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Introduction

Graph design for data analysis and presentation is largely unscientific.
(Cleveland & McGill, 1984)
Much of the early experimentation regarding the accuracy of
graphical forms was based in psychophysics research on the
perception of size and shape. (Vanderplas, Cook & Hofmann, 2020)
Deficient data visuals can reduce the quality and impede the progress
of scientific research. (Mason, 2019)
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How to make a good graph?
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How to make a good graph?
Literature Review

Graphical Perception: Theory, Experimentation, and Application to
the Development of Graphical Methods [Cleveland and McGill, 1984]

Graph Construction:
Elementary perceptual tasks: quantitative information extracted from a
graph.
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The list of 10 elementary perceptual tasks
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The order of 10 elementary perceptual tasks

From most to least accurate:
1 Position along a common scale;
2 Positions along nonaligned scales;
3 Lengths, direction, angle;
4 Area;
5 Volume, curvature;
6 Shading, color saturation.
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Example (Wilke 2019): position along a common scale vs
lengths

Figure: The bar plot of life expectancies of
countries in 2007

Figure: The dot plot of life expectancies
of countries in 2007
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Examples (Cleveland & McGill): angle vs positions

Figure: Comparison between pie chart and bar chart
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How to make a good graph?
Literature Review

What makes a good graph? [Vanderplas, Cook & Hofmann, 2020]

Graphical testing methods
{

Explicitly structured graphical test
Implicitly structured graphical test

Explicit graphical tests require participants to answer specific questions
about graphical objects. Implicit graphical tests require participants to
identify both the purpose and function of the plot and use that
information to evaluate the plot as shown. Line-up protocol is the implicit
graphical test.
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Types of plots for visualization
Fundamentals of Data Visualization (Wilke 2019)

Visualizing amounts
{

grouped/stacked bar plot
dot plot/ heat map

Figure: Median household annual income in
2016 Figure: Number of passengers in Titanic
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Types of plots for visualization
Fundamentals of Data Visualization (Wilke 2019)

Visualizing distribution
{

histogram
density plot
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Types of plots for visualization
Fundamentals of Data Visualization (Wilke 2019)

Visualizing nested proportions
{

Mosaic
Treemap

Figure: Mosaic for bridge construction
materials & era

Figure: Treemap for ridge construction
materials & era
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Types of plots for visualization
Fundamentals of Data Visualization (Wilke 2019)

Visualizing associations
{

Scatterplot
slopegraph (paired data)
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Visual Inference Test Protocols
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Visual inference test protocols
Literature review

Statistical inference for exploratory data analysis and model
diagnostics [Buja.etc, 2009]

Rorschach protocol:
To measure a data analyst’s tendency to over-interpret plots in which
there is only spurious structure.

Line-up protocol:
To assess the significance of visual discoveries. The interest is the
probability of singling out the actual data plot.
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Line-up test

Figure: Line-up normal q-q test for contaminated normal
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Line-up test

Figure: Result of Line-up normal q-q test for contaminated normal

Not all data points will be perfectly aligned with the normal q-q line, even
if they are generated from N(0,1).
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Line-up test
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Line-up protocol
Validation of Visual Statistical Inference, Applied to Linear Models
[Majumder, Hofmann & Cook, 2013]

Figure: Comparison between conventional and visual inference
Chenghui Zheng Master Project - Data Visualization 20



University of Toronto

New Formalism of Visual Inference
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Visual Inference
In the ggplot implementation of the grammar of graphics, each layer of
the visual statistic is composed of statistical transformation and geometric
elements.

Layers of visual statistic
The statistical transformation, stat, or S(X), maps the columns of the
data table X to a lower-dimensional summary.
The geometric elements, geom G, create graphical objects for the plots,
such as polygons, area, lines, points, etc.

Thus, a visual statistic V can be formally expressed as:

V = G ◦ S(X)
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Visual Inference

A visual statistic V will also be augmented with other elements such as
annotations, context, rulers or other navigation devices. We denote these
by A(W ) where W is auxiliary data sometimes but not necessarily the
original data X . The additional augmented visual statistic Ṽ is now
expressed as

Ṽ = V ◦ (A|V ).

A further augmentation, A, that does not depend on X or W is used to
create an attractive plot. The visual statistic in its complete form is

Vcomplete = Ṽ ◦ A = V ◦ (A|V ) ◦ A.
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Examples:

Figure: Grouped bar plot for median
household annual income in 2016 Figure: Data table for median household

annual income in 2016
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Example:

Figure: Code for grouped bar plot
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Example:
The bar plot is generated by mapping race,X.2, to x axis, median income,
X.3, to y axis and age group, X.1, to fill. The geom is col(position =
"dodge") since we want the heights of the bars to represent the median
income of each age group in each race.

VC = GC ◦ SC ,GC = col(position = “dodge”),

SC(X) = (X.2,X.3,X.1) → SGC = (x , y , fill).

The augmentation, A, includes the theme, labels, breaks,etc. The
final plot is expressed as

Vcomplete = VC ◦ A.
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Graphical testing methods
Explicitly structured graphical test:

Preattentive perception;
-searching tasks : size, shape, angle and color
Attention mediated;

Direct observation;
Psychophysics methodology;

Constant stimuli;
- repeatedly presented with charts and a particular question
Method of adjustment
- adjust the stimuli interactively

Think aloud
Concurrent think-aloud(CTA);
Retrospective think-aloud(RTA)

Implicitly structured graphical test: Line-up protocol
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