Mathematical Statistics I HAVING A MID-LIFE CRISIS?

YOURE NOT ALONE

A study involving two million people in 72 countries

STA221 2 H S L E C91 01 Jfound men and women were less happy in their 40s

but that improved in later life.
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Today Start Recording

1. Course Overview
2. Review of Likelihood MS Ch 5
3. Upcoming seminars of interest

January 16 3.30 - 4.30 Nicholas Horton Details

“Teaching reproducibility and responsible workflows ”
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https://canssiontario.utoronto.ca/event/data-science-ares-nicholas-horton/

Course Overview

Link

STA 2212S: Mathematical Statistics II
Tuesday, 10.00-13.00 Eastern January 10 — April 4 2023
OI 5150

From the calendar:

This course is a continuation of STA2112H. It is designed for graduate students in
statistics and biostatistics. Topics include: Likelihood inference, Bayesian methods,
Significance testing, Linear and generalized linear models, Goodness-of-fit, Compu-
tational methods
Prerequisite: STA2112H

I will definitely cover the first 3 topics, and the 5th, and we’ll see how time goes
) - for the others. “Computational methods” was probably meant to be shorthand for
Mathematical Statistics |1« Japupfi3® 33t “MCMC”, and will be touched on in the other topics. 2


https://utstat.toronto.edu/reid/sta2212s/courseinfo23.pdf

... Course Overview

STA 2212S: Mathematical Statistics IT Link

Syllabus Spring 2023
Week Date Methods References
1 Jan 10  Likelihood inference: review of ML MS §§5.1-7, SM Ch 4

estimation; mis-specified models;
computation; nonparametric mle

2 Jan 17 Bayesian estimation; Bayesian in- MS §5.8; AoS §§ 11.1-4; SM
ference §611.1,2
3 Jan 24 Optimality in estimation MS Ch 6; AoS Ch 12; SM §7.1,
11.5.2
4 Jan 31 Interval estimation; Confidence MS §§7.1,2; AoS Ch 7; SM §7.1.4
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https://utstat.toronto.edu/reid/sta2212s/syllabus23.pdf

... Course Overview

Link

HW Question Week 1 STA 2212S 2023

Due January 16 MS, Ezercise 5.2

Suppose (X1,Y1),...,(X,,Y,) are independent pairs of random variables where X;
and Y; are i.i.d. N(u;,0?) random variables.

(a) Find the maximum likelihood estimators of u, ..., i, and o?.

(b) Show that the maximum likelihood estimator of o2 is not consistent. Does
this contradict the theory we have established regarding the consistency of
maximum likelihood estimators? Why or why not?

(¢) Suppose we observe only Zi,. .., Z,, where Z; = X; — Y;. Find the maximum
Mathematical Statistics I1 Janljégg}m;stimator of 0% based on Zi,. .., Z, and show that it is consistent.


https://utstat.toronto.edu/reid/sta2212s/hw1.pdf

Review of likelihood MS Ch. 5

Link

STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density

f(x;0), 0€© CRF we have the following definitions:

likelihood function L(0;z) = c(x) f(x;0) L(0)
log-likelihood function 0(0;2) = log L(6; x) = log f(z;0) + a(x)
score function u(0) = 00(0;x)/00 U (z;0)

observed information function J(0) = —0%(0;2) /00007 J(0) = Eo{j(0)}
expected information (in one observation) i(0) = Eo{U(0)U(0)T}!  I1(0) (p.245)

Independent observations: When we have X; independent, identically dis-
Mathematical Statistics 11 ;ri?%ggrfqg%gg(xi;é?), then, denoting the observed sample ¢ = (z1,...,x,) we s
ave:


https://utstat.toronto.edu/reid/sta2212s/likelihood-quantities-V1.pdf

... Review of likelihood

Mathe

Important Definitions

.iaindicate they are based on a single observation. ( ) O ( (s)

For X ~ f(x; @), we define the following:

x Score function: U(0) = de(xo)

* Observed information function: J(6) = _d2§(0);;0) = _d(;go)

* Expected information function:
1(6) = E5[U*(X; 0)]

Note: Sometimes we add a subscript 1 to these functions to

1y 10 202
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... Review of likelihood

Math

Important Definitions

For X1, ..., X, ~ f(x; ), we define the following:

dl,(x;;0)

* Score function: U,(0) = 40

* Observed information function: J,(6) = —% - _%ﬁéoz

* Observed (Fisher) information: J,(6,)

* Expected (Fisher) information function:

In(0) = EgU3(X:: 0)] = nh(6)

aicaNote:  Typically the subscript n is removed, but is used to ;
embphasize that we are considerine a3 random sambple of size n.



