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Drinking less is better

We now know that even a small amount of alcohol
can be damaging to health.

Science is evolving, and the recommendations about alcohol use need to change.

Research shows that no amount or kind of alcohol is good for your health.

It doesn't matter what kind of alcohol it is—wine, beer, cider or spirits.

Drinking alcohol, even a small amount, is damaging to everyone,

regardless of age, sex, gender, ethnicity, tolerance for alcohol or lifestyle.

That's why if you drink, it's better to drink less.

Alcohol consumption per week

Drinking alcohol has negative consequences. The more alcohol you
drink per week, the more the consequences add up.

0 drinks per week
Not drinking has benefits, such as better health, Q' - o o
and better sleep. none s the only.

1to 2 standard drinks per week
You will likely avoid alcohol-related consequences
for yourself and others.

30 6 standard drinks per week
Your risk of developing several different types of cancer,
including breast and colon cancer, increases.

7 or more standard drinks per week

Your risk of heart disease or stroke increases.
Each additional standard drink

Radically increases the risk of these alcohol-related
consequences.

Increasingly

safo option.

o w A standard

drink means:

Beer
341 ml (12 02) of beer
5% alcohol

O Wiy
(s A
O THww T

or
Cooler, cider,
ready-to-drin

341 ml (12 o2) of drinks
5% alcohol

=D

o
~ Wine
(142 mi 5 02) of wine

12% alcohol
QT W CEE

o
OUTTTTT W 5o

= (whisky, vodka, gin, etc.)

QuuunTTW

W ++ 43 ml (1.5 02) of spirits.
40% alcohol

Aim to drink less

Drinking less benefits you and others. It reduces your risk
of injury and violence, and many health problems that can
shorten life.

Here is a good way to do it
Count how many drinks you have in a week.

Set a weekly drinking target. If you're going to drink,
make sure you don't exceed 2 drinks on any day.

Good to know

‘You can reduce your drinking in steps! Every drink counts:
any reduction in alcohol use has benefits.

It’s time to pick a new target
What will your weekly drinking target be?

00 »»O0-0

Tips to help you stay on target
 Stick to the limits you've set for yourself.
* Drink slowly.
* Drink lots of water.
* For every drink of alcohol, have one non-alcoholic drink.
* Choose alcohol-free or low-alcohol beverages.
« Eat before and while you're drinking.
* Have alcohol-free weeks or do alcohol-free activities.

Canadian Centre
1o produce Canada's Guidance on Alcohol and Hoaltn,

D (. on Substance Use
P  and Addiction

link


https://ccsa.ca/canadas-guidance-alcohol-and-health

Today Start Recording

1. Recap

2. Bayesian Inference

3. Optimality in Estimation MS 6

4. H3: comments on HW1, 2; Examples ...

Upcoming seminars of interest

« January 30 3.30 - 4.30 Chiara Sabatti Details
“Human populations and gene mapping”

« January 30 6.00 - 7.00 pm Vera Liao Details
“Introduction to Explainable Al”

T30 oW 56 Tlody
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VERA LIAO
MScAC talk: Introduction to

Fxnlainahla Al Tachninuies and



https://canssiontario.utoronto.ca/event/data-science-ares-chiara-sabatti/
https://www.eventbrite.ca/e/introduction-to-explainable-ai-techniques-and-design-tickets-489928277667

fo(X

o re consistency of mle
(%)

A\
empirical c.d.f. is nonparametric MLE ofF 71 i{?(;é-t} = F,\H:) } ~or<Eeo

profile likeliho ithood functlonsw

constrained MLE )\¢ = argsup, £(, \) parameter of interest; nuisance par

asym ptotlcally Corof (1) can be used for inference as /(6)
AT S e ﬁr’(\p o0 —>nk

- Bayesian inference: prior, likelihood, posterior = o\ (,\

K-L divergence K(f : fo) /Io

§Ms

 Bayesian philosophy: parameters modelled as random variable
- Bayesian estimation: posterior mean, median, mode
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Example: Bivariate normal

(xi \[) v A/ ((/ ") xx Ty
. /s -t 2
Table 3.1 Scores from two tests taken by 22 students, mechanics and fd» )

f

Sy

vectors.

