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Today

1. Project guidelines
2. Recap
3. Hypothesis testing
4. Signi%cance testing
5. Multiple testing

Upcoming

• March 6 3.30 – 4.30 (Zoom) Details

“Private hypothesis testing over sensitive groups”
Rina Friedberg, Senior ML Engineer, LinkedIn

Data Science Applied Research and Education Seminar
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https://canssiontario.utoronto.ca/event/data-science-ares-rina-friedberg/


Project Guidelines

link

Project Guidelines STA 2212S: Mathematical Statistics II 2023

Presentation on April 4, 2023.
Report submission due April 14, 2023.

Part 1: Write-up [30 points]

Your write-up should be: (1): no more than 8 pages, 12 point font, 1.5 vertical spacing; (2) Contain the
four sections below, each partner to complete two sections; (3) Include a title page with the title and
authors of the paper, the first and last names of the report authors and which section they wrote. (4)
Include a list of references.
The title page and references, and any figures, do not count towards the 10 page limit.

The sections to include and the questions to answer in each section are:

1. Introduction and Motivation

(a) What is the problem being addressed?

(b) What previous work exists?

(c) Why is the previous work insufficient to solve the problem?
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https://q.utoronto.ca/courses/296607/assignments/1041243


Recap

• formal structure for hypothesis testing: H0, H1, test function, critical region, Type I
error, Type II error, size, power

• simple and composite hypotheses
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Recap

• formal structure for hypothesis testing: H0, H1, test function, critical region, Type I
error, Type II error, size, power

• simple and composite hypotheses

• three likelihood-based test statistics
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Recap

• formal structure for hypothesis testing: H0, H1, test function, critical region, Type I
error, Type II error, size, power

• simple and composite hypotheses

• three likelihood-based test statistics

• Neyman-Pearson lemma
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Three likelihood-based test statistics
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Neyman-Pearson Lemma MS Thm 7.2; AoS 10.10.1

Suppose X = (X1, . . . , Xn) ∼ f (x) and we wish to test the null hypothesis H0 : f (X) = f0(x),
against the alternative hypothesis H1 : f (X) = f1(x).
The test with test function

φ(x) =
!
1 if f1(x) > kf0(x),
0 otherwise

(for some 0 < k < ∞) is a most powerful test of H0 vs H1 at level α = E0{φ(X)}.
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Proof MS Thm 7.2

• Suppose there is another function 0 ≤ ψ(x) ≤ 1 with E0{ψ(x)} ≤ E0{φ(x)}
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Proof MS Thm 7.2

• Suppose there is another function 0 ≤ ψ(x) ≤ 1 with E0{ψ(x)} ≤ E0{φ(x)}

•
ψ(x){f1(x)− kf0(x)} ≤

• "
ψ(x){f1(x)− kf0(x)}dx ≤
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Comments on NP-Lemma

• both H0 and H1 must be simple

• the critical region is

• if the distribution of T(X) is continuous Ex. 7.11; HW 6

• if the distribution of T(X) is discrete Ex 7.12

• if H0 and/or H1 are composite
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A word on the t-test

## Default S3 method:

t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, var.equal = FALSE,

conf.level = 0.95, ...)

> t.test(x= oneline[1,one], y= oneline[1,two], var.equal=T)

t = -3.014, df = 70, p-value = 0.003589

> t.test(x= oneline[1,one], y= oneline[1,two])

t = -3.1323, df = 54.667, p-value = 0.002786

> pt(-3.1323, df=54.667) #[1] 0.001392839

> pt(-3.014, df=70) # [1] 0.001794297
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... t-test AoS Ex.10.8

leukemia_big <- read.csv

("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")

oneline <- leukemia_big[136,]

one <- c(1:20, 35:61) # I had to extract these manually,

two <- c(21:34, 62:72) # couldn’t figure out the data frame

n1 <- length(one); n2 <- length(two)

mean_one <- sum(oneline[1,one])/n1. ##[1] 0.7524794

mean_two <- sum(oneline[1,two])/n2. ##[1] 0.9499731

var_one <- sum((oneline[1,one]-mean_one)^2)/(n1-1)

var_two <- sum((oneline[1,two]-mean_two)^2)/(n2-1)

pooled <- ((n1-1)*var_one + (n2-1)*var_two)/(n1+n2-2)

taos <- (mean_one-mean_two)/sqrt((var_one/n1)+(var_two/n2))