Vector parameters

« model X ~ f(x;0),0 € RP 6 is a column vector

« L(6;x) map from RP — R
< 0'(0;x) p x 1vector
« —0"(0;x) p x p matrix
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Properties of maximum likelihood estimators

« maximum likelihood estimators are equivariant

« maximum likelihood estimators are biased special exceptions

- maximum likelihood estimators have no explicit formula in general
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Asymptotic properties of maximum likelihood estimators

« maximum likelihood estimators are (i) consistent, (ii) asymptotically normal
« (ii) TS expansion p.256
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Your friend the delta-method MS Th.3.4 and p.148

Suppose 6 € RP, X = (X1,...,Xp)
an(x—0) % 2,
and g(x) is continuously differentiable at 6, then {g1(X), ... gr(x)}
ar{g(x) — 9(0)} > D(0)Z

where D(0) =

Mathematical Statistics Il January 10 2023 13



... Your friend the delta-method MS Th.3.4 and p.148

Vn(n — 0) S N{o,1;(6)}

Vn{g(Bn) — 9(0)} % N{0,g'(6)"1n(6) 'g'(6)}

See also AoS §9.9
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Example MS Ex.5.15

X1, ..., Xp Li.d. Gamma (a, \)

fXii A o) = m)\a X" exp(—Ax;)
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find a.var(j2) via mv delta method

Mathematical Statistics Il January 10 2023 16



Calculating maximum likelihood estimators MS 5.7; A0S 913.4

Newton-Raphson:
0 =0'(0) = £'(6o) + " (8) (0 — 65)
0~ 0o — {£"(06)} "' (6o)

suggests iteration

H(k) 5(9}’?))

H(O®)

MS p.270; note change in notation
« requires reasonably good starting values for convergence
« need —¢"(A®)) to be non-negative definite
« Fisher scoring replaces —¢”(-) by its expected value J(-)
* N-R and F-S are gradient methods; many improvements have been developed

« solution is a global max only if £(6) is concave
Mathematical Statistics Il January 10 2023 17
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... Calculating maximum likelihood estimators MS 5.7; A0S 913.4

E-M algorithm: procedure

« complete data X = (Xy,...,Xn), X;i.id. fx(x;0)

- observed datay = (y1,...,¥Ym), With y; = g;(x) many-to-one
+ joint density fy(y; 0) = [y, fx(x; 0) A(y) = {xy; = gi(x),i =1,...,m}
- algorithm:

1. (E step) estimate the complete data log-likelihood function for 6 using current guess 4
2. (M step) maximize that function over 6 and update to 8**" usually by N-R or Fisher scoring

likelihood function increases at each step
- can be implemented in complex models

« doesn’t automatically provide an estimate of the asymptotic variance
but methods exist to obtain this as a side-product
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Example MS Ex.5.25

e x* e HxH
* fx(xi; A\, 0) =« o +(1—a) , X=12,.;A\pu>00<6<1

! X!
« Observed data: xq,..., X,
- Complete data: (x1,¥1), - -, (Xn,¥n); ¥i ~ Bernoulli(6)
« Complete data log-likelihood function:

Ce(o, A, iy, X) = _Zyi{log(a) +x;log(X) = A} + ) (1 - yi){log(1 — 0) + X;log(11) — 1}

i=1

n n
Bym{c(o A y.x) | X} =Y Ji{log(a)+xilog(A) = A +> _(1-§;){log(1—a)+x; log (1) —p1}
i=1 i=1
. (k)
* Vi=E(Yi|x;0") see p.280 for exact value
« maximizing values of «, \, 1 can be obtained in closed form p.281
AoS likes to work with log £n(6)/Ln(6(®)
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Optimization

General-purpose Optimization

Description

General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",
"Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

optimHess(par, fn, gr = NULL, ..., control = list())

Matherwijmréﬂﬁl January 10 2023 21



... Optimization Kolter et al.

Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

+ Goal: maxg £(0; x)
- Solve: //(; x) =
- Iterate: At = 4O 1 {j(A®)}—1¢/(AD)
« Rewrite: j(0) (Gt — 4Oy = ¢/((®)) BAO = —V(6)
* Quasi-Newton:
- approximate j(0) with something easy to invert
- use information from j(6)) to compute j(A*+")
- optimization notes add a step size to the iteration (") = 9(®) ¢, {j(6®)}—"¢/(4®)

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
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https://www.stat.cmu.edu/~ryantibs/convexopt-F18/lectures/quasi-newton.pdf

Regularity conditions MS Thm 5.4

+ (B1) The parameter space © is an open subset of RP

(B2)

(B3) £(0) is three times continuously differentiable on A

« (Bs) Eg{¢'(6;X;)} = ovf and Cov{¢'(6;X;)} = I(0) is positive definite V0
(B5) Eo{—¢"(0;X;)} = J() is positive definite V¢

+ (B6) Foreach 8,6 > 0,1<j,R, [, <p,

The set A = {x: f(x; ) > 0} does not depend on 6

83£(9*;X,’)

< M; *
(90,‘60h891 - M]kl(e )7

for [|6 — 0*|| < 5, where Eq{Mjy(X;)} < o0
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Regularity conditions MS Thm 5.4
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Misspecified models MS 5.5

- model assumption X;, ..., X, i.i.d. f(x;0),0 € ©
- true distribution X, ..., X, i.i.d. F(x) notation
« maximum likelihood estimator based on model:

n
> 0B X) =0

i=1

- what is , estimating ?

Mathematical Statistics Il January 10 2023 26



Misspecified models MS 5.5

- model assumption X;, ..., X, i.i.d. f(x;0),0 € ©
- true distribution X, ..., X, i.i.d. F(x) notation
« maximum likelihood estimator based on model:

n
> 0B X) =0
i=1

- what is , estimating ?
« define the parameter 6(F) by

/ V(% 0(F)IdF(x) = 0

Vn{f, — 0(F)} % N(0,0?)

2 JI{x:0(F)}PdF(x)

g =
Mathematical Statistics Il January 10 2023 (f[ell{X; G(F)}]zdF(X))z 26




Misspecified models MS 5.5

Vi, — 0(F)} % N(o, 5?)

52 — X 6(F)}]*dF(x)
(J1e{x; O(F) P dF (x))?

« more generally,

Vn{dn — 6(F)} % N{o,G'(F)}
G(F) = J(F)I " (F)I(F),

J(F) = / —{B(F); xi}dF(x),  I(F) = / (£/(0(F): X)L (B(F): %)} dF (x:)
Godambe information
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Multi-parameter example: logistic regression

Boston$crim2 <- Boston$crim > median(Boston$crim) # define binary response
Boston.glm <- glm(crim2 ~ . - crim, family = binomial,
data = Boston) #fit logistic regression

summary (Boston.glm)

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -34.103704 6.530014 -5.223 1.76e-07 *x**

zn -0.079918 0.033731 -2.369 0.01782 *
indus -0.059389  0.043722 -1.358 0.17436
chas 0.785327  0.728930 1.077 0.28132
nox 48.523782  7.396497 6.560 5.37e-11 x**x*
rm -0.425596 0.701104 -0.607 0.54383
0 28

Mathggegical statistis Il Jarg55/1939%% 0 012221 1.814 0.06963 .



... Example: logistic regression

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,
data = Boston) #fit logistic regression

confint (Boston.glm)

Waiting for profiling to be dome...

2.5 % 97.5 %
(Intercept) -47.480389822 -21.699753794
zn -0.152359922 -0.020567540
indus -0.149113408  0.024168460
chas -0.646429219  2.233443233
nox 34.967619055 64.088411260
m -1.811639107 0.950196261
age -0.001231256  0.046865843
dis 0.280762523  1.140619391
rad 0.376833861  0.975898274

Mathgrgical Statistics Il _ga§39938%81  -0.001324887 g



Multi-parameter setting AoS §9:10

Waiting for profiling to be done — what's profiling?
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... Multi-parameter setting AoS §9:10

Waiting for profiling to be done — what's profiling?
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Profile likelihood function

Waiting for profiling to be done — what's profiling?
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... Profile likelihood function

Waiting for profiling to be done — what's profiling?
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... Profile likelihood function

Waiting for profiling to be done — what's profiling?

4.1 - Likelihood 95
Figure 4.1 Likelihoods
for the spring failure data @
at stress 950 N/mm?. The
upper left panel is the
likelihood for the
exponential model, and
below it is a perspective
plot of the likelihood for
the Weibull model. The
upper right panel shows
contours of the log
likelihood for the Weibull
model; the exponential
likelihood is obtained by
setting @ = 1. that is,
slicing L along the 0 100 200 300 400 500 600 0 2 4 6 8 1012 14
vertical dotted line. The
lower right panel shows theta alpha
the profile log likelihood
for &, which corresponds
1o the log likelihood
values along the dashed
line in the panel above,
plotted against @.
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