12 3 4 5 6 7 8 9 10 11 \'/,\9

mechanics 7 44 49 59 34 46 0 32 49 52 44
vectors 51 69 41 70 42 40 40 45 57 64 o6l

12 13 14 15 16 17 18 19 20 21 22 \L
0 |
o
mechanics 36 42 5 22 18 41 48 31 42 46 63 A
vectors 59 60 30 58 51 63 38 42 69 49 63 9
o |
o
Table 3.1 shows the scores on two tests, mechanics and vectors, 0
achieved by n = 22 students. The sample correlation coefficient between (:;
the two scores is 6 = 0,498 B o |
22 22 22 1/2
7 - = =2 =2
0= (m; —m)(v; — v) / [Z(mi —m)? ) (v; — D) ] g
=1 i=1 i=1
. . — — . =
with m and v short for mechanics and vectors, m and lﬁ!elr aver- ©

ages. We wish to assign a Bayesian measure of posterior, ac y(to the ' ' ' ' ' ' '
true correlation coefficient €, “true” meanin‘%&){?ﬂl@ e Nypo; 'p A 02 00 02 04 oe o8 10
&{@I&ﬁf{iaﬁmh%tﬁ&lﬁ&lﬁdldendéapWma% erved pnly=22 X (9/' Q) T((Q’) 4, 6 b

If we assume that the joint (m, v) distribution is bivariate normal (as



Example: Binomial SM Ex.11.11

11.2 - Inference 579
Table 11.2  Mortality =TT
rates ’/'f’ from car.diac A 0/47 B 18/148 C 8119 D 46/810 E 8211 F  13/196
surgery in 12 hospitals 48 H 31215 1 J 897 K 29256 L  24/360
(Spiegelhalter et al.,
1996b, p. 15). Shown are
the numbers of deaths r _
out of m operations. provided the mode lies inside the parameter space. Here J(0) is the second deriva-
tixrA st ~F 07O\ Thin Avennninm answeanmanda fA 0 smantaseas smanltacrnseinta sansenmanl
A T
- B, = Wttt A+ ‘
> O — g— - —
n‘+ s+h n€r 49

b —

rzh=
% W(‘{Aj’(

prior for hospital A Beta(1, 1) - b (_ \ 4 A) / P Ty
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Example: Binomial SM Ex.11.11

580 )]‘LQA l “’iﬂ) ol ,ﬂ(\,A -}94)1((9,() 11 - Bayesian Models

© | Figure 11.1 Cardiac
/ o : surgery data. Left panel:
< _‘ posterior density for 64,
l (@) 0 + T © showing boundaries of
O + —_— o | 0.95 highest posterior
g v ,( credible interval (vertical
NSy 2 L © = L lines) and region between
(@] o Y posterior 0.025 and 0.975
o o o ° .
o quantiles of (64 | y)
(shaded). Right panel:
— N exact posterior beta ZOX fucc.
o "oj © density for overall
mortality rate 6 (solid)
o o and normal approximation w ‘{f"j’
o o
' —t ' ' ' ' ' ' ' ' ' (dots). i
0 5 10 15 20 5 6 7 8 9 10 w8l
—Jtheta (%) theta (%)
~ .06 )
Be(l)l> g=.0l /[\7((9' ch--&L> &([)O
hospital A 4all hospitals (vaor
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Choosing priors MS p.287 ff

conjugate priors ¢

non-informative priors ¢ flat, “ignorance”

convenience priors v

minimally/weakly informative priors &—

hierarchical priors &

Mathematical Statistics I January 24 2023 7



Exponential families and conjugate priors MS p.288,9
[/

T _(ﬂ‘ o1do=1
f(x;0) = exp{c(0)T(x) — d(0) + S(x)}; (1? a, ) = L/(\J)GXP{O&C( ) — pd(e)y JT
ek ! () T(=) -4(®) + 5( gA6)
c ) - ) K¢ (@) -
99@ ﬁ [,9'[ L (:;’7 e . ( 0
o~
T ue

cl9)9 Tley £ oL § — (@ H) 4(6) + S//
[ ie

T(x¢ C(Ql"‘ e-f—\)d@)
Tlelx;« ) = 2 K (e Tlx), per) efd% L
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Exponential families and conjugate priors MS p.288,9

