STA2212: Inference and Likelihood

A. Notation

One random variable: Given a model for X which assumes X has a density $f(x;\theta)$, $\theta \in \Theta \subset \mathbb{R}^k$, we have the following definitions:

```
likelihood function L(\theta;x) = c(x)f(x;\theta) log-likelihood function \ell(\theta;x) = \log L(\theta;x) = \log f(x;\theta) + a(x) score function u(\theta) = \partial \ell(\theta;x)/\partial \theta \qquad s(x;\theta) observed information function j(\theta) = -\partial^2 \ell(\theta;x)/\partial \theta \partial \theta^T expected information (in one observation) i(\theta) = \mathbb{E}_{\theta}\{U(\theta)U(\theta)^T\}^1 \qquad I(\theta) \ (9.11)
```

Independent observations: When we have X_i independent, identically distributed from $f(x_i; \theta)$, then, denoting the observed sample $\mathbf{x} = (x_1, \dots, x_n)$ we have:

likelihood function	$L(\theta; \boldsymbol{x}) = \prod_{i=1}^{n} f(x_i; \theta)$	$\mathcal{L}_n(heta)$
log-likelihood function	$\ell(\theta) = \ell(\theta; \boldsymbol{x}) = \sum_{i=1}^{n} \ell(\theta; x_i)$	$\ell_n(heta)$
maximum likelihood estimate	$\hat{\theta} = \hat{\theta}(\boldsymbol{x}) = \arg\sup_{\theta} \ell(\theta)$	$\hat{ heta}_n$
score function	$U(\theta) = \ell'(\theta) = \sum U_i(\theta)$	$\Sigma_i s(X_i; heta)$
observed information function	$j(\theta) = -\ell''(\theta) = -\ell''(\theta; \boldsymbol{x})$	$-H(\theta) \text{ p.133}$
observed (Fisher) information	$j(\hat{ heta})$	lazy notation
expected (Fisher) information	$i(\theta) = \mathcal{E}_{\theta} \{ U(\theta) U(\theta)^T \} = ni_1(\theta)$	$I_n(\theta) = nI(\theta)$ (Th. 9.17)

Comments:

- 1. the maximum likelihood estimate $\hat{\theta}_n$ is usually obtained by solving the score equation $\ell'(\theta; \mathbf{x}) = 0$.
- 2. It doesn't really matter for the definitions above if the observations are independent and identically distributed (i.i.d.), or only independent, but the theorems that are proved in Ch. 9 do assume i.i.d. for simplicity.
- 3. AoS does not have separate notation for the *observed* Fisher information, which is the negative second derivative at the maximum. But Theorem 9.17 shows that $E_{\theta}\{-\ell''(\theta;X)\} = E_{\theta}\{j(\theta)\} = I(\theta)$, in models for which we can interchange differentiation and integration in $\int f(x;\theta)dx = 1$.
- 4. There are important distinctions to be careful about in the notation for likelihood and its quantities:
 - (a) Are we working with a single observation or n observations?
 - (b) Is the variable x, or the vector $\mathbf{x} = (x_1, \dots, x_n)$, random (X) or fixed (x)?
 - (c) Do we want to find the distribution of something (X is random) or calculate data summaries (x is fixed)?

 $^{^{1}}U(\theta) = u(\theta; X)$

B. First order asymptotic theory AoS §9.3-9.7

1. θ is a scalar

If the components of X are i.i.d., then the score function $U(\theta; X)$ is a sum of i.i.d. random variables, and we can show that it has expected value 0 and variance $I_n(\theta)$ (or $i(\theta)$ in my notation). Under some regularity conditions on the density $f(x_i; \theta)$, the central limit theorem gives

$$\frac{U(\theta)}{I_n^{1/2}(\theta)} \stackrel{d}{\to} N(0,1). \qquad \rightsquigarrow \tag{1}$$

