
STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density
f(x; θ), θ ∈ Θ ⊂ Rk, we have the following definitions:

likelihood function L(θ; x) = c(x)f(x; θ)
log-likelihood function ℓ(θ; x) = logL(θ; x) = log f(x; θ) + a(x)
score function u(θ) = ∂ℓ(θ; x)/∂θ s(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT

expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (9.11)

Independent observations: When we have Xi independent, identically dis-
tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we
have:

likelihood function L(θ;x) =
!n

i=1 f(xi; θ) Ln(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

"n
i=1 ℓ(θ; xi) ℓn(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) θ̂n
score function U(θ) = ℓ′(θ) =

"
Ui(θ) Σis(Xi; θ)

observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x) −H(θ) p.133

observed (Fisher) information j(θ̂) lazy notation
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ) (Th. 9.17)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0.

2. It doesn’t really matter for the definitions above if the observations are in-
dependent and identically distributed (i.i.d.), or only independent, but the
theorems that are proved in Ch. 9 do assume i.i.d. for simplicity.

3. AoS does not have separate notation for the observed Fisher information, which
is the negative second derivative at the maximum. But Theorem 9.17 shows
that Eθ{−ℓ′′(θ;X)} = Eθ{j(θ)} = I(θ), in models for which we can inter-
change differentiation and integration in

#
f(x; θ)dx = 1.

4. There are important distinctions to be careful about in the notation for like-
lihood and its quantities:

(a) Are we working with a single observation or n observations?

(b) Is the variable x, or the vector x = (x1, . . . , xn), random (X) or fixed
(x)?

(c) Do we want to find the distribution of something (X is random) or cal-
culate data summaries (x is fixed)?

1U(θ) = u(θ;X)
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B. First order asymptotic theory AoS §9.3-9.7

1. θ is a scalar
If the components of X are i.i.d., then the score function U(θ;X) is a sum of

i.i.d. random variables, and we can show that it has expected value 0 and variance
In(θ) (or i(θ) in my notation). Under some regularity conditions on the density
f(xi; θ), the central limit theorem gives

U(θ)

I
1/2
n (θ)

d→ N(0, 1). ⇝ (1)

Almost everything else follows from this result and Slutsky’s theorem. For ex-
ample, we can show that

(θ̂ − θ)I1/2n (θ) = U(θ)/I1/2n (θ) + op(1),

where op(1) means a remainder term that goes to 0 in probability as n → ∞, so we
have the second result

(θ̂ − θ)I1/2n (θ)
d→ N(0, 1). (2)

These limit theorems give us two corresponding approximations to use with n
fixed:

U(θ)
.∼ N (0, In(θ)) , ≈ (3)

and
θ̂ − θ

.∼ N (0, 1/In(θ)) . (4)

The notation
.∼ is read as “is approximately distributed as”.

Having the unknown quantity θ in the variance in (3) and (4) is inconvenient,
but to the same order of approximation, we can replace In(θ) by In(θ̂) or by j(θ̂). In

AoS, I
−1/2
n (θ) is called se and I

−1/2
n (θ̂) is called $se, but the use of j(θ̂) = −ℓ′′(θ̂;x)

is not mentioned. It should be, because careful study of the remainder term (the
op(1) term above) indicates that of all the choices, j(θ̂) gives the best approximation
for fixed n. It is also readily available in software that finds maximum likelihood
estimates using Newton’s method to solve ℓ′(θ̂) = 0; see AoS p.143. In Theorem

9.19, 1/I
1/2
n (θ̂) is used in (4) to define an approximate confidence interval for the

unknown parameter θ.

2. θ is a vector of length k AoS 9.10
The results above all generalize directly to a vector θ of unknown parameters.