f(x;0) = exp{c(0)T(x) — d(0) + S(x)}; }5) K(a, B) exp{ac(f) — pd(0)} &~
Example: f(x;0) =0(1—0),x=0,1,...;0 < 0 < 1
Alep ((-@) ¢ s
) ‘NEG "T(@’;ol‘(é) s ‘\i&e lﬁf @L’f
(-9) +
A
— (-9 . . K(a
. -9 - (+ &)
@)= «(1-0)

d(e) = -ler(9) Qe ‘e A
(\1(9(%) - % (%"H ) d%(f‘x)
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Exponential families and conjugate priors MS p.288,9

F(x;0) = exp{c(O)T(x) — d(8) + S(X)};  7(6; v, B) = K(cv, B) exp{ac(d) — Bd(6))

Example: f(x;0) =0(1—0),x=0,1,...;0< 0 <1 r\
Example: f(x; u) = \/—eXP{—‘(X ney o N 1) m L exp{—Z

0 X
«) al(«, L) AR T A

): € 2 = (=Yt
20 = — e = K@)
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Flat priors MS p.290

- if parameter space is closed (interval), e.g. © = [a, b], then

7(0) ~ U(a, b) represents ‘indifference’
it

~—

- example: Beta (1,1) prior for Bernoulli probability A_’ﬂ'(g) =1 pegc)| lastweek
) «* -

{
« example 5.34: X ~ N(p,1), (1) o< 1 ﬂf"h') = e" "'(x-f*)L 5 =0 <},(4 t>o

— (o
X“.-.J Xn wd A /lu‘()

T({*\l) ~ M(z)ln)
(nﬂc)
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Flat priors MS p.290

- if parameter space is closed (interval), e.g. © = [a, b], then
7(0) ~ U(a, b) represents ‘indifference’

- example: Beta (1,1) prior for Bernoulli probability last week

« example 5.34: X ~ N(u, 1), m(p) o< 1

X, X
 improper priors can lead to proper posteriors L.b, N(O,G’L) T(e")  ntbe

S . (
- - | < Yo
« priors flat in one parameterization are not flat in another

Mathematical Statistics I January 24 2023 9



.. Flat priors

« prior probability -3 < 1 <3~ 0.9

0.10 0.20
[
prior for theta
1.0 20 .
I S A TR S
<¥_

- an invariant prior: 7(6) o I'/2(9) s TTITT C T T
W i : )
.F'wx—ﬂp-
Faunst.
Y=vie) =S ) Te) AeYo € A
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Jeffreys' prior MS p 291

e 7(0) o I'2(0) T oefl

Example: X ~ Bin(n,8) 1) =n/{6(1—0)}), o<b<1

-
T (2]

Example 5.35: X ~ Poisson(\), I(A)=1/A, A>0 Mr?)

Jeffreys’ prior for multiparameter 6: 7(0)  [I(8)|"/2 not recommended even by Jeffreys
invar ot g
Example: Xy, ..., X, i.i.d. N(u, 0?) (i, 0?) =

—

— =0

A - /,,
f\
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Marginalization

Bayes posterior carries all the information about 0, given x by definition

probabilities for any set A computed using the posterior distribution

pr(®@ € A|x) =

if0 = (1, \), ...

or, if b = 1(0)

in this context, ‘flat’ priors can have a large influence on the marginal posterior

Mathematical Statistics I January 24 2023
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— Yoghfwf X)ST:Q (F@‘G-z)

Waf‘gr[/ ?oh‘, &} ,,4, Aﬁg/]\ra‘ fcrw/
ifoence ac A Aot f«(zﬂ_&)

s/ &n
0 ( f
T‘J’ (.[“)Qn/) - [va(fk‘o’?/k < O’{Lf 7<

Gl

T {po™) ﬂdcf’”)'”’:s&%) = n



Not all likelihood functions are regular

Example: Xi,..., X, i.i.d. U(0, 0)

Mathematical Statistics Il January 24 2023 13



... Not all likelihood functions are regular

MS Exercise 5.1

X1,...,Xn i.i.d. f(X, 0) = 0(01,92)h(X), 91 SX S 02
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Optimality of estimators MS Ch 6; AoS Ch 12

(/q\h : Xé@/ ?.\(J) -0

« recall, in regular models,

VA(d,— 0) % N{o,17(0)} Xop., X, cod
- smaller variance means more precise estimation 10(7", e)
« Is17'(#) small? T E,[: -
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Optimality of estimators MS Ch 6; AoS Ch 12

recall, in regular models, 1(6)?