Almost everything else follows from this result and Slutsky's theorem. For example, we can show that

$$(\hat{\theta} - \theta)I_n^{1/2}(\theta) = U(\theta)/I_n^{1/2}(\theta) + o_p(1),$$

where $o_p(1)$ means a remainder term that goes to 0 in probability as $n \to \infty$, so we have the second result

$$(\hat{\theta} - \theta)I_n^{1/2}(\theta) \stackrel{d}{\to} N(0, 1). \tag{2}$$

These limit theorems give us two corresponding approximations to use with n fixed:

$$U(\theta) \sim N(0, I_n(\theta)), \qquad \approx$$
 (3)

and

$$\hat{\theta} - \theta \sim N\left(0, 1/I_n(\theta)\right). \tag{4}$$

The notation \sim is read as "is approximately distributed as".

Having the unknown quantity θ in the variance in (3) and (4) is inconvenient, but to the same order of approximation, we can replace $I_n(\theta)$ by $I_n(\hat{\theta})$ or by $j(\hat{\theta})$. In AoS, $I_n^{-1/2}(\theta)$ is called se and $I_n^{-1/2}(\hat{\theta})$ is called se, but the use of $j(\hat{\theta}) = -\ell''(\hat{\theta}; \boldsymbol{x})$ is not mentioned. It should be, because careful study of the remainder term (the $o_p(1)$ term above) indicates that of all the choices, $j(\hat{\theta})$ gives the best approximation for fixed n. It is also readily available in software that finds maximum likelihood estimates using Newton's method to solve $\ell'(\hat{\theta}) = 0$; see AoS p.143. In Theorem 9.19, $1/I_n^{1/2}(\hat{\theta})$ is used in (4) to define an approximate confidence interval for the unknown parameter θ .

2. θ is a vector of length k AoS 9.10

The results above all generalize directly to a vector θ of unknown parameters. The notation on p.1 already includes this case. The score function is a $k \times 1$ vector and the observed and expected Fisher information are $k \times k$ matrices. The limit theorems corresponding to (1) and (2) are

$$I_n^{-1/2}(\theta)U_n(\theta) \xrightarrow{d} N_k(0, \mathcal{I}_k), \quad I_n^{1/2}(\theta)(\hat{\theta} - \theta) \xrightarrow{d} N_k(0, \mathcal{I}_k),$$
 (5)

where $N_k(0, \mathcal{I}_k)$ is the multivariate standard normal distribution and \mathcal{I}_k is the $k \times k$ identity matrix. Because this limit statement involves taking the square root of the

matrix I_n , the results in (5) are rarely used in this form. That is why AoS, Theorem 9.27 simply gives the analogue of (3):

$$\hat{\theta} - \theta \sim N_k \left(0, I_n^{-1}(\hat{\theta}) \right) \tag{6}$$

(Actually, AoS doesn't distinguish in Theorem 9.7 between $I_n^{-1}(\hat{\theta})$ and $I_n^{-1}(\hat{\theta})$ but it should. In Theorem 9.28 the result correctly uses $I_n^{-1}(\hat{\theta}) \equiv J_n(\hat{\theta}) \equiv \hat{J}_n$.)

The approximation in (6) is for the whole vector $\hat{\theta}$ but that's not so useful in practice. However we can specialize the result to a single component, giving, for example,

$$\hat{\theta}_j - \theta_j \sim N\left(0, J_n(\hat{\theta})_{jj}\right),$$
 (7)

i.e. the jth diagonal element of the inverse matrix is the approximate variance of the jth component of the vector $\hat{\theta}$. We also have that $J_n(\hat{\theta})_{jk}$ is the asymptotic covariance of $\hat{\theta}_j$, $\hat{\theta}_k$.

Result (7) corresponds to the standard output from the R command glm. The following is a logistic regression model from the Final Homework in Applied Stats I. Each line in the table of coefficients is an application of (7). The matrix \hat{J}_n is obtained with the command vcov(Boston.glm).