The notation on p.1 already includes this case. The score function is a k× 1 vector
and the observed and expected Fisher information are k × k matrices. The limit
theorems corresponding to (1) and (2) are

I−1/2
n (θ)Un(θ)

d→ Nk(0, Ik), I1/2n (θ)(θ̂ − θ)
d→ Nk(0, Ik), (5)

where Nk(0, Ik) is the multivariate standard normal distribution and Ik is the k× k
identity matrix. Because this limit statement involves taking the square root of the
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matrix In, the results in (5) are rarely used in this form. That is why AoS, Theorem
9.27 simply gives the analogue of (3):

θ̂ − θ
.∼ Nk

%
0, I−1

n (θ̂)
&

(6)

(Actually, AoS doesn’t distinguish in Theorem 9.7 between I−1
n (θ) and I−1

n (θ̂) but
it should. In Theorem 9.28 the result correctly uses I−1

n (θ̂) ≡ Jn(θ̂) ≡ Ĵn.)
The approximation in (6) is for the whole vector θ̂ but that’s not so useful in

practice. However we can specialize the result to a single component, giving, for
example,

θ̂j − θj
.∼ N

%
0, Jn(θ̂)jj

&
, (7)

i.e. the jth diagonal element of the inverse matrix is the approximate variance of
the jth component of the vector θ̂. We also have that Jn(θ̂)jk is the asymptotic

covariance of θ̂j, θ̂k.
Result (7) corresponds to the standard output from the R command glm. The

following is a logistic regression model from the Final Homework in Applied Stats
I. Each line in the table of coefficients is an application of (7). The matrix Ĵn is
obtained with the command vcov(Boston.glm).

library(MASS)

data(Boston)

Boston$crim2 <- Boston$crim > median(Boston$crim) # define binary response

Boston.glm <- glm(crim2 ~ . - crim, family = binomial,

data = Boston) #fit logistic regression

summary(Boston.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.103704 6.530014 -5.223 1.76e-07 ***

zn -0.079918 0.033731 -2.369 0.01782 *

indus -0.059389 0.043722 -1.358 0.17436

chas 0.785327 0.728930 1.077 0.28132

nox 48.523782 7.396497 6.560 5.37e-11 ***

rm -0.425596 0.701104 -0.607 0.54383

age 0.022172 0.012221 1.814 0.06963 .

dis 0.691400 0.218308 3.167 0.00154 **

rad 0.656465 0.152452 4.306 1.66e-05 ***

tax -0.006412 0.002689 -2.385 0.01709 *

ptratio 0.368716 0.122136 3.019 0.00254 **

black -0.013524 0.006536 -2.069 0.03853 *

lstat 0.043862 0.048981 0.895 0.37052

medv 0.167130 0.066940 2.497 0.01254 *
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Here is the log-likelihood function for θ with a single observation from the density
f(x; θ) = exp{−(x− θ)− e(x−θ)}.
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Here is the log-likelihood function for (p1, p2) in a model for two independent
binomial observations, using the data given in AoS Exercise 9.7 (d) .
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C. Profile log-likelihoods: θ = (ψ,λ)
Very often there are a small number of parameters of interest, but the model has

additional parameters to improve the modelling of the observed data. We can treat
it as a multivariate problem, as in B2 above, but it is sometimes convenient to work
instead with the profile log-likelihood function:

ℓp(ψ;x) = ℓ(ψ, λ̂ψ;x), (8)

and in lazy notation we drop the dependence on the observed data and write
ℓtextp(ψ). In (8) λ̂ψ is the maximum likelihood estimate of λ, when ψ is fixed.

Likelihood functions are just (proportional to) density functions with the argu-
ments switched.2 Profile likelihood functions are not proportional to the density
of an observable random variable; the maximization gets in the way. But infer-
ence based on ℓp(ψ) has some similarities to inference based on the log-likelihood
function. In particular:

2i.e. the data is fixed and the parameter varies
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1. ψ̂ = arg supψ ℓp(ψ) i.e. you can compute the MLE in steps

2. a.var(ψ̂) = j−1
p (ψ̂) ≡ {−ℓ′′p(ψ̂)}−1 as with the full likelihood

3. (ψ̂ − ψ)j
1/2
p (ψ̂)

d→ N(0, 1) a version of the usual limit theorem

4. ψ̂ ± 1.96j
−1/2
p (ψ̂) is an approximate 95% confidence interval for ψ

as in the Figure on p.4

5. in AoS notation, j
−1/2
p (ψ̂) = $se(ψ̂) Thm.9.28

Example Suppose x1, . . . , xn are i.i.d. observations from the gamma distribution,
with density function

f(xi;α, β) =
1

Γ(α)βα
xα−1
i e−x/β,

where α is the shape parameter and β is the scale parameter.3 Then

ℓ(α, β;x) = −n log{Γ(α)}− nα log(β) + (α− 1)Σ log(xi)− Σxi/β.