Vn(d - 0) % N{o{I7"(6)}

smaller variance means more precise estimation
Is I77(0) small?

Yes, there’s a sense in which it is “as small as possible”

Mathematical Statistics Il January 24 2023 15



Optimality of estimators MS Ch 6; AoS Ch 12

« recall, in regular models, 1(0)?

vn(d —0) % N{o,17'(0)}

- smaller variance means more precise estimation
« Is177(0) small?

* Yes, there's a sense in which it is “as small as possible”

« Step 1: suppose X = X;, ..., Xy is an i.i.d. sample from a density f(x; 6)
- and suppose that Eq{S(X)} = g(0) 5(?_{) 5 cunhiote d 5’ J (®)

« then var(S) > {Covy(S, U)}?/Vary(U) "“W% WM ’ {/_ proof: Cauchy-Schwarz

weg )
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Optimality of estimators MS Ch 6; AoS Ch 12

recall, in regular models, 1(0)?

vn(d —0) % N{o,17'(0)}

smaller variance means more precise estimation
Is I77(0) small?

Yes, there’s a sense in which it is “as small as possible”

Step 1: suppose X = X,, ..., X, is an i.i.d. sample from a density f(x; 0)
and suppose that E¢{S(X)} = g(0)
then var(S) > {Covy(S, U)}?/Vary(U) proof: Cauchy-Schwarz

Mathematical Statistics Il January 24 2023 15



... Optimality of estimators MS Ch 6; AoS Ch 12

Lo

Cauchy-Schwartz inequality: for random variables X, Y, with E(X?) < oo, E(Y?) < o0,

{Cov(X,Y)}* <var(X)var(Y) L@

* Now supposeui.i.d. with density f(x; 0) 1
- and supposeww)
- and recall U,(X) = ZE’(@;)i) uG(Z(,) score function
« then
ORI S EEE ) el wS(x) <o
2 { ng UO,2) i n o) @3 Eéﬁ’il"—jw
We(.s> > 9”’97 - i\ - T
v W R

2
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... Optimality of estimators MS Ch 6; AoS Ch 12

{Covy(S, U)}* < vary(S)vary(U)

* special case@ . | Swayélv;;u
w,s(x) » 131825 [Tie)) —tt

o)=0&
36) \

f Es-¢ S ¥ ano

T
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... Optimality of estimators MS Ch 6; AoS Ch 12

—

{Covy(S, U)}* < vary(S)vary(U)

- special case g(6) =6 \

« when would we get equality?

Mathematical Statistics Il January 24 2023 17



Example: Poisson MS Ex.6.12

I focd - se  RLE ,f A Tn o Tomar  advesy CELE

Unbiased estimator of@ Si(X) = (1/n)ZXi(X; — 1) X( oy B e d ntbc
Maximum likelihood estimator of A\?: S,(X) = {(1/n)XX;}? A a. -N
> N e
\ —_— L[.%/’I)
623\ 2)2 e
var(S,) = |2l 25, agaiee) -
n n X —_
A3 A2 - X
var(s2) - = 4n i 5n2 i &
NHA = Y
Cramer-Rao lower bound: {g’(\)}?/nl(\) = (2A)?/(n/X) :@ i
— — . . A\l (») 7)
Note: CRLB cannot be attained even by an unbiased estimator —

(A= A

Mathematical Statistics Iﬁ January 24 2023 18



What about maximum likelihood estimator?

- Suppose 8, is a sequence of estimators with Té

Vil —0) S NO.0) a3y Jeion of
e 1s 02(6) > 1/1(6)? ceLg

« Yes, if 6, is “regular”, and ¢%(#) continuous in 6 see MS §6.4, and Thm. 6.6

T
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What about maximum likelihood estimator?

