuisance par
« asymptotically £,.5r(¢) can be used for inference as £(6)

finite sample properties might be poor

- Bayesian inference: prior, likelihood, posterior
« Bayesian philosophy: parameters modelled as random variables
« Bayesian estimation: posterior mean, median, mode
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Example: Bivariate normal

Table 3.1 Scores from two tests taken by 22 students, mechanics and
vectors.

2 3 4 5 6 7 8 9 10 11

mechanics 7 44 49 59 34 46 0 32 49 52 44
vectors 51 69 41 70 42 40 40 45 57 64 o6l

12 13 14 15 16 17 18 19 20 21 22

mechanics 36 42 5 22 18 41 48 31 42 46 63
vectors 59 60 30 58 51 63 38 42 69 49 63

Table 3.1 shows the scores on two tests, mechanics and vectors,
achieved by n = 22 students. The sample correlation coefficient between
the two scores is 6 = 0.498,

22 22 22 1/2
0= (m; —m)(v; — 0) / [Z(m.- —m)? Y (v — 6)2] . (3.10)
i=1

i=1 i=1

with m and v short for mechanics and vectors, m and v their aver-
ages. We wish to assign a Bayesian measure of posterior accuracy to the
true correlation coefficient 6, “true” meaning the correlation for the hypo-

HateapapeRlisROFAITStldentéd BF ¥Rick weSbserved only 22.

If we assume that the joint (m. v) distribution is bivariate normal (as

PCL)

10

25

2.0

15

0.5

0.0

| flat prior

Jeffreys
—

MLE: 498




Example: Binomial SM Ex11.11

11.2 - Inference 579
Table 11.2 Mortality
rates r/m from cardiac A 047 B 18148 C  8/119 D 46/810 E 8211 F  13/196
surgery in 12 hospitals G 9148 H 31215 1 14207 J 897 K 20256 L  24/360
(Spiegelhalter et al.,
1996b, p. 15). Shown are
the numbers of deaths r .
out of m operations. provided the mode lies inside the parameter space. Here J () is the second deriva-
Hrrn mmnteiv Af D00V Thin aveanncinm anseanmande 4 o manfamiae sanléiraeiofa mamaal
prior for hospital A Beta(1,1) posterior mean
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Example: Binomial SM Ex11.41

580 11 - Bayesian Models
© Figure 11.1 Cardiac
o surgery data. Left panel:
~ posterior density for 64,
o © showing boundaries of
o 0.95 highest posterior
@ credible interval (vertical
w i woog lines) and region between
[a) [a) i
£ « g o posterior 0.025 and 0.975
P quantiles of (64 | y)
(shaded). Right panel:
— g exact posterior beta
=} density for overall
mortality rate 6 (solid)
o o and normal approximation
° ° (dots).
0 5 10 15 20 5 6 7 8 9 10
theta (%) theta (%)
hospital A all hospitals
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Choosing priors MS p.287 ff

* conjugate priors

 non-informative priors flat, “ignorance”
* convenience priors

« minimally/weakly informative priors

- hierarchical priors
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Exponential families and conjugate priors MS p.288,9

f(x;0) = exp{c(0)T(x) — d(0) + S(x)};  7(6; a, B) = K(ev, B) exp{ac(f) — 5d(6)}
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Exponential families and conjugate priors MS p.288,9

f(x;0) = exp{c(0)T(x) — d(0) + S(x)};  7(6; a, B) = K(ev, B) exp{ac(f) — 5d(6)}
Example: f(x;0) =0(1 —0)*,x=0,1,..;0< 6 <1
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Exponential families and conjugate priors MS p.288,9

f(x;0) = exp{c(0)T(x) — d(0) + S(x)};  7(6; a, B) = K(ev, B) exp{ac(f) — 5d(6)}
Example: f(x;0) = 9(1 —0),x=0,1,..;0< 0 <1

Example: f(x; p) = = exp{—3(x — n)*} f(xi0?) = oA exp{— 25}

27
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Flat priors MS p.290

- if parameter space is closed (interval), e.g. © = [a, b], then
7(0) ~ U(a, b) represents ‘indifference’

- example: Beta (1,1) prior for Bernoulli probability last week

« example 5.34: X ~ N(pu, 1), m(p) o< 1
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Flat priors MS p.290

- if parameter space is closed (interval), e.g. © = [a, b], then
7(0) ~ U(a, b) represents ‘indifference’

- example: Beta (1,1) prior for Bernoulli probability last week
« example 5.34: X ~ N(pu, 1), m(p) o< 1
- improper priors can lead to proper posteriors ntbc

- priors flat in one parameterization are not flat in another
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... Flat priors

« Example: X ~ Bin(n,#),0 < 0 < 1,6 ~ U(0,1)

