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We now know that even a small amount of alcohol 
can be damaging to health.
Science is evolving, and the recommendations about alcohol use need to change.

Research shows that no amount or kind of alcohol is good for your health. 
It doesn’t matter what kind of alcohol it is—wine, beer, cider or spirits.

Drinking alcohol, even a small amount, is damaging to everyone, 
regardless of age, sex, gender, ethnicity, tolerance for alcohol or lifestyle.

That’s why if you drink, it’s better to drink less. 

Drinking less is better 

It’s time to pick a new target

Tips to help you stay on target
• Stick to the limits you’ve set for yourself.

• Drink slowly.

• Drink lots of water.

• For every drink of alcohol, have one non-alcoholic drink.

• Choose alcohol-free or low-alcohol beverages.

• Eat before and while you’re drinking.

• Have alcohol-free weeks or do alcohol-free activities.

What will your weekly drinking target be?

Count how many drinks you have in a week.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
TOTAL

Drinking less bene!ts you and others. It reduces your risk 
of injury and violence, and many health problems that can 
shorten life.

Set a weekly drinking target. If you’re going to drink, 
make sure you don’t exceed 2 drinks on any day.

A standard 
drink means:

Aim to drink less

Here is a good way to do it

No risk 0
0 drinks per week    
Not drinking has bene!ts, such as better health, 
and better sleep.  
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Moderate
risk

3 to 6 standard drinks per week  
Your risk of developing several different types of cancer, 
including breast and colon cancer, increases.

Increasingly
high risk

7 or more standard drinks per week   
Your risk of heart disease or stroke increases. 

Each additional standard drink   
Radically increases the risk of these alcohol-related 
consequences. 
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Alcohol consumption per week
Drinking alcohol has negative consequences. The more alcohol you 
drink per week, the more the consequences add up. 

341 ml (12 oz) of beer 
5% alcohol 

Beer

43 ml (1.5 oz) of spirits 
40% alcohol 

Spirits 
(whisky, vodka, gin, etc.)

or

or

341 ml (12 oz) of drinks
5% alcohol

Cooler, cider, 
ready-to-drink

142 ml (5 oz) of wine
12% alcohol 

Wine
or

During 
pregnancy,
none is the only 
safe option.

1 to 2 standard drinks per week     
You will likely avoid alcohol-related consequences 
for yourself and others.

1

2
Low
risk

0 1 2 3 4 5 6

Good to know
You can reduce your drinking in steps! Every drink counts: 
any reduction in alcohol use has bene!ts.

The Canadian Centre on Substance Use and Addiction was commissioned by Health Canada
to produce Canada's Guidance on Alcohol and Health.

This document is a summary for the public of the new guidance. For more information, please visit www.ccsa.ca.

link

https://ccsa.ca/canadas-guidance-alcohol-and-health


Today Start Recording

1. Recap
2. Bayesian Inference
3. Optimality in Estimation MS 6
4. H3: comments on HW1, 2; Examples ...

Upcoming seminars of interest

• January 30 3.30 – 4.30 Chiara Sabatti Details
“Human populations and gene mapping”

• January 30 6.00 – 7.00 pm Vera Liao Details
“Introduction to Explainable AI”
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zoom office

https://canssiontario.utoronto.ca/event/data-science-ares-chiara-sabatti/
https://www.eventbrite.ca/e/introduction-to-explainable-ai-techniques-and-design-tickets-489928277667


Recap

• K-L divergence K(f : f0) =
!

log
f0(x)
f (x) f0(x)dx re consistency of mle

• empirical c.d.f. is nonparametric MLE of F(x)

• pro(le likelihood and log-likelihood functions ℓprof (ψ) = ℓ(ψ, λ̂ψ)

• constrained MLE λ̂ψ = arg supλ ℓ(ψ,λ) parameter of interest; nuisance par

• asymptotically ℓprof (ψ) can be used for inference as ℓ(θ)
!nite sample properties might be poor

• Bayesian inference: prior, likelihood, posterior
• Bayesian philosophy: parameters modelled as random variables
• Bayesian estimation: posterior mean, median, mode
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Example: Bivariate normal EH §3.1
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Example: Binomial SM Ex.11.11

prior for hospital A Beta(1, 1) posterior mean
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Example: Binomial SM Ex.11.11

hospital A all hospitals
208 failures, 2814 observationsMathematical Statistics II January 24 2023 6
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Choosing priors MS p.287 '

• conjugate priors

• non-informative priors 'at, “ignorance”

• convenience priors

• minimally/weakly informative priors

• hierarchical priors
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Exponential families and conjugate priors MS p.288,9

f (x; θ) = exp{c(θ)T(x)− d(θ) + S(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}
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Exponential families and conjugate priors MS p.288,9

f (x; θ) = exp{c(θ)T(x)− d(θ) + S(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}