Suppose 6, is a sequence of estimators with

(6, — 6) % N{o, 02(0)}

Is 02(0) > 1/1(0)?
Yes, if 6, s "regular”, and ¢%(#) continuous in 6 see MS §6.4, and Thm. 6.6

Is the MLE ‘regular’?
Yes, under the ‘usual regularity conditions’
And, its a.var = lower bound

“BAN”
- BL Q w»‘t WW‘J
. st s‘y pt - 1o
Q)
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What about maximum likelihood estimator?

Suppose 6, is a sequence of estimators with

(6, — 6) % N{o, 02(0)}

Is 02(0) > 1/1(0)?
Yes, if 6, is “regular”, and ¢%(#) continuous in 6 see MS §6.4, and Thm. 6.6

Is the MLE ‘regular’?
Yes, under the ‘usual regularity conditions’
And, its a.var = lower bound “BAN”

there are other regular estimators that are also asymptotically fully efficient
and might be better in finite samples

Mathematical Statistics Il January 24 2023 19



Asymptotic efficiency

« comparison of two consistent estimators via limiting distributions

o V/N(Tin — 0) 5 N{0,02(8)}, +/N(Tan — 6) % N{0,02(6)}

B

S

73(9)
a7 (0) 2

- asymptotic relative efficiency of T,, relativeto T, is

Mathematical Statistics Il January 24 2023 20



Asymptotic efficiency

comparison of two consistent estimators via limiting distributioni

V(T — 0) % N{0,02(6)}, v/N(Ton — 0) > N{0,02(0)} O+

asymptotic relative efficiency of T,, relative to T,

avor (§) = -36)

AN (\?/,/) = '58&’
if T.p is the MLE 6, then 03(0) = 17(0) as small as possible

the MLE is fully efficient E& ag M L. V. af ))oSrfoz

the asymptotic, relative to MLE gfficiency of T, i3 03(6)I(9)

Mathematical Statistics Il January 24 2023 20




Decision theory and Bayes estimators MS 6.2, AoS Ch 12

oAl
—— X~ dx,00 gt

- examples: squared error, absolute error, 0-1 loss, K-L divergence 4 o ) X

v/

- finite-sample approach to optimality in estimation

« start with a loss function L(d, 9)

2

L(6,0)= (6 -©)
A A 4

L, (60)= lo-¢

Lste@)-gi o %
o

e

L l0,9) = (é}w A,S Uer)
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Decision theory and Bayes estimators

MS 6.2, AoS Ch 12

finite-sample approach to optimality in estimation

A A
. o D= 0(x)
start with a loss function L(6, 2) =
?
examples: squared error, absolute error, 0-1 loss, K-L divergence

Risk function of 4 is expected loss:

Ro(6) = Eo{L(6, )}

N

J 1(S(x)y, 8)f(a: ®dx

A A\ —
— — .
M g t =S O+ @\015‘ 9> MSE, MAE, bias/variance trade-off

29 j@(\b)’eﬁféu',gldt Fusle "’E ‘g

1l
2 A A g
= ({80 - Ep,e(ﬁ)-fwe% bouoeldz K
Mathematical Statistics Il January 24,2023 21
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Decision theory and Bayes estimators MS 6.2, AoS Ch 12

finite-sample approach to optimality in estimation

start with a loss function L(4, 6)

examples: squared error, absolute error, 0-1 loss, K-L divergence

Risk function of 4 is expected loss:

R;(@ — Bo{L(D, 0)}

MSE, MAE, bias/variance trade-off

Risk function depends on 6, and on the form of the estimator

Mathematical Statistics Il January 24 2023 21



Examples: squared error loss AoS 12.2, 12.3; MS Ex.6.1

Sp);p(ml?( &D§j

@ - 3 12.2 Comparing Risk Functions 195
A
6 =X o
(
o, W
s 1
0
0
FIGURE 12.1. Comparing two risk functions. Neither risk function dominates the
X ~ N(9 1 other at all values of 6.
)
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Examples: squared error loss AoS 12.2, 12.3; MS Ex.6.1

4
B2
~
P
FIGURE 12.2. Risk functions for p1 and p2 in Example 12.3. The solid curve is
] R(p1). The dotted line is R(52).
X ~ Blnom(n,e) (p1) e dotted line is R(p2)

a=p08=+/n/4
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Optimality MS 6.2

« an estimator is admissible if no other estimator has a smaller risk function

Mathematical Statistics Il January 24 2023 24



Optimality MS 6.2

+ an estimator is admissible if no other estimator has a smaller risk function ¥/ g¢

* For a given loss function L, an estimatorﬁ is inadmissible if there is another

estimator § with
R@! < Ry(0), foralld e O,

and

Ro,(0) < Ry, (0), forsome 6, € ©.