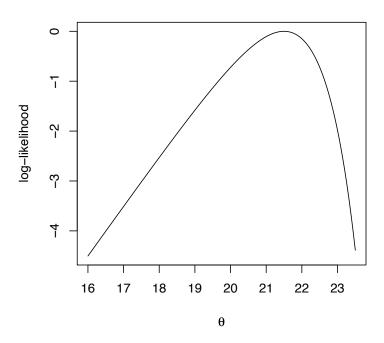
```
library(MASS)
data(Boston)
Boston$crim2 <- Boston$crim > median(Boston$crim) # define binary response
Boston.glm <- glm(crim2 ~ . - crim, family = binomial,
data = Boston) #fit logistic regression
summary(Boston.glm)</pre>
```

Coefficients:

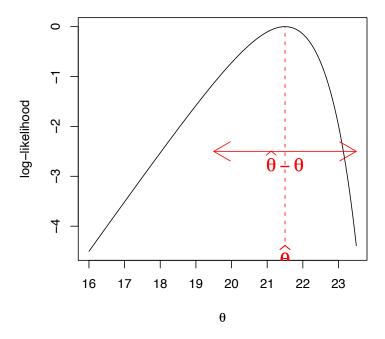
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-34.103704	6.530014	-5.223	1.76e-07	***
zn	-0.079918	0.033731	-2.369	0.01782	*
indus	-0.059389	0.043722	-1.358	0.17436	
chas	0.785327	0.728930	1.077	0.28132	
nox	48.523782	7.396497	6.560	5.37e-11	***
rm	-0.425596	0.701104	-0.607	0.54383	
age	0.022172	0.012221	1.814	0.06963	•
dis	0.691400	0.218308	3.167	0.00154	**
rad	0.656465	0.152452	4.306	1.66e-05	***
tax	-0.006412	0.002689	-2.385	0.01709	*
ptratio	0.368716	0.122136	3.019	0.00254	**
black	-0.013524	0.006536	-2.069	0.03853	*
lstat	0.043862	0.048981	0.895	0.37052	
medv	0.167130	0.066940	2.497	0.01254	*

Here is the log-likelihood function for θ with a single observation from the density $f(x;\theta)=\exp\{-(x-\theta)-e^{(x-\theta)}\}.$

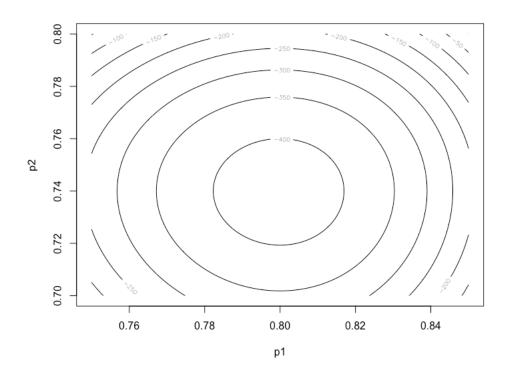
log-likelihood function

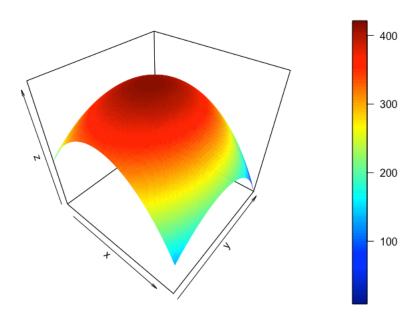


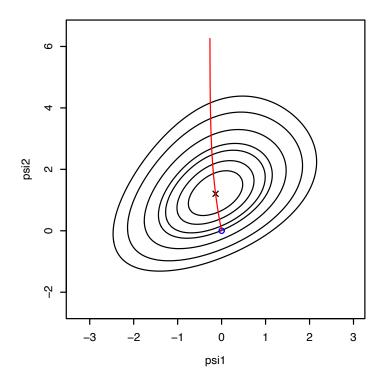
log-likelihood function



Here is the log-likelihood function for (p_1,p_2) in a model for two independent binomial observations, using the data given in AoS Exercise 9.7 (d).