+ log-odds ratio ¢ = ¢(0) = log{6/(1 — 6)}

ev .
e () = ———,—0c0 <Y <0 a a7
(¢) (1 + ew)z ¢ B g | . 1
« prior probability -3 < ¥ <3~ 0.9 g g - § o |
- an invariant prior: (6) o« I'/2(6) s T VU
P 0
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Jeffreys’ prior MS p 291

« 7(6) x I'2(9)

« Example: X ~ Bin(n, 9) 10) =n/{61—0)}, o<BO<1

« Example 5.35: X ~ Poisson()), IA)=1/A, A>o0 posterior proper?
« Jeffreys’ prior for multiparameter 8: ()  |I(8)|"/? not recommended even by Jeffreys

« Example: Xy, ..., Xy ii.d. N(p,0?)  I(p,0%) =
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Marginalization

- Bayes posterior carries all the information about 6, given x by definition
- probabilities for any set A computed using the posterior distribution

s pr(@ €Alx) =

IO = (4, \), ..

« or, if ¢ = 9(0)

- in this context, ‘flat’ priors can have a large influence on the marginal posterior
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Not all likelihood functions are regular

Example: X;, ..., X, i.i.d. U(0, )
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... Not all likelihood functions are regular

MS Exercise 5.1

)(17 200 7Xn i.i.d. f(X, 0) = 0(91,02)’7()()7 91 S X S 92
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Optimality of estimators MS Ch 6; AoS Ch 12

- recall, in regular models, 1(0)?

V(@ - 0) 5 N{o,I7"(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?
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Optimality of estimators MS Ch 6; AoS Ch 12

- recall, in regular models, 1(0)?

V(@ - 0) 5 N{o,I7"(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?

* Yes, there's a sense in which it is “as small as possible”
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Optimality of estimators MS Ch 6; AoS Ch 12

- recall, in regular models, 1(0)?
Vn(d —0) % N{o.17'(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?

* Yes, there's a sense in which it is “as small as possible”

Step 1: suppose X = X;,..., X, is an i.i.d. sample from a density f(x; 0)
+ and suppose that Eo{S(X)} = g(0)
then var(S) > {Covy(S, U)}?/Vary(U) proof: Cauchy-Schwarz
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Optimality of estimators MS Ch 6; AoS Ch 12

- recall, in regular models, 1(0)?
Vn(d —0) % N{o.17'(0)}

- smaller variance means more precise estimation
« Is 17'(0) small?

* Yes, there's a sense in which it is “as small as possible”

Step 1: suppose X = X;,..., X, is an i.i.d. sample from a density f(x; 0)
+ and suppose that Eo{S(X)} = g(0)
then var(S) > {Covy(S, U)}?/Vary(U) proof: Cauchy-Schwarz
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... Optimality of estimators MS Ch 6; AoS Ch 12

« Cauchy-Schwartz inequality: for random variables X, Y, with E(X?) < oo, E(Y?) < oo,
{Cov(X,Y)}? < var(X)var(Y)

* now suppose X, ..., Xp i.i.d. with density f(x; 0)
« and suppose S(X) is unbiased for g(6)
« and recall U(X) = Z¢'(6; X;) score function

« then
{Covy(S,U)}? < vary(S)vare(V)
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... Optimality of estimators MS Ch 6; AoS Ch 12

{Covy(S, U)}* < varg(S)varg(U)

- special case g(0) = 0
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... Optimality of estimators MS Ch 6; AoS Ch 12

{Covy(S, U)}* < varg(S)varg(U)

- special case g(0) = 0

- when would we get equality?
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Example: Poisson MS Ex.6.12

Unbiased estimator of \%: S,(X) = (1/n)EX;(X; — 1) ntbc
Maximum likelihood estimator of A%: S,(X) = {(1/n)XX;}?

A3 2N
var(S,) = ATJFT

4X3  5X% )\
var(Sz) = T-I-F"i‘ﬁ

Cramer-Rao lower bound: {g’(\)}?/nl(\) = (2X\)?/(n/\) = 4A3/n

Note: CRLB cannot be attained even by an unbiased estimator
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What about maximum likelihood estimator?

- Suppose f, is a sequence of estimators with
Vn(, — 0) % N{o,%(0)}

« Isa3(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6

Mathematical Statistics Il January 24 2023 19



What about maximum likelihood estimator?

- Suppose f, is a sequence of estimators with

Vn(, — 0) % N{o,%(0)}

Is a2(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6

¢ Isthe MLE ‘regular’?

* Yes, under the ‘usual regularity conditions’
« And, its a.var = lower bound “BAN”
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What about maximum likelihood estimator?

