
Mathematical Statistics II
STA2212H S LEC9101

Week 1

January 10 2023



Today Start Recording

1. Course Overview
2. Review of Likelihood MS Ch 5
3. Upcoming seminars of interest

January 16 3.30 – 4.30 Nicholas Horton Details

“Teaching reproducibility and responsible workflows ”

Mathematical Statistics II January 10 2023 1

https://canssiontario.utoronto.ca/event/data-science-ares-nicholas-horton/


Course Overview

STA 2212S: Mathematical Statistics II
Tuesday, 10.00-13.00 Eastern January 10 – April 4 2023

OI 5150

From the calendar:
This course is a continuation of STA2112H. It is designed for graduate students in

statistics and biostatistics. Topics include: Likelihood inference, Bayesian methods,

Significance testing, Linear and generalized linear models, Goodness-of-fit, Compu-

tational methods

Prerequisite: STA2112H

I will definitely cover the first 3 topics, and the 5th, and we’ll see how time goes

for the others. “Computational methods” was probably meant to be shorthand for

“bootstrap” and “MCMC”, and will be touched on in the other topics.

The slides for the lectures will be posted, on good weeks before the scheduled

course time, and on rushed weeks just after.

We will use Piazza for discussion; you will find an entry for Piazza in the course

menu. If you click it, you will be asked to sign up. Please see the instructions in

the handout, especially the highlighted bits.

Grading:
The course grade will be 60% homework, 40% take-home final. There will be ten

weekly homework questions assigned each Tuesday, due the following Tuesday. The

two lowest homework marks will be dropped. The take-home final will be released

April 4, due April 18 (tentative).

Academic Integrity:
Discussion about your work with your classmates is encouraged, but the home-

work solutions you submit must be written, and coded, independently. You may use

code provided by by me without attribution, but you must acknowledge code taken

from any other source using a proper bibliographic reference. To protect yourself

from potential academic integrity offences, do not share your code and written sub-

missions. The University of Toronto’s Code of Behaviour on Academic Matters is

available at http://academicintegrity.utoronto.ca.
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... Course Overview

STA 2212S: Mathematical Statistics II
Syllabus Spring 2023

Week Date Methods References

1 Jan 10 Likelihood inference: review of ML
estimation; mis-specified models;
computation; nonparametric mle

MS §§5.1–7, SM Ch 4

2 Jan 17 Bayesian estimation; Bayesian in-
ference

MS §5.8; AoS §§ 11.1–4; SM
§§11.1,2

3 Jan 24 Optimality in estimation MS Ch 6; AoS Ch 12; SM §7.1,
11.5.2

4 Jan 31 Interval estimation; Confidence
bands

MS §§7.1,2; AoS Ch 7; SM §7.1.4

5 Feb 7 Hypothesis testing; likelihood ratio
tests

MS §§7.1–4 AoS Ch 10.6, SM

6 Feb 14 Significance testing MS §7.5; AoS §10.2,6; SM Ch 4,
§7.3.1

Feb 21 Break

7 Feb 28 Significance testing SM 7.3.1

7 Feb 28 Goodness-of-fit testing MS Ch 9; AoS §§10.3,4,5,8; SM
p.327-8 (hard)

8 Mar 7 Multiple testing and FDR AoS Ch 10.7, EH Ch 15.1,2

9 Mar 14 Empirical Bayes EH Ch 6, SM Ch 11.5

10 Mar 21 Multivariate Models AoS Ch 14; SM Ch 6.3

11 Mar 28 Introduction to Causal Inference AoS Ch 16, 17

12 Apr 4 Recap

Subject to adjustment as the course progresses.
References

MS: Mathematical Statistics by K. Knight (Chapman & Hall/CRC).

AoS: All of Statistics by L. Wasserman (Springer) If your copy has a Chapter 1. Introduction,
then all Chapter numbers increase by 1.

