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More on vaccines Boyang Zhao's blog post

Vaccine efficacy
The way we measure vaccine efficacy is defined as follows, l | n k
vaccine efficacy (VE) =1— R
Boyang Zhao The R can be ratio of risks (RR, risk ratio); rates (IRR, incidence rate ratio); or hazards (HR,

Senior data scientist at ING Bank  @Zard ratio). Because of the ratios, we see that vaccine efficacy is a relative measure - in
Computational biology, genomics, how much relative reduction in infection or disease in the vaccinated group compared to
systems biology, finance, banking  the unvaccinated group. A VE of 90% means there are 90% fewer cases in the vaccinated

euiTene group compared to the placebo group. We will use the subscripts , and ,, to denote
9 Netherlands vaccinated and placebo groups, i but obviously the di: ion is applicable for
@ Twitter comparing between any two treatment arms - not necessarily have to be a placebo.
B Linkedin
© GitHub With RR
VE=1-RR=1- /Ny
/Ny

where N, and N, are the total number of participants in the vaccinated and placebo
group, respectively.

With IRR
T,
VE—1-mR—1- %%
/Ty
where T, and T}, are the time-person years for the vaccinated and placebo group,
respectively.
With HR
VE=1-HR=

where A, and \, are the hazard rates for the vaccinated and placebo group, respectively.
This measures the relative reduction in the hazard of infection. The hazard ratio can be


https://boyangzhao.github.io/posts/vaccine_efficacy_bayesian

More on vaccines Stephen Senn'’s blog post

link

Beta prior distribution for Pfizer/BioNTech vaccine trial
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https://errorstatistics.com/2021/01/17/s-senn-beta-testing-the-pfizer-biontech-statistical-analysis-of-their-covid-19-vaccine-trial-guest-post/

Polling analysis

POLLING

US election polls:
a quick postmortem

How did the 2020 US presidential election polls really do?
Ole J. Forsberg gives his assessment

The American Association
for Public Opinion Research
(AAPOR) is expected to
produce a report early this year
that explores the strengths and
weaknesses of the polls in the
2020 US election cycle. The

polls were criticised in some
quarters il i after the

closing weeks of the campaign.
The first source of error,
faulty weighting, is extremely
important for polling houses to
take seriously. While the number
of US polling houses taking
education level into consideration
increased in 2020, the education
istics of the voting

election, when it became clear
that Donald Trump had done
better than expected and that
Joseph R. Biden Jr's margin of
victory in the popular vote was
not as large as anticipated.'

In preparation for this report,
I wanted to provide some
insight into the polls and some
suggestions of my own for moving
forward. Specifically, I hope to
convince polling houses to use
some type of model averaging —
or even Bayesian methods - to

population remain uncertain.
“Shy voters” — the second source
of error — may be more myth than
reality (s3eig.ht/30NEb6R). But
whether shy or not, there are some
voters who either choose not to
respond to polls, or who choose not
to answer honestly when surveyed.
Pollsters need to address this, either
by asking additional questions to
model respondent preference for
those who choose not to say how
they will vote, or by finding new
‘ways to encourage the public to

interpretation, not of polling.

The mistake happens in how we
interpret a poll result such as
“48% Biden, 44% Trump”. Do we
focus on the two-party vote and
claim that Biden is ahead, or do
‘we acknowledge that there is a
sizeable portion of voters — 8%

— who may only decide how to
vote once in the polling booth?
Clearly, the latter interpretation
is more appropriate, but it makes
for a less straightforward story, so
these undecided voters tend to be
overlooked in media reports.

Missing data

‘The majority of polls in the

2020 election cycle contained
just three response options for
those asked about their intended
vote: “Biden”, “Trump”, and
“undecided”. The implied fourth

mentioned earlier constitute a
huge amount of missing data
about voting intention. Ignoring
these missing data leads to false
precision in the polls’ assessment
of the state of the election.

While some undecided voters
ultimately will not vote, many will
eventually decide between the
two candidates. This increases the
uncertainty in polling estimates
beyond what is reported in terms,
of confidence intervals and
‘margins of error. As a result, when
those late-deciding voters finally
vote, polls may look very wrong.