Example: f (x; θ) = θ(1− θ)x, x = 0, 1, ...;0 < θ < 1
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Exponential families and conjugate priors MS p.288,9

f (x; θ) = exp{c(θ)T(x)− d(θ) + S(x)}; π(θ;α,β) = K(α,β) exp{αc(θ)− βd(θ)}

Example: f (x; θ) = θ(1− θ)x, x = 0, 1, ...;0 < θ < 1

Example: f (x;µ) = 1√
2π exp{− 1

2 (x − µ)2} f (x;σ2) = 1√
2πσ

exp{− x2
2σ2 }
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Flat priors MS p.290

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indi)erence’

• example: Beta (1,1) prior for Bernoulli probability last week

• example 5.34: X ∼ N(µ, 1),π(µ) ∝ 1
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Flat priors MS p.290

• if parameter space is closed (interval), e.g. Θ = [a,b], then
π(θ) ∼ U(a,b) represents ‘indi)erence’

• example: Beta (1,1) prior for Bernoulli probability last week

• example 5.34: X ∼ N(µ, 1),π(µ) ∝ 1

• improper priors can lead to proper posteriors ntbc

• priors +at in one parameterization are not +at in another
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... Flat priors

• Example: X ∼ Bin(n, θ),0 < θ < 1; θ ∼ U(0, 1)

• log-odds ratio ψ = ψ(θ) = log{θ/(1− θ)}

• π(ψ) =
eψ

(1+ eψ)2 ,−∞ < ψ < ∞

• prior probability −3 < ψ < 3 ≈ 0.9

• an invariant prior: π(θ) ∝ I1/2(θ)
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Je!reys’ prior MS p 291

• π(θ) ∝ I1/2(θ)

• Example: X ∼ Bin(n, θ) I(θ) = n/{θ(1− θ)}, 0 < θ < 1

• Example 5.35: X ∼ Poisson(λ), I(λ) = 1/λ, λ > 0 posterior proper?

• Je)reys’ prior for multiparameter θ: π(θ) ∝ |I(θ)|1/2 not recommended even by Je(reys

• Example: X1, . . . , Xn i.i.d. N(µ,σ2) I(µ,σ2) =
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Marginalization

• Bayes posterior carries all the information about θ, given x by de!nition

• probabilities for any set A computed using the posterior distribution

• pr(Θ ∈ A | x) =

• if θ = (ψ,λ), ...

• or, if ψ = ψ(θ)

• in this context, ‘+at’ priors can have a large in+uence on the marginal posterior
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Not all likelihood functions are regular

Example: X1, . . . , Xn i.i.d. U(0, θ)
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... Not all likelihood functions are regular

MS Exercise 5.1

X1, . . . , Xn i.i.d. f (x;θ) = a(θ1, θ2)h(x), θ1 ≤ x ≤ θ2
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Optimality of estimators MS Ch 6; AoS Ch 12

• recall, in regular models, I(θ)?

√
n(θ̂ − θ)

d→ N{0, I−1(θ)}

• smaller variance means more precise estimation
• Is I−1(θ) small?
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Optimality of estimators MS Ch 6; AoS Ch 12

• recall, in regular models, I(θ)?

√
n(θ̂ − θ)

d→ N{0, I−1(θ)}

• smaller variance means more precise estimation
• Is I−1(θ) small?
• Yes, there’s a sense in which it is “as small as possible”
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Optimality of estimators MS Ch 6; AoS Ch 12

• recall, in regular models, I(θ)?

√
n(θ̂ − θ)

d→ N{0, I−1(θ)}

• smaller variance means more precise estimation
• Is I−1(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step 1: suppose X = X1, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• and suppose that Eθ{S(X)} = g(θ)
• then var(S) ≥ {Covθ(S,U)}2/Varθ(U) proof: Cauchy-Schwarz
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Optimality of estimators MS Ch 6; AoS Ch 12

• recall, in regular models, I(θ)?

√
n(θ̂ − θ)

d→ N{0, I−1(θ)}

• smaller variance means more precise estimation
• Is I−1(θ) small?
• Yes, there’s a sense in which it is “as small as possible”

• Step 1: suppose X = X1, . . . , Xn is an i.i.d. sample from a density f (x; θ)
• and suppose that Eθ{S(X)} = g(θ)
• then var(S) ≥ {Covθ(S,U)}2/Varθ(U) proof: Cauchy-Schwarz
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... Optimality of estimators MS Ch 6; AoS Ch 12

• Cauchy-Schwartz inequality: for random variables X, Y, with E(X2) < ∞,E(Y2) < ∞,

{Cov(X, Y)}2 ≤ var(X)var(Y)