C. Profile log-likelihoods: $\theta = (\psi, \lambda)$

Very often there are a small number of *parameters of interest*, but the model has additional parameters to improve the modelling of the observed data. We can treat it as a multivariate problem, as in B2 above, but it is sometimes convenient to work instead with the profile log-likelihood function:

$$\ell_{p}(\psi; \boldsymbol{x}) = \ell(\psi, \hat{\lambda}_{\psi}; \boldsymbol{x}), \tag{8}$$

and in lazy notation we drop the dependence on the observed data and write $\ell_{textp}(\psi)$. In (8) $\hat{\lambda}_{\psi}$ is the maximum likelihood estimate of λ , when ψ is fixed.

Likelihood functions are just (proportional to) density functions with the arguments switched.² Profile likelihood functions are not proportional to the density of an observable random variable; the maximization gets in the way. But inference based on $\ell_p(\psi)$ has some similarities to inference based on the log-likelihood function. In particular:

²i.e. the data is fixed and the parameter varies

1. $\hat{\psi} = \arg \sup_{\psi} \ell_{p}(\psi)$

i.e. you can compute the MLE in steps

2. a.var($\hat{\psi}$) = $j_{p}^{-1}(\hat{\psi}) \equiv \{-\ell_{p}''(\hat{\psi})\}^{-1}$

as with the full likelihood

3. $(\hat{\psi} - \psi)j_p^{1/2}(\hat{\psi}) \stackrel{d}{\to} N(0,1)$

a version of the usual limit theorem

4. $\hat{\psi} \pm 1.96 j_{\rm p}^{-1/2}(\hat{\psi})$ is an approximate 95% confidence interval for ψ

as in the Figure on p.4

5. in AoS notation, $j_p^{-1/2}(\hat{\psi}) = \widehat{se}(\hat{\psi})$

Thm.9.28

Example Suppose x_1, \ldots, x_n are i.i.d. observations from the gamma distribution, with density function

$$f(x_i; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x_i^{\alpha-1} e^{-x/\beta},$$

where α is the shape parameter and β is the scale parameter.³ Then

$$\ell(\alpha, \beta; \boldsymbol{x}) = -n \log\{\Gamma(\alpha)\} - n\alpha \log(\beta) + (\alpha - 1)\sum \log(x_i) - \sum x_i/\beta.$$

Note that the sufficient statistics for (α, β) are $(\Sigma x_i, \Sigma \log(x_i))$.

We'll assume α is the parameter of interest and β is the nuisance parameter. The constrained maximum likelihood estimate of β solves

$$\frac{\partial \ell(\alpha, \beta)}{\partial \beta} = 0,$$

which leads to an explicit expression

$$\hat{\beta}_{\alpha} = \frac{1}{\alpha n} \Sigma x_i.$$

The profile log-likelihood function is then

$$\ell_{p}(\alpha) = \ell(\alpha, \hat{\beta}_{\alpha}) = -n \log\{\Gamma(\alpha)\} - n\alpha \log(\hat{\beta}_{\alpha}) + (\alpha - 1)\Sigma \log(x_{i}) - \Sigma x_{i}/(\hat{\beta}_{\alpha})$$
$$= -n \log\{\Gamma(\alpha)\} - n\alpha \log(\bar{x}) + n\alpha \log \alpha + \alpha \Sigma \log(x_{i}) - n\alpha,$$

where in the second line I dropped functions only of \boldsymbol{x} . We can now find $\hat{\alpha}$ as the solution to $\ell_p(\alpha) = 0$, and its asymptotic variance is estimated by $\{-\ell_p''(\hat{\alpha})\}^{-1}$.

D. Your friend the delta method

Maximum likelihood estimates are asymptotically normally distributed, when the model for the data is "well-behaved". In the same setting, smooth functions of maximum likelihood estimates are also asymptotically normally distributed. These functions don't need to be one-to-one, but they need to be differentiable.

³There are several other ways to parametrize the gamma distribution.