- Suppose f, is a sequence of estimators with

Vn(, — 0) % N{o,%(0)}

Is a2(0) > 1/1(0)?
« Yes, if §, is “regular”, and ¢2(0) continuous in 0 see MS §6.4, and Thm. 6.6

¢ Isthe MLE ‘regular’?
* Yes, under the ‘usual regularity conditions’
« And, its a.var = lower bound “BAN”

there are other regular estimators that are also asymptotically fully efficient
- and might be better in finite samples
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Asymptotic efficiency MS 4.8

« comparison of two consistent estimators via limiting distributions

o V(T — 0) % N{0,02(0)},  /A(Ton — 0) 5 N{0,02(0)}

3(9)
a3(0)

- asymptotic relative efficiency of T,, relative to T, is
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Asymptotic efficiency MS 4.8

« comparison of two consistent estimators via limiting distributions

o V(T — 0) % N{0,02(0)},  /A(Ton — 0) 5 N{0,02(0)}

3(9)
a3(0)

« if Ty is the MLE 6, then o2(0) = 17"(6) as small as possible

- asymptotic relative efficiency of T,, relative to T, is

« the MLE is fully efficient

- the asymptotic, relative to MLE efficiency of T, is o2(9)I(6)
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, K-L divergence
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, K-L divergence

Risk function of 4 is expected loss:
Ro(0) = Eo{L(6,6)}

MSE, MAE, bias/variance trade-off
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

« finite-sample approach to optimality in estimation
« start with a loss function L(d, )
- examples: squared error, absolute error, 0-1 loss, K-L divergence

Risk function of 8 is expected loss:
Ro(6) = Eo{L(B,0)}

MSE, MAE, bias/variance trade-off

* Risk function depends on 6, and on the form of the estimator
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Examples: squared error loss A0S 12.2, 12.3; MS EX.6.1

12.2 Comparing Risk Functions 195

3 1
5 1 R(6,0)
1 R(0.6,)
0 : \+/ —

0 1 2 3 4 5

FIGURE 12.1. Comparing two risk functions. Neither risk function dominates the
X ~ N(a7 1) other at all values of 6.
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Examples: squared error loss

AoS 12.2, 12.3; MS Ex.64

Risk

X ~ Binom(n, 0)

r
FIGURE 12.2. Risk functions for p; and ps in Example 12.3. The solid curve is
R(p1). The dotted line is R(p2).

a=p=/n/4

Mathematical Statistics Il January 24 2023
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Optimality MS 6.2

» an estimator is admissible if no other estimator has a smaller risk function
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Optimality MS 6.2

» an estimator is admissible if no other estimator has a smaller risk function

- For a given loss function L, an estimator § is inadmissible if there is another
estimator 4 with
Ro(0) < Re(d), foralld e O,

and
Ro,(6) < Ry, (), forsome 6, € ©.
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Optimality MS 6.2

» an estimator is admissible if no other estimator has a smaller risk function

- For a given loss function L, an estimator § is inadmissible if there is another
estimator 4 with
Ro(0) < Re(d), foralld e O,

and
Ro,(6) < Ry, (), forsome 6, € ©.

« MS Ex 6.1; X ~ Xexp(—Ax): under squared-error loss, A is inadmissible:
Beat by A = (n —1)\/n
But under a different loss function the MLE has smaller risk than A
L(0,6) =log(§)—1-%
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Optimal Bayes estimators MS 6.2

- the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

Re() = [ Ra(O)r(0)do
« Optimal Bayes estimators minimize the expected posterior loss:
/ L{D(x), 0)}(6 | X)do
- Example: squared-error loss L(f,0) = (6 — 0)2 need to minimize over §
/ (6 — 0)*x(6 | x)do
- solution A(x) = E(A | x) posterior mean
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Bayes estimators are admissible MS 6.2

- Suppose f is a Bayes estimator and is unique

- Suppose we have another estimator 4 with a smaller frequentist risk function:

Rg(é, 9) < Rg(é, 9)

Re(f) = /

» The Bayes risk of § is

Mathematical Statistics Il January 24 2023 26



Bayes estimators are admissible MS 6.2

- Suppose f is a Bayes estimator and is unique

- Suppose we have another estimator 4 with a smaller frequentist risk function:

Rg(é, 9) < Rg(é, 9)

Re(f) = /

instead of minimizing the average (over 7(9)) of the risk function we could

» The Bayes risk of § is

min max Ry(0)

Definition §6.2
» such estimators are called minimax
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Decision theory

- finding the ‘best’ point estimator §

* best = smallest expected loss

* no asymptotic theory involved

« can find these using a Bayesian argument
+ but the justification is not Bayesian

- another non-asymptotic approach to ‘best’ estimators: UMVU MS 6.3
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Multi-parameter models A0S 11.7; SM 14,3

* parameter 6 = (04,...,6p)
« modelf(x" | 6), X" = (X,...,Xn)
« joint posterior
(0] x") < f(X" | O)w(0), 6 €RP
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Multi-parameter models A0S 11.7; SM 14,3