_g—
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Optimality MS 6.2

« an estimator is admissible if no other estimator has a smaller risk function

- For a given loss function L, an estimator 6 is inadmissible if there is another
estimator § with
Ro(0) < Ry(#), foralld e O,

and
Ro,(0) < Ry, (0), forsome 6, € ©.

« MS Ex 6.1; X ~ Aexp(—Ax): under squared-error loss, ) is inadmissible:
Beat by A = (n — 1)\/n
But under a different loss function the MLE has smaller risk than )
L(,0) = Iog(%) —1— %

Mathematical Statistics Il January 24 2023 24



Optimal Bayes estimators

the Bayes risk of an estimator is the average of the risk function, over a prior
distribution

Rs(6) = / R (6)(0)dl6

Optimal Bayes estimators minimize the expected posterior loss:
/ L{A(x), 0)}(6 | x)do
Example: squared-error loss L(,0) = (6 — 0)? need to minimize over 0
/ (0 — 0Y2r(0 | )do

solution d(x) = E(0 | x) posterior mean

Mathematical Statistics Il January 24 2023 25



Bayes estimators are admissible

- Suppose § is a Bayes estimator and is unique

- Suppose we have another estimator § with a smaller frequentist risk function:

R0(§7 6) < R9(é7 6)

Re(f) /

» The Bayes risk of § is

Mathematical Statistics Il January 24 2023 26



Bayes estimators are admissible

Suppose 4 is a Bayes estimator )23 19) = j Re(e) T (1 dE and is unique

P‘/

Suppose we have another estimator § with a smaller frequentist risk function:

Re(éa 0) < R9(é7 0)

Re(f) /

instead of minimizing the average (over 7(#)) of the risk function we could

The Bayes risk of 4 is

N

min max Ry(6)

Definition §6.2

such estimators are called minimax

Mathematical Statistics Il January 24 2023 26



(sl yere €88
3()0 N A

vt Chouse ©

- finding the ‘best’ point estimator 4
WKW le oer &

%L@) = j Pg) T (9)AO

best = smallest expected loss

no asymptotic theory involved

can find these using a Bayesian argument = J 5 | ké L‘S)) 9). .Sl(q’,)g}A:L_’Tflelw

- but the justification is not Bayesian — 5®S L @ )9).“. (o x 0\2& ,(llg)q%
"/\’_\/
« another non-asymptotic approach to ‘best’ estimators: UMVU MS 6.3

E L(80)= EfLiolx]

Mathematical Statistics I January 24 2023 ™ (o] X) 27
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Multi-parameter models A0S 11.7; SM 114,-3

* parameter § = (6,,...,6p)
« modelf(x" | 6), X" =(Xq,...,Xn)
« joint posterior
70| X") < f(x" | O)7(0), 6 € RP
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Multi-parameter models AoS 11.7; SM 114,-3

parameter 6 = (6,,...,6p)
model f(x" | 0), X" = (Xq,...,Xn)

joint posterior

7(0 | X") x F(x" | )m(h), 6 € RP

marginal posterior for 6,

(63 | X7) = /77(9 | X")d6, . .. d6),

marginal posterior for ()
(1) | X7) = / (6 | X")do
{0:(0)=1}
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11,3

« model: x; ~ N(uj,1),i=1,...,n
* prior: w(p)dp o< du

» posterior m(u | X") oc [T, m(pi | X;) = [Tiz, ¢(xi,1/n)
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Bayesian inference: Multi-parameter models AoS 11.7; SM 11,3

model: X; ~ N(uj,1),i=1,...,n

prior: w(p)du o< du

posterior m(u | x") o< [T, w(ui | %) = [T, 6(x:.1/n)

=", 11 squared length of mean vector

r(ap | X7) = / r(ju | X")dp

pi | Xi ~ N(X;,1) = Yo p? [ X" ~ xp(DoX3)
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Bayesian philosophy AoS 114

F1 Probability refers to limiting relative frequencies. Probabilities are ob-
jective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not fluctu-
ating, no useful probability statements can be made about parameters.