On the annotated slides for Jan.13, I defined $g(\theta)$ as a mapping from \mathbb{R}^k to \mathbb{R}^m , with $m \leq k$. In Thm 9.28, m = 1. The delta method uses a simple Taylor series expansion to derive the expected value and variance of $g(\hat{\theta})$:

$$E_{\theta}\{g(\hat{\theta})\} \stackrel{:}{=} g(\theta)
 var_{\theta}\{g(\hat{\theta})\} \stackrel{:}{=} \left(\frac{\partial g(\theta)}{\partial \theta^{T}}\right) I_{n}^{-1}(\theta) \left(\frac{\partial g(\theta)}{\partial \theta}\right).$$

In these expressions g is an $m \times k$ vector and I_n^{-1} is a $k \times k$ matrix, so the expected value is $m \times 1$ and the variance-covariance matrix is $m \times m$. Since as written the variance depends on the unknown parameter θ , we would estimate it as either

$$\left(\frac{\partial g(\hat{\theta})}{\partial \theta}\right)^T I_n^{-1}(\hat{\theta}) \left(\frac{\partial g(\hat{\theta})}{\partial \theta}\right)$$

or

$$\left(\frac{\partial g(\hat{\theta})}{\partial \theta}\right)^T j_n^{-1}(\hat{\theta}) \left(\frac{\partial g(\hat{\theta})}{\partial \theta}\right).$$

See Example 9.29 on p.134. The text uses ∇g as shorthand for $\partial g(\theta)/\partial \theta$.

E. Likelihood Ratio Statistic The likelihood ratio statistic, sometimes called Wilks' statistics or Wilks' Lambda is defined as

$$W(\theta) = 2\log\left(\frac{\sup_{\theta} f(\boldsymbol{x}; \theta)}{f(\boldsymbol{x}; \theta)}\right)$$
$$= 2\{\ell(\hat{\theta}) - \ell(\theta)\}.$$

To derive its asymptotic distribution, we write

$$W(\theta) = 2\{\ell(\hat{\theta}) - [\ell(\hat{\theta}) + (\theta - \hat{\theta})\ell'(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^2\ell''(\hat{\theta}) + ...\}$$

= $(\hat{\theta} - \theta)^2 j_n(\hat{\theta}) + ...$
= $(\hat{\theta} - \theta)^2 I_n(\theta) + ...,$

where I am trying to be careful about noting that the information quantities (observed, j, and expected, I) are based on a sample of size n. I have written this as if θ is scalar, but if $\theta \in \mathbb{R}^k$ we simply have

$$W(\theta) = (\hat{\theta} - \theta)^T I(\theta)(\hat{\theta} - \theta) + \dots,$$

a quadratic form. As long as we can ensure that ... converges to 0 in probability, we get

$$W(\theta) \stackrel{d}{\to} \chi_k^2, \quad n \to \infty,$$

from
$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\to} N_k(0, I_1^{-1}(\theta)).$$

If $\theta = (\psi, \lambda)$, with $\psi \in \mathbb{R}^d$ the parameter of interest, the likelihood ratio statistic is defined using the profile likelihood:

$$W(\psi) = 2\{\ell_{p}(\hat{\psi}) - \ell_{p}(\psi)\}$$

$$= 2\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}$$

$$= 2\log\left\{\frac{\sup_{\psi, \lambda} L(\psi, \lambda; \boldsymbol{x})}{\sup_{\lambda} L(\psi, \lambda; \boldsymbol{x})}\right\}.$$

Under regularity conditions on the underlying model $f(x;\theta)$, it can be shown that

$$W(\psi) \xrightarrow{d} \chi_d^2, \quad n \to \infty;$$

see SM §4.5 (p.138,9) for the proof. A very slightly more general definition is given in AoS Definition 10.21: in the context of testing a composite null hypothesis H_0 : $\theta \in \Theta_0$ against $H_1: \theta \notin \Theta_0$ as

$$W = 2\log\left\{\frac{\sup_{\theta\in\Theta}L(\theta;\boldsymbol{x})}{\sup_{\theta\in\Theta_0}L(\theta;\boldsymbol{x})}\right\} = 2\log\left\{\frac{L(\hat{\theta};\boldsymbol{x})}{L(\hat{\theta}_0;\boldsymbol{x})}\right\}.$$