• now suppose X1, . . . , Xn i.i.d. with density f (x; θ)
• and suppose S(X) is unbiased for g(θ)
• and recall U(X) = Σℓ′(θ; Xi) score function

• then
{Covθ(S,U)}2 ≤ varθ(S)varθ(U)
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... Optimality of estimators MS Ch 6; AoS Ch 12

•
{Covθ(S,U)}2 ≤ varθ(S)varθ(U)

• special case g(θ) = θ

Mathematical Statistics II January 24 2023 17

I so

I selfie o de 49110132

0
anySCE

bras I 91013 nice
smoothmodel

smooth

gloko
Ft Eos E D WasCEI 7 Ico

p
CRAMER RAO L B



... Optimality of estimators MS Ch 6; AoS Ch 12

•
{Covθ(S,U)}2 ≤ varθ(S)varθ(U)

• special case g(θ) = θ

• when would we get equality?
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Example: Poisson MS Ex.6.12

Unbiased estimator of λ2: S1(X) = (1/n)ΣXi(Xi − 1) ntbc

Maximum likelihood estimator of λ2: S2(X) = {(1/n)ΣXi}2

var(S1) =
4λ3
n +

2λ2
n

var(S2) =
4λ3
n +

5λ2
n2 +

λ

n3

Cramer-Rao lower bound: {g′(λ)}2/nI(λ) = (2λ)2/(n/λ) = 4λ3/n

Note: CRLB cannot be attained even by an unbiased estimator
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What about maximum likelihood estimator?

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{0,σ2(θ)}

• Is σ2(θ) ≥ 1/I(θ)?
• Yes, if θ̃n is “regular”, and σ2(θ) continuous in θ see MS §6.4, and Thm. 6.6
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What about maximum likelihood estimator?

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{0,σ2(θ)}

• Is σ2(θ) ≥ 1/I(θ)?
• Yes, if θ̃n is “regular”, and σ2(θ) continuous in θ see MS §6.4, and Thm. 6.6

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var = lower bound “BAN”
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What about maximum likelihood estimator?

• Suppose θ̃n is a sequence of estimators with
√
n(θ̃n − θ)

d→ N{0,σ2(θ)}

• Is σ2(θ) ≥ 1/I(θ)?
• Yes, if θ̃n is “regular”, and σ2(θ) continuous in θ see MS §6.4, and Thm. 6.6

• Is the MLE ‘regular’?
• Yes, under the ‘usual regularity conditions’
• And, its a.var = lower bound “BAN”

• there are other regular estimators that are also asymptotically fully e.cient
• and might be better in (nite samples
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Asymptotic e"ciency MS 4.8

• comparison of two consistent estimators via limiting distributions

•
√
n(T1n − θ)

d→ N{0,σ21 (θ)},
√
n(T2n − θ)

d→ N{0,σ22(θ)}

• asymptotic relative e.ciency of T1, relative to T2 is
σ22(θ)

σ21 (θ)
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Asymptotic e"ciency MS 4.8

• comparison of two consistent estimators via limiting distributions

•
√
n(T1n − θ)

d→ N{0,σ21 (θ)},
√
n(T2n − θ)

d→ N{0,σ22(θ)}

• asymptotic relative e.ciency of T1, relative to T2 is
σ22(θ)

σ21 (θ)

• if T1n is the MLE θ̂n, then σ21 (θ) = I−1(θ) as small as possible

• the MLE is fully e.cient

• the asymptotic, relative to MLE e.ciency of T2 is σ22(θ)I(θ)
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

• (nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 0-1 loss, K-L divergence
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

• (nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 0-1 loss, K-L divergence

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o(
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

• (nite-sample approach to optimality in estimation
• start with a loss function L(θ̂, θ)
• examples: squared error, absolute error, 0-1 loss, K-L divergence

• Risk function of θ̂ is expected loss:

Rθ(θ̂) = Eθ{L(θ̂, θ)}

MSE, MAE, bias/variance trade-o(

• Risk function depends on θ, and on the form of the estimator

Mathematical Statistics II January 24 2023 21

LOG toolIs Flu old et

p p



Examples: squared error loss AoS 12.2, 12.3; MS Ex.6.1

X ∼ N(θ, 1)
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Examples: squared error loss AoS 12.2, 12.3; MS Ex.6.1

X ∼ Binom(n, θ)

α = β =
!
n/4
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Optimality MS 6.2

• an estimator is admissible if no other estimator has a smaller risk function
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Optimality MS 6.2

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ0(θ̃) < Rθ0(θ̂), for some θ0 ∈ Θ.
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Optimality MS 6.2

• an estimator is admissible if no other estimator has a smaller risk function

• For a given loss function L, an estimator θ̂ is inadmissible if there is another
estimator θ̃ with

Rθ(θ̃) ≤ Rθ(θ̂), for all θ ∈ Θ,

and
Rθ0(θ̃) < Rθ0(θ̂), for some θ0 ∈ Θ.