SM: Statistical Models by A.C. Davison (Cambridge University Press)

EH: Computer Age Statistical Inference by B. Efron and T. Hastie (Cambridge University Press)
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... Course Overview

HW Question Week 1 STA 2212S 2023

Due January 16 MS, Exercise 5.2

Suppose (X1, Y1), . . . , (Xn, Yn) are independent pairs of random variables where Xi

and Yi are i.i.d. N(µi, σ
2) random variables.

(a) Find the maximum likelihood estimators of µ1, . . . , µn and σ2.

(b) Show that the maximum likelihood estimator of σ2 is not consistent. Does
this contradict the theory we have established regarding the consistency of
maximum likelihood estimators? Why or why not?

(c) Suppose we observe only Z1, . . . , Zn, where Zi = Xi − Yi. Find the maximum
likelihood estimator of σ2 based on Z1, . . . , Zn and show that it is consistent.
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Review of likelihood MS Ch. 5

STA2212: Inference and Likelihood

A. Notation

One random variable: Given a model for X which assumes X has a density

f(x; θ), θ ∈ Θ ⊂ Rk
, we have the following definitions:

likelihood function L(θ; x) = c(x)f(x; θ) L(θ)
log-likelihood function ℓ(θ; x) = logL(θ; x) = log f(x; θ) + a(x)
score function u(θ) = ∂ℓ(θ; x)/∂θ ℓ′(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT J(θ) = Eθ{j(θ)}
expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (p.245)

Independent observations: When we have Xi independent, identically dis-

tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we

have:

likelihood function L(θ;x) =
!n

i=1 f(xi; θ) L(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

"n
i=1 ℓ(θ; xi) ℓ(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) S(X)

score function U(θ) = ℓ′(θ) =
"

Ui(θ) S(θ) (p.273)
observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x) nJ(θ) = Eθ{−ℓ′′(x; θ)}
observed (Fisher) information j(θ̂) n#I(θ) (p.254)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0. Lazy notation is θ̂, but for asymptotics θ̂n is preferred.

2. It doesn’t really matter for the definitions above if the observations are in-

dependent and identically distributed (i.i.d.), or only independent, but the

theorems that are proved in MS Ch. 5 and AoS Ch. 9 assume i.i.d..

3. There are important distinctions to be careful about in the notation for like-

lihood and its quantities:

(a) Are we working with a single observation x,X or n observations x,X?

(b) Do we want to find the distribution of something; so ℓ(θ;X) or calculate

data summaries; ℓ(θ; x)?

1U(θ) = u(θ;X)
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... Review of likelihood MS Ch. 5
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... Review of likelihood MS Ch. 5
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Vector parameters

• model X ∼ f (x; θ), θ ∈ Rp θ is a column vector

• L(θ; x) map from Rp → R

• ℓ′(θ; x) p× 1 vector

• −ℓ′′(θ; x) p× p matrix
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Properties of maximum likelihood estimators

• maximum likelihood estimators are equivariant

• maximum likelihood estimators are biased special exceptions

• maximum likelihood estimators have no explicit formula in general
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Asymptotic properties of maximum likelihood estimators

• maximum likelihood estimators are (i) consistent, (ii) asymptotically normal
• (ii) TS expansion p.256
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Your friend the delta-method MS Th.3.4 and p.148

Suppose θ ∈ Rp, x = (x1, . . . , xp)

an(x − θ)
d→ Z,

and g(x) is continuously differentiable at θ, then {g1(x), . . . gk(x)}

an{g(x)− g(θ)} d→ D(θ)Z

where D(θ) =

Mathematical Statistics II January 10 2023 13



... Your friend the delta-method MS Th.3.4 and p.148

√
n(θ̂n − θ)

d→ N{0, I−1n (θ)}

√
n{g(θ̂n)− g(θ)} d→ N{0,g′(θ)TIn(θ)−1g′(θ)}

See also AoS §9.9
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Example MS Ex.5.15

X1, . . . , Xn i.i.d. Gamma (α,λ)

f (xi;λ,α) =
1

Γ(α)
λαxα−1i exp(−λxi)
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... Example

find a.var(µ̂) via mv delta method
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Calculating maximum likelihood estimators MS 5.7; AoS 9.13.4