F3 Statistical procedures should be designed to have well-defined long run
frequency properties. For example, a 95 percent confidence interval should
trap the true value of the parameter with limiting frequency at least 95
percent.
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Bayesian philosophy AoS 114

176 11. Bayesian Inference

B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just data
which are subject to random variation. For example, I might say that
“the probability that Albert Einstein drank a cup of tea on August 1,
1948” is .35. This does not refer to any limiting frequency. It reflects my
strength of belief that the proposition is true.

B2 We can make probability statements about parameters, even though
they are fixed constants.

B3 We make inferences about a parameter # by producing a probability
distribution for 6. Inferences, such as point estimates and interval esti-
mates, may then be extracted from this distribution.
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Bayes Rules! Alicia Johnson

QUESTION 1: Interpreting probability

P(Heads) = 0.5 means...

F a. |Iflflip this coin over and over, roughly 50% will be Heads.

B b. Heads and Tails are equally plausible.
Y

P ¢, Both aand b make sense.
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Alicia Johnson

Bayes Rules!

QUESTION 2: Interpreting probability (again)

Mathematical Statistics Il

P(candidate A wins) = 0.8 means...

January 24 2023

a.

If we observe this election over & over, candidate A will win
roughly 80% of the time.

Candidate A is 4 times more likely to win than to lose.

The pollster’s calculation is wrong.
Candidate A will either win or lose, thus their probability of
winning can only be 1 or O.
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Bayes Rules! Alicia Johnson

QUESTION 3: Bigger picture

| claim that | can predict the outcome of a coin flip.

Mine claims she can distinguish between non-vegan and vegan poutine.

We both succeed in 10 of 10 trials! What do you conclude?

a. My claim is ridiculous. You're still more confident in Mine’s
claim than in my claim.

b. 10-out-of-10is 10-out-of-10 no matter the context. Thus the
evidence supporting my claim is just as strong as the evidence
supporting Mine’s claim.
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Bayes Rules! Alicia Johnson

QUESTION 4: Asking guestions

You've tested positive for a very rare genetic trait.
If you only get to ask the doctor one question, which would it be?

a. P(raretrait|+)
Given the positive test result, what's the probability | actually
have the trait?

b. P(+ | rare trait)
If | don’t have the trait, what’s the chance | would have tested
positive anyway?
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Bayesian hierarchical models SM 11.4, Eg. 11.25

* X; | 0; ~ N(6;,Vv;) v; known
* 0; | p~ N(u,o?) o2 known
« 1~ N(uo,7?) hyperparameters
* fx16,p)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

X; | 0; ~ N(0;,v;)

Oi ‘ o~ N(:ua 02)

« 1~ N(uo,7?) hyperparameters

(0, | X)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

E(p [ x) =
var(u | X)
E(6;

X)

622 11 - Bayesian Models
Figure 11.11  Posterior

H (31/21 5) summaries fo‘r mortality
rates for cardiac surgery

B (18/148) data. Posterior means and

K (29/256) 9.95 equit.ai]ed credible
intervals for separate

J (8/97) analyses for cach hospital

C (8/119 are shown by hollow

( ) circles and dotted lines,

| (14/207) while blobs and solid lines

F (18/196) show lt}‘|e corresponding
quantities for a

L (24/360) hierarchical model. Note

G (9/148) thg shrinkage of the
estimates for the

D (46/810) hierarchical model

E (8/211) towa@s the overall
posterior mean rate,

A (0/47) b shown as the solid vertical
line; the hierarchical
intervals are slightly

0 5 10 15 20 shorter than those for the

simpler model.

Death rate (%)
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Bayesian hierarchical models SM 11.4. Eg. 11.25

B0 %) = X2 + B | (1 = —2)
| _ po/T* 4 32X/ (0% + Vi)
Blp 1) = 1/172 4+ > 1/(0%2 + V)

If o2 unknown, then need to sample from the posterior, no closed form available

Figure 1111 applies similar ideas, plus sampling from the posterior, in logistic
regression
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