• MS Ex 6.1; X ∼ λ exp(−λx): under squared-error loss, λ̂ is inadmissible:
Beat by λ̃ = (n− 1)λ̂/n
But under a di)erent loss function the MLE has smaller risk than λ̃

L(θ̂, θ) = log( θ
θ̂
)− 1− θ

θ̂
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Optimal Bayes estimators MS 6.2

• the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

•
RB(θ̂) =

!
Rθ(θ̂)π(θ)dθ

• Optimal Bayes estimators minimize the expected posterior loss:
!
L{θ̂(x), θ)}π(θ | x)dθ

• Example: squared-error loss L(θ̂, θ) = (θ̂ − θ)2 need to minimize over θ̂
!

(θ̂ − θ)2π(θ | x)dθ

• solution θ̂(x) = E(θ | x) posterior mean
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Bayes estimators are admissible MS 6.2

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

!
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Bayes estimators are admissible MS 6.2

• Suppose θ̂ is a Bayes estimator and is unique

• Suppose we have another estimator θ̃ with a smaller frequentist risk function:

Rθ(θ̃, θ) ≤ Rθ(θ̂, θ)

• The Bayes risk of θ̃ is
RB(θ̃) =

!

• instead of minimizing the average (over π(θ)) of the risk function we could

minmaxRθ(θ̂)

De!nition §6.2
• such estimators are called minimax
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Decision theory

• (nding the ‘best’ point estimator θ̂

• best = smallest expected loss

• no asymptotic theory involved

• can (nd these using a Bayesian argument

• but the justi(cation is not Bayesian

• another non-asymptotic approach to ‘best’ estimators: UMVU MS 6.3
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Multi-parameter models AoS 11.7; SM 11.1,-3

• parameter θ = (θ1, . . . , θp)

• model f (xn | θ), xn = (x1, . . . , xn)
• joint posterior

π(θ | xn) ∝ f (xn | θ)π(θ), θ ∈ Rp
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Multi-parameter models AoS 11.7; SM 11.1,-3

• parameter θ = (θ1, . . . , θp)

• model f (xn | θ), xn = (x1, . . . , xn)
• joint posterior

π(θ | xn) ∝ f (xn | θ)π(θ), θ ∈ Rp

• marginal posterior for θ1

πm(θ1 | xn) =
!

π(θ | xn)dθ2 . . .dθp

• marginal posterior for ψ(θ)

πm(ψ | xn) =
!

{θ:ψ(θ)=ψ}
π(θ | xn)dθ
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11.1,-3

• model: xi ∼ N(µi, 1), i = 1, . . . ,n

• prior: π(µ)dµ ∝ dµ

• posterior π(µ | xn) ∝
"n

i=1 π(µi | xi) =
"n

i=1 φ(xi, 1/n)
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11.1,-3

• model: xi ∼ N(µi, 1), i = 1, . . . ,n

• prior: π(µ)dµ ∝ dµ

• posterior π(µ | xn) ∝
"n

i=1 π(µi | xi) =
"n

i=1 φ(xi, 1/n)

• ψ =
#n

i=1 µ
2
i squared length of mean vector

π(ψ | xn) =
!

A
π(µ | xn)dµ

• µi | xi ∼ N(xi, 1) =⇒
#

µ2i | xn ∼ χ2n(
#
x2i )
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Bayesian philosophy AoS 11.1
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Bayesian philosophy AoS 11.1
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Bayes Rules! Alicia Johnson
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Bayes Rules! Alicia Johnson
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Bayes Rules! Alicia Johnson
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Bayes Rules! Alicia Johnson
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Bayesian hierarchical models SM 11.4, Eg. 11.25

• xi | θi ∼ N(θi, vi) vi known

• θi | µ ∼ N(µ,σ2) σ2 known

• µ ∼ N(µ0, τ 2) hyperparameters

• f (x | θ, µ)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

• xi | θi ∼ N(θi, vi)

• θi | µ ∼ N(µ,σ2)

• µ ∼ N(µ0, τ 2) hyperparameters

• π(θ, µ | x)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

E(µ | x) =

var(µ | x) =

E(θi | x) =
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Bayesian hierarchical models SM 11.4. Eg. 11.25

•
E(θi | x) = xi

σ2

σ2 + vi
+ E(µ | x)(1− σ2

σ2 + vi
)

•
E(µ | x) = µ0/τ

2 +
#
xi/(σ2 + vi)

1/τ 2 +
#
1/(σ2 + vi)

• If σ2 unknown, then need to sample from the posterior, no closed form available

• Figure 11.11 applies similar ideas, plus sampling from the posterior, in logistic
regression
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