* parameter 6 = (04,...,6p)
« modelf(x" | 6), X" = (X,...,Xn)
« joint posterior
(0] x") < f(X" | O)w(0), 6 €RP

 marginal posterior for 6
(0 | X7) = /ﬂ(a | X")db, ... d6),

« marginal posterior for ¢ (6)

(86 | X7) = / (0 | x")do
01y}
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11,3

« model: x; ~ N(uj,1),i=1,....n
« prior: w(p)du o< du

» posterior m(u | x") oc [T, w(pi | ;) = [Ti=, 6(xi,1/n)
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11,3

« model: x; ~ N(uj,1),i=1,....n

« prior: w(p)du o< du

+ posterior w(y | x") oc T, (ui | X)) = [T, 6(x;.1/n)

Y= Z?ﬂ M,? squared length of mean vector
w(w 1x7) = [ w(n | ¥l

i [ X~ NG 1) = Dot | X7~ X (00 X)
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Bayesian philosophy AoS 114

F1 Probability refers to limiting relative frequencies. Probabilities are ob-
jective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not fluctu-
ating, no useful probability statements can be made about parameters.

F3 Statistical procedures should be designed to have well-defined long run
frequency properties. For example, a 95 percent confidence interval should
trap the true value of the parameter with limiting frequency at least 95
percent.
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Bayesian philosophy AoS 114

176 11. Bayesian Inference

B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just data
which are subject to random variation. For example, I might say that
“the probability that Albert Einstein drank a cup of tea on August 1,
1948” is .35. This does not refer to any limiting frequency. It reflects my
strength of belief that the proposition is true.

B2 We can make probability statements about parameters, even though
they are fixed constants.

B3 We make inferences about a parameter 6 by producing a probability
distribution for . Inferences, such as point estimates and interval esti-
mates, may then be extracted from this distribution.
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Bayes Rules! Alicia Johnson

QUESTION 1: Interpreting probability

P(Heads) = 0.5 means...

F a. IfIflip this coin over and over, roughly 50% will be Heads.

B b. Heads and Tails are equally plausible.
LY

P c. Both aand b make sense.
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Bayes Rules! Alicia Johnson

QUESTION 2: Interpreting probability (again)

P(candidate A wins) = 0.8 means...
-3 all —
a. If we observe this election over & over, candidate A will win
roughly 80% of the time.

b. Candidate A is 4 times more likely to win than to lose.

c. The pollster’s calculation is wrong.
Candidate A will either win or lose, thus their probability of
winning can only be 1 or 0.
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Bayes Rules! Alicia Johnson

QUESTION 3: Bigger picture

| claim that | can predict the outcome of a coin flip.
Mine claims she can distinguish between non-vegan and vegan poutine.
We both succeed in 10 of 10 trials! What do you conclude?

a. My claim is ridiculous. You're still more confident in Mine’s
claim than in my claim.

b. 10-out-of-10is 10-out-of-10 no matter the context. Thus the
evidence supporting my claim is just as strong as the evidence
supporting Mine’s claim.
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Bayes Rules! Alicia Johnson

QUESTION 4: Asking questions

You've tested positive for a very rare genetic trait.
If you only get to ask the doctor one question, which would it be?

a. P(rare trait]| +)
Given the positive test result, what's the probability | actually
have the trait?

b. P(+]rare trait)
If | don’t have the trait, what's the chance | would have tested
positive anyway?
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Bayesian hierarchical models SM 11.4, Eg. 11.25

« Xi | 0; ~ N(6;,v;) v; known
© 0; | p~ N(u,o0?) o2 known
o p~ N(uo, ) hyperparameters
< f(x|0,p)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

* X | 0; ~ N(6;,v;)
< 0 | n~ N(N702)
o p~ N(uo, ) hyperparameters

* (0, | X)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

E(n | x) =
var(u | x) =

(01 %) =

622 11 - Bayesian Models

Figure 1111 Posierior
. .. . ‘summaricsfor mortality
Her21s) —_— raes for candise surgery
B (18/148) a data. Postcror means
K (29/256) = o . 095 et crdble
J(@97) . - . ity for cach hospital
c @119 . . sty bl
1(14/207) whileblobs and solid lnes
F(13196) ¢ the comesponding
L (24/360) hierarchical model. Note:
S oo
D (46/810) hierarchical model
fpoi ol
A (0/47) e ‘shown as the solid vertical
imervals are lghly
° 5 10 15 20 shorter than those for the

Death ot (%) simpler model.
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Bayesian hierarchical models SM 11.4,. Eg. 11.25

B0 %) = s + B [ 001 - )
' _ 1o/7 + Txi/(0% + %)
R Y I LI/ E")

+ If 02 unknown, then need to sample from the posterior, no closed form available

- Figure 1111 applies similar ideas, plus sampling from the posterior, in logistic
regression
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