Note that the sufficient statistics for (α, β) are (Σxi,Σ log(xi)).
We’ll assume α is the parameter of interest and β is the nuisance parameter.

The constrained maximum likelihood estimate of β solves

∂ℓ(α, β)

∂β
= 0,

which leads to an explicit expression

β̂α =
1

αn
Σxi.

The profile log-likelihood function is then

ℓp(α) = ℓ(α, β̂α) = −n log{Γ(α)}− nα log(β̂α) + (α− 1)Σ log(xi)− Σxi/(β̂α)

= −n log{Γ(α)}− nα log(x̄) + nα logα + αΣ log(xi)− nα,

where in the second line I dropped functions only of x. We can now find α̂ as the
solution to ℓp(α) = 0, and its asymptotic variance is estimated by {−ℓ′′p(α̂)}−1.

D. Your friend the delta method
Maximum likelihood estimates are asymptotically normally distributed, when

the model for the data is “well-behaved”. In the same setting, smooth functions of
maximum likelihood estimates are also asymptotically normally distributed. These
functions don’t need to be one-to-one, but they need to be differentiable.

3There are several other ways to parametrize the gamma distribution.
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On the annotated slides for Jan.13, I defined g(θ) as a mapping from Rk to Rm,
with m ≤ k. In Thm 9.28, m = 1. The delta method uses a simple Taylor series
expansion to derive the expected value and variance of g(θ̂):

Eθ{g(θ̂)}
.
= g(θ)

varθ{g(θ̂)}
.
=

'
∂g(θ)

∂θT

(
I−1
n (θ)

'
∂g(θ)

∂θ

(
.

In these expressions g is an m× k vector and I−1
n is a k× k matrix, so the expected

value is m × 1 and the variance-covariance matrix is m ×m. Since as written the
variance depends on the unknown parameter θ, we would estimate it as either

)
∂g(θ̂)

∂θ

*T

I−1
n (θ̂)

)
∂g(θ̂)

∂θ

*

or )
∂g(θ̂)

∂θ

*T

j−1
n (θ̂)

)
∂g(θ̂)

∂θ

*
.

See Example 9.29 on p.134. The text uses ∇g as shorthand for ∂g(θ)/∂θ.

E. Likelihood Ratio Statistic The likelihood ratio statistic, sometimes called
Wilks’ statistics or Wilks’ Lambda is defined as

W (θ) = 2 log

'
supθ f(x; θ)

f(x; θ)

(

= 2{ℓ(θ̂)− ℓ(θ)}.

To derive its asymptotic distribution, we write

W (θ) = 2{ℓ(θ̂)− [ℓ(θ̂) + (θ − θ̂)ℓ′(θ̂) +
1

2
(θ − θ̂)2ℓ′′(θ̂) + ...}

= (θ̂ − θ)2jn(θ̂) + ...

= (θ̂ − θ)2In(θ) + ...,

where I am trying to be careful about noting that the information quantities (ob-
served, j, and expected, I) are based on a sample of size n. I have written this as
if θ is scalar, but if θ ∈ Rk we simply have

W (θ) = (θ̂ − θ)T In(θ)(θ̂ − θ) + ...,

a quadratic form. As long as we can ensure that ... converges to 0 in probability, we
get

W (θ)
d→ χ2

k, n → ∞,

from
√
n(θ̂ − θ)

d→ Nk(0, I
−1
1 (θ)).
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If θ = (ψ,λ), with ψ ∈ Rd the parameter of interest, the likelihood ratio statistic
is defined using the profile likelihood:

W (ψ) = 2{ℓp(ψ̂)− ℓp(ψ)}
= 2{ℓ(ψ̂, λ̂)− ℓ(ψ, λ̂ψ)}

= 2 log

+
supψ,λ L(ψ,λ;x)

supλ L(ψ,λ;x)

,
.

Under regularity conditions on the underlying model f(x; θ), it can be shown that

W (ψ)
d→ χ2

d, n → ∞;

see SM §4.5 (p.138,9) for the proof. A very slightly more general definition is given
in AoS Definition 10.21: in the context of testing a composite null hypothesis H0 :
θ ∈ Θ0 against H1 : θ /∈ Θ0 as

W = 2 log

+
supθ∈Θ L(θ;x)

supθ∈Θ0
L(θ;x)

,
= 2 log

-
L(θ̂;x)

L(θ̂0;x)

.
.
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