##[1] -3.132304

tbe <- (mean_one-mean_two)/sqrt(pooled*((1/n1)+(1/n2)))

##[1] -3.035455
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p-values MS 7.5; AoS 10.2; SM 7.3.1

• MS de%nition: p(x) = inf{α : φα(x) = 1} 7.5

• AoS de%nition: p-value = inf{α : T(x) ∈ Rα} Def 10.11

• SM de%nition pobs = PrH0{T(X) ≥ tobs}

• “Probability of a result as or more extreme than that observed ” ??
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A non-parametric test SM Ex.7.26

• X1, . . . , Xn i.i.d. F(·)
• H0 : µ = µ0, µ = F−1(1/2) median of distribution
• H1 : µ > µ0 both H composite

• test statistic

T =
n#

i=1
1{Xi > µ0}

• under H0,
T ∼ Binom(n, 1/2)

• p-value

pobs = prH0(T ≥ tobs) =
n#

r=tobs

$
n
r

%
1
2n

.
= 1− Φ

&
2(tobs − n/2)

n1/2

'
.
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Power of the sign test SM Ex.7.30
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Power of the sign test SM Ex.7.30

• H0 : F−1(1/2) = µ0 H1 : F−1(1/2) > µ0

• Test statistic T =
(n

i=1 1{Xi > µ0}
• prH0(reject H0) = pr(T ≥ cα | H0) = α ⇒ cα ≈ n/2− n1/2zα/2
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Power of the sign test SM Ex.7.30

• H0 : F−1(1/2) = µ0 H1 : F−1(1/2) > µ0

• Test statistic T =
(n

i=1 1{Xi > µ0}
• prH0(reject H0) = pr(T ≥ cα | H0) = α ⇒ cα ≈ n/2− n1/2zα/2
• prH1(reject H0) = pr(T ≥ cα | H1) Need distribution of T under H1

• to calculate power we need values for µ and for F
• e.g. change to H1 : F−1(1/2) = µ1 prFµ1 (X > µ0)

• SM assumes F is N(µ,σ2), and uses normal approximation to dist’n of T

prµ1(T ≥ cα) = prµ1(T ≥ n/2− n1/2zα/2) .
= Φ{zα + δ(2/π)1/2}

• test based on X̄ has power Φ(zα + δ) δ = n1/2(µ1 − µ0)/σ
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Permutation test AoS 10.5; EH 4.4

leukemia data (EH): X1, . . . , X47 ; Y1, . . . , Y25 AoS Ex. 10.20

oneline

ALL ALL.1 ALL.2 ALL.3 ALL.4 ALL.5 ALL.6 ALL.7

136 0.9186952 1.634002 0.4595867 0.6379664 0.3440379 0.8614784 0.5132176 0.9790902

ALL.8 ALL.9 ALL.10 ALL.11 ALL.12 ALL.13 ALL.14 ALL.15 ALL.16

136 0.2105782 0.8016072 0.6006949 0.3614374 1.04632 0.9697635 0.4873159 0.4976364 1.101717

ALL.17 ALL.18 ALL.19 AML AML.1 AML.2 AML.3 AML.4 AML.5

136 0.8563937 0.661415 0.817711 0.7671718 0.9793741 1.425479 1.074389 0.9839282 0.9859271

AML.6 AML.7 AML.8 AML.9 AML.10 AML.11 AML.12 AML.13 ALL.20

136 0.3247027 0.7110302 1.09625 0.9675151 0.975123 0.7775957 0.9472205 1.261352 0.5679544

ALL.21 ALL.22 ALL.23 ALL.24 ALL.25 ALL.26 ALL.27 ALL.28

136 0.8462901 0.8838616 0.7239931 0.7327029 0.7823618 0.5435396 0.832537 0.5527333

ALL.29 ALL.30 ALL.31 ALL.32 ALL.33 ALL.34 ALL.35 ALL.36

136 0.7327029 0.5510955 0.8214005 0.6418498 0.720798 0.5830999 0.7657568 0.5262976