Newton-Raphson:
0 = ℓ′(θ̂) ≈ ℓ′(θ0) + ℓ′′(θ0)(θ̂ − θ0)

θ̂ ≈ θ0 − {ℓ′′(θ0)}−1ℓ′(θ0)

• suggests iteration

θ̂(k+1) = θ̂(k) + {−ℓ′′(θ̂(k))}−1ℓ′(θ̂(k)) = θ̂(k) +
S(θ̂(k))
H(θ̂(k))

MS p.270; note change in notation
• requires reasonably good starting values for convergence
• need −ℓ′′(θ̂(k)) to be non-negative definite
• Fisher scoring replaces −ℓ′′(·) by its expected value J(·)
• N-R and F-S are gradient methods; many improvements have been developed
• solution is a global max only if ℓ(θ) is concave
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... Calculating maximum likelihood estimators MS 5.7; AoS 9.13.4

E-M algorithm: procedure

• complete data X = (X1, . . . , Xn), Xi i.i.d. fX(x; θ)
• observed data y = (y1, . . . , ym), with yi = gi(x) many-to-one

• joint density fY(y; θ) =
!
A(y) fX(x; θ) A(y) = {x; yi = gi(x), i = 1, . . . ,m}

• algorithm:
1. (E step) estimate the complete data log-likelihood function for θ using current guess θ̂(k)

2. (M step) maximize that function over θ and update to θ̂(k+1) usually by N-R or Fisher scoring

• likelihood function increases at each step
• can be implemented in complex models
• doesn’t automatically provide an estimate of the asymptotic variance

but methods exist to obtain this as a side-product
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Example MS Ex.5.25

• fX(xi;λ, µ, θ) = α
e−λxλ
x! + (1− α)

e−µxµ
x! , x = 1, 2, ...;λ, µ > 0,0 < θ < 1

• Observed data: x1, . . . , xn
• Complete data: (x1, y1), . . . , (xn, yn); yi ∼ Bernoulli(θ)
• Complete data log-likelihood function:

ℓc(α,λ, µ; y, x) =
n"

i=1

yi{log(α) + xi log(λ)− λ}+
n"

i=1

(1− yi){log(1− θ) + xi log(µ)− µ}

•

E
θ̂
(k){ℓc(α,λ, µ; y, x) | x} =

n"

i=1

ŷi{log(α)+xi log(λ)−λ}+
n"

i=1

(1−ŷi){log(1−α)+xi log(µ)−µ}

• ŷi = E(Yi | xi; θ̂
(k)

) see p.280 for exact value
• maximizing values of α,λ, µ can be obtained in closed form p.281

AoS likes to work with logLn(θ)/Ln(θ̂(k))
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... Example
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Optimization
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... Optimization Kolter et al.

Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

• Goal: maxθ ℓ(θ; x)
• Solve: ℓ′(θ̂; x) = 0
• Iterate: θ̂(t+1) = θ̂(t) + {j(θ̂(t))}−1ℓ′(θ̂(t))
• Rewrite: j(θ̂(t))(θ̂(t+1) − θ̂(t)) = ℓ′(θ̂(t)) B∆θ = −∇ℓ(θ)

• Quasi-Newton:
• approximate j(θ̂(t)) with something easy to invert
• use information from j(θ̂(t)) to compute j(θ̂(t+1))

• optimization notes add a step size to the iteration θ̂(t+1) = θ̂(t) + εt{j(θ̂(t))}−1ℓ′(θ̂(t))

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
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Regularity conditions MS Thm 5.4

• (B1) The parameter space Θ is an open subset of Rp

• (B2) The set A = {x : f (x; θ) > 0} does not depend on θ

• (B3) ℓ(θ) is three times continuously differentiable on A
• (B4) Eθ{ℓ′(θ; Xi)} = 0∀θ and Cov{ℓ′(θ; Xi)} = I(θ) is positive definite ∀θ
• (B5) Eθ{−ℓ′′(θ; Xi)} = J(θ) is positive definite ∀θ
• (B6) For each θ, δ > 0, 1 ≤ j, k, l,≤ p,