To illustrate this point, compare
the polls in the final two weeks
of the 2020 election to the final
election result (Table 1). In this
sample of 174 polls, the actual
Biden vote was within the polls’
‘margins of error 85% of the time,
while the actual Trump vote was
within the polls’ margins of error
only 43% of the time. For the 57%
of confidence intervals that missed
Trump’s actual vote, they were
always too low, never too high —
meaning that the polls consistently
underestimated Trump's final vote.
The 15% of confidence intervals
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Table 1: Results from comparing candidate support levels in polls from the last two weeks of the US presidential election with the actual

outcome of the election (vote share). Polls are a mix of state-level and national polls from a variety of polling houses, using a variety of methods.

Confidence interval hits

Average miss
(standard error)

Source Biden Biden Trump
All polls 174 85% (79% to 90%) 43% (35% to 50%) -0.09 +2.41
Online only 23 96% (78% to 99%) 30% (13% to 53%) -0.79 +2.21
Online + telephone 26 92% (75% to 99%) 54% (33% to 73%) -0.78 +2.24
Telephone only 125 82% (74% to 88%) 42% (34% to 52%) -0.18 +2.48
University 60 92% (82% to 97%) 27% (16% to 40%) -0.10 +2.99
Non-university 114 82% (73% to 88%) 51% (41% to 60%) -0.09 +2.10
Partisan 52 79% (65% to 89%) 75% (61% to 86%) +0.62 +1.33
Non-partisan 122 88% (81% to 93%) 29% (21% to 38%) -0.40 +2.87

“Personally, | favour the Bayesian solution because it provides a solid statistical

structure for estimation and communication of results.”

link


https://utstat.toronto.edu/reid/2212s/significance-polling.pdf
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Recap Are you recording?

« approximate posterior normality

- choosing a prior: subjective, conjugate, flat, convenience

« matching priors; Jeffreys’ prior

- multiple parameters, marginal posterior

- Bayesian and frequentist philosophy A0S §111

- empirical and epistemic probability
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Today Start Recording

. Friday: Jeffreys-Lindley paradox (HW 6 (c)); DF re y?;

. Bayesian inference overview

Fmo One weird examples A0S 11.9, #:10
. empirical Bayes

. hierarchical Bayes

oW N

* Mar 15545 - 6415 pm EDT
Data Science Speaker Series
Jesse Cresswell
Machine Learning Scientist, Layer 6 Al at TD
“Evaluating Model Performance on
Highly Imbalanced Datasets”
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https://canssiontario.utoronto.ca/event/dsss_cresswell_jesse/

- all information about # contained in posterior density 7(0 | x") = f(x" | 0)=(0) /fx (x")

- inference about /() based on marginal posterior

- for comparing two (or more) points ¢ in 7(# | x"), don’t need marginal distribution of X"
- for choosing between models, do need marginal distribution of X", as in HW 6 (c)

« Bayesian predictions of future values: posterior predictive

T (Xnew | X7) = / £ (Xnew | X7, 6)7(0 | X")dl6,

« probability statements refer to uncertainty of knowledge

« choosing priors can be difficult, and can have large impact in high-dimensional settings
« most applications of Bayesian inference involve sampling from the posterior density

« or approximating the posterior density normal, Laplace
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Bayesian computation SM §11.3; AoS Ch 24

- excellent overview of Bayesian 616 11 Bayesian Modes
computational methods in SM 11.3

® ® Aoy o motoene i
~ ~ ﬁ:l‘lgcpoh&Has(mgs
? ® ot e
« Laplace approximation of integrals - g7 N
2 2 et dnsity st
friﬂul\c;)ungor t
o o s o gt
O importance Sampling "0 10 00 5000 "o w0 00 soo
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« Markov chain Monte Carlo sampling S
3 8
z z°
« Gibbs sampling 3o & 2
+ Metropolis-Hastings algorithm e
-2 10 -8 -6 0 1000 3000
betal y+
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Example 11.9 AoS

(X1, R1, Ya), ..o, (Xn, R, Yp) i, parameter 6 = (6,,...,60g), Bvery large
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Example 11.9 AoS
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Example 11.9 AoS
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Bayesian hierarchical models SM 11.4, Eg. 11.25
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Bayesian hierarchical models SM 11.4. Eg. 11.25
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Bayesian hierarchical models SM 11.4. Eg. 11.25

Fig 1111
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Empirical Bayes SM 11.4,. Eg. 11.28
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Empirical Bayes SM 11.4,. Eg. 11.28
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Empirical Bayes SM 11.4,. Eg. 11.28
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