ALL.37 ALL.38 ALL.39 ALL.40 ALL.41 ALL.42 ALL.43 ALL.44

136 1.466999 0.5445589 0.5725049 1.362768 0.8533535 0.8132982 0.8538596 0.5689876

ALL.45 ALL.46 AML.14 AML.15 AML.16 AML.17 AML.18 AML.19 AML.20

136 0.6930355 1.067526 0.9677959 0.9338141 1.138926 1.161753 0.6242354 0.6590103 1.215186

AML.21 AML.22 AML.23 AML.24

136 0.9340861 1.310376 0.771426 0.7556606

H0 : FX = FY
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AoS 10.20 uses medianMathematical Statistics II February 28 2023 15
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Choosing test statistics

1. Context

2. Optimal choice – Neyman-Pearson Lemma

3. Pragmatic choice – likelihood-based statistics

4. Pragmatic choice – nonparametric test statistics
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Hypothesis tests and signi!cance tests

• Hypothesis tests typically means:
• H0, H1
• critical/rejection region R ⊂ X ,
• level α, power 1− β

• conclusion: “reject H0 at level α” or “do not reject H0 at level α”
• planning: maximize power for some relevant alternative minimize type II error
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Hypothesis tests and signi!cance tests

• Hypothesis tests typically means:
• H0, H1
• critical/rejection region R ⊂ X ,
• level α, power 1− β

• conclusion: “reject H0 at level α” or “do not reject H0 at level α”
• planning: maximize power for some relevant alternative minimize type II error

• Signi%cance tests typically means:
• H0,
• test statistic T
• observed value tobs,
• p-value pobs = Pr(T ≥ tobs;H0)
• alternative hypothesis o'en only implicit large T points to alternative

Mathematical Statistics II February 28 2023 17

a



Hypothesis tests and signi!cance tests

• Hypothesis tests typically means:
• H0, H1
• critical/rejection region R ⊂ X ,
• level α, power 1− β

• conclusion: “reject H0 at level α” or “do not reject H0 at level α”
• planning: maximize power for some relevant alternative minimize type II error

• Signi%cance tests typically means:
• H0,
• test statistic T
• observed value tobs,
• p-value pobs = Pr(T ≥ tobs;H0)
• alternative hypothesis o'en only implicit large T points to alternative
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Hypothesis tests and signi!cance tests

• overlap: sometimes (not recommended)
pobs < 0.05 −→ “evidence against H0” “reject H0”

• overlap: pobs is the smallest α-level
at which the corresponding hypothesis test would reject H0 De'nition 10.11 in AoS
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Hypothesis tests and signi!cance tests

• overlap: sometimes (not recommended)
pobs < 0.05 −→ “evidence against H0” “reject H0”

• overlap: pobs is the smallest α-level
at which the corresponding hypothesis test would reject H0 De'nition 10.11 in AoS

Mini-quiz – True or False? Rice, Exercise 9.11.5

1. The signi(cance level of a statistical test is equal to the probability the the null hypothesis is true
2. If the signi(cance level of a test is decreased, the power would be expected to increase
3. If the test is rejected at level α, the probability that the null hypothesis is true equals α.
4. The probability that the null hypothesis is falsely rejected is equal to the power of the test
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Hypothesis tests and signi!cance tests

• overlap: sometimes (not recommended)
pobs < 0.05 −→ “evidence against H0” “reject H0”

• overlap: pobs is the smallest α-level
at which the corresponding hypothesis test would reject H0 De'nition 10.11 in AoS

Mini-quiz – True or False? Rice, Exercise 9.11.5

1. The signi(cance level of a statistical test is equal to the probability the the null hypothesis is true
2. If the signi(cance level of a test is decreased, the power would be expected to increase
3. If the test is rejected at level α, the probability that the null hypothesis is true equals α.
4. The probability that the null hypothesis is falsely rejected is equal to the power of the test
5. A type I error occurs when the test statistic falls in the rejection region of the test
6. A type II error is more serious than a type I error
7. The power of a test is determined by the null distribution of the test statistic
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Diagnostic testing Wikipedia