####
∂3ℓ(θ∗; xi)
∂θj∂θk∂θl

#### ≤ Mjkl(θ
∗),

for ||θ − θ∗|| ≤ δ, where Eθ{Mjkl(Xi)} < ∞
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Misspecified models MS 5.5

• model assumption X1, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X1, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n"

i=1

ℓ′(θ̂n; Xi) = 0

• what is θ̂n estimating ?
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Misspecified models MS 5.5

• model assumption X1, . . . , Xn i.i.d. f (x; θ), θ ∈ Θ

• true distribution X1, . . . , Xn i.i.d. F(x) notation
• maximum likelihood estimator based on model:

n"

i=1

ℓ′(θ̂n; Xi) = 0

• what is θ̂n estimating ?
• define the parameter θ(F) by

$ ∞

−∞
ℓ′{x; θ(F)}dF(x) = 0

• √
n{θ̂n − θ(F)} d→ N(0,σ2)

•
σ2 =

!
[ℓ′{x; θ(F)}]2dF(x)

(
!
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Misspecified models MS 5.5

• √
n{θ̂n − θ(F)} d→ N(0,σ2)

•
σ2 =

!
[ℓ′{x; θ(F)}]2dF(x)

(
!
[ℓ′′{x; θ(F)}]2dF(x))2

• more generally, √
n{θ̂n − θ(F)} d→ N{0,G−1(F)}

•
G(F) = J(F)I−1(F)J(F),

•
J(F) =

$
−ℓ′′{θ(F); xi}dF(xi), I(F) =

$
{ℓ′(θ(F); xi)}{ℓ′(θ(F); xi)}TdF(xi)

Godambe information

Mathematical Statistics II January 10 2023 27



Multi-parameter example: logistic regression

Boston$crim2 <- Boston$crim > median(Boston$crim) # define binary response

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,

data = Boston) #fit logistic regression

summary(Boston.glm)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.103704 6.530014 -5.223 1.76e-07 ***

zn -0.079918 0.033731 -2.369 0.01782 *

indus -0.059389 0.043722 -1.358 0.17436

chas 0.785327 0.728930 1.077 0.28132

nox 48.523782 7.396497 6.560 5.37e-11 ***

rm -0.425596 0.701104 -0.607 0.54383

age 0.022172 0.012221 1.814 0.06963 .

dis 0.691400 0.218308 3.167 0.00154 **

rad 0.656465 0.152452 4.306 1.66e-05 ***

tax -0.006412 0.002689 -2.385 0.01709 *

ptratio 0.368716 0.122136 3.019 0.00254 **

black -0.013524 0.006536 -2.069 0.03853 *

lstat 0.043862 0.048981 0.895 0.37052

medv 0.167130 0.066940 2.497 0.01254 *
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... Example: logistic regression

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,

data = Boston) #fit logistic regression

confint(Boston.glm)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -47.480389822 -21.699753794

zn -0.152359922 -0.020567540

indus -0.149113408 0.024168460

chas -0.646429219 2.233443233

nox 34.967619055 64.088411260

rm -1.811639107 0.950196261

age -0.001231256 0.046865843

dis 0.280762523 1.140619391

rad 0.376833861 0.975898274

tax -0.012038221 -0.001324887

ptratio 0.136910471 0.618725856

black -0.029151201 -0.002990159

lstat -0.053062947 0.139446105

medv 0.040925281 0.304379859
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Multi-parameter setting AoS §9.10

Waiting for profiling to be done – what’s profiling?
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... Multi-parameter setting AoS §9.10

Waiting for profiling to be done – what’s profiling?
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Profile likelihood function

Waiting for profiling to be done – what’s profiling?
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... Profile likelihood function

Waiting for profiling to be done – what’s profiling?
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... Profile likelihood function
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