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Mathematical Statistics II
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Week 9

March 17 2021

Start recording!

https://www.nytimes.com/interactive/2021/03/02/climate/atlantic-ocean-climate-change.html


Recap Are you recording?

• overview of Bayesian inference
• posterior predictive distribution
• Bayesian computation
• Example 11.9 AoS
• Bayesian hierarchical models

Addendum: If X1, . . . , Xn are i.i.d. N(µ,σ2), both parameters unknown, then the conjugate
priors for µ and σ2 are

µ ∼ N(µ0, τ 2); σ2 ∼ IG(ν02 ,
ν0σ
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Inverse Gamma distribution IG(α,β) has density f (t;α,β) = βα
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Today Start Recording

1. Notes from March 12 (Friday) still to be posted
2. Friday March 19 – Stein’s paradox B-H proof

3. empirical Bayes
4. introduction to decision theory

• Mar 22 3.00 – 4.00 pm EDT
Data Science ARES
Jesse Cisewski Kehe
University of Wisconsin-Madison
“Astrostatistics: From Exoplanets to
the Large-scale Structure of the Universe”
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Bayesian hierarchical model, recap SM Ex. 11.25

• xi | θi ∼ N(θi, vi), independent; θi | µ ∼ N(µ,σ2), i = 1, . . . ,n i.i.d; µ ∼ N(µ0, τ 2)

• vi, i = 1, . . . ,n,σ2, µ0, τ 2 all known

•
E(θi | x) = xi

σ2

σ2 + vi
+ E(µ | x)(1− σ2

σ2 + vi
)

•
E(µ | x) = µ0/τ

2 +
!
xi/(σ2 + vi)

1/τ 2 +
!
1/(σ2 + vi)

• If σ2 unknown, then need to sample from the posterior, no closed form available

• Figure 11.11 applies similar ideas, plus sampling from the posterior, in logistic regression
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...Bayesian hierarchical model, recap SM Ex. 11.25
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Empirical Bayes SM Ex. 11.28

As above, xi | θi ∼ N(θi, vi), independent; θi | µ ∼ N(µ,σ2), i = 1, . . . ,n i.i.d;

vi, i = 1, . . . ,n,σ2, τ 2 all known no hyper-prior now

marginal distribution of xi is N(µ, vi + σ2)

suggests

µ̂EB =

!
xi/(vi + σ2)!
1/(vi + σ2)

and then
θ̂i,EB = xi

σ2

vi + σ2
+ µ̂EB

vi
vi + σ2

These estimates of θi are biased, but might have smaller mean-squared error, e.g.

“large sets of parallel situations carry their own prior information ” EH, Ch.6
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Empirical Bayes EH §6.1
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Empirical Bayes EH §6.1
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Empirical Bayes EH §6.1
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Statistical decision theory AoS Ch 12; SM 11.5

• Loss function

• Risk of an estimator

expected loss

• Mean-squared error

• Bayes risk

• maximum risk
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Examples AoS 12.2, 12.3
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Maximum risk; Bayes risk AoS Ex 12.5

p̂1 = X̄; R(p, p̂1) = p(1− p)/n

p̂2 =
nX̄ +

"
n/4

n+
√
n

; R(p, p̂2) =
n

4(n+
√
n)2
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Bayes rules
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Admissibility
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