1. Hypothesis testing
H0 not rejected H0 rejected

H0 true type 1 error
truth

H1 true type 2 error

2. Diagnostic testing link
test negative test positive

C19 neg TN FP N
truth

C19 pos FN TP P
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An underpowered study Hernandez et al, JAMA 2019

Died Lived

New 74 138 212
Old 92 120 212

Total 166 258 424

mortality di,erence 92/212 = 43%; 74/212 = 34%; di,erence = -8% clinically signi'cant

p-value (comparing two binomial proportions) 0.07

95% con%dence interval for di,erence (−18.2%, 1.2%)

“we planned to enrol 420 patients. We calculated that with this sample size the study
would have 90% power to detect a reduction in 28-day mortality from 45% to 30%, at an
α-level of 0.05”
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Diagnostic testing and ROC
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Diagnostic testing AoS Table 10.2

2. Diagnostic testing link
test negative test positive

C19 neg TN FP N
truth

C19 pos FN TP P

3. Multiple testing
H0 not rejected H0 rejected

H0 true U V m0
truth

H1 true T S m1
m− R R m
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Multiple testing EH 15.2, AoS 10.7

leukemia_big <- read.csv

("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")

dim(leukemia_big)

[1] 7128 72

• each row is a di,erent gene; 47 AML responses and 25 ALL responses
• we could compute 7128 t-statistics for the mean di,erence between AML and ALL

tvals <- rep(0,7128)

for (i in 1:7128){

leukemia_big[i,] %>% select(starts_with("ALL")) %>% as.numeric() -> x

leukemia_big[i,] %>% select(starts_with("AML")) %>% as.numeric() -> y

tvals[i] <- t.test(x,y,var.equal=T)$statistic

}
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Multiple testing EH 1.2, 15.2

> summary(tvals)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-118.793 -19.926 -11.231 -12.019 -4.218 41.015
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Multiple testing
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Multiple testing EH 15.2, AoS 10.7

• H0i versus H1i, i = 1, . . . ,m
• p-values p1, . . . ,pm
• Bonferroni method: reject H0i if pi < α/m
• pr(any H0 falsely rejected ) ≤ α very conservative
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Multiple testing EH 15.2, AoS 10.7

• H0i versus H1i, i = 1, . . . ,m
• p-values p1, . . . ,pm
• Bonferroni method: reject H0i if pi < α/m
• pr(any H0 falsely rejected ) ≤ α very conservative

• FDR method controls the number of rejections that are false FDP = V/R

H0 not rejected H0 rejected
H0 true U V m0

truth
H1 true T S m1

m− R R m
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Benjamini-Hochberg AoS 10.7; EH 15.2

• order the p-values p(1), . . . ,p(m)

• %nd imax, the largest index for which

p(i) ≤
i
mq

• Let BHq be the rule that rejects H0i for i ≤ imax, not rejecting otherwise
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Benjamini-Hochberg AoS 10.7; EH 15.2

• order the p-values p(1), . . . ,p(m)

• %nd imax, the largest index for which

p(i) ≤
i
mq

• Let BHq be the rule that rejects H0i for i ≤ imax, not rejecting otherwise
• Theorem: If the p-values corresponding to valid null hypotheses are independent
of each other, then

FDR(BHq) = π0q ≤ q, where π0 = m0/m

π0 unknown but close to 1
• change the bound under dependence

p(i) ≤
i

mCm
q Cm =

m#

i=1

1
i
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Benjamini-Hochberg EH 15.2
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Example AoS Ex.10.28

index 1 2 3 4 5 6 7 8 9 10

pval 0.00017 0.00448 0.00671 0.00907 0.01220 0.33626 0.3934 0.5388 0.5813 0.9862

cut1 0.00500 0.01000 0.01500 0.02000 0.02500 0.03000 0.0350 0.0400 0.0450 0.0500

cut2 0.00171 0.00341 0.00512 0.00683 0.00854 0.01024 0.0119 0.0137 0.0154 0.0171
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Benjamini-Hochberg proof Efron; FZ 2006

Theorem: If the p-values corresponding to valid null hypotheses are independent of
each other, then

FDR(BHq) = π0q ≤ q, where π0 = m0/m
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