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The Computer Age Statistical Inference book makes the distinction between the two levels
of statistics, the algorithmic level and the inferential level, which is somewhat an artifi-
cial distinction but a pretty good one. It says that the first level is doing something and
the second level is understanding what you did in the first level. The algorithmic level al-
ways gets more action, in particular in these days of these big prediction algorithms like
deep learning. You’d think that’s the only thing going on. It isn’t the only thing going on.
The deeper understanding of the kind of thing that Fisher and these people – Neyman,
Hotelling – did for early 20th-century statistics, putting it on a solid intellectual ground
so you can understand what’s at stake, is terribly important.
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https://onlinelibrary.wiley.com/toc/17515823/2020/88/S1
https://web.stanford.edu/~hastie/CASI/


Recap

• likelihood notation notes on likelihood
• score function, maximum likelihood estimate, observed and expected
Fisher information

• asymptotic normality of maximum likelihood estimators √
n(θ̂ − θ)I1/21 (θ̂)

d→ N(0, 1)
• estimating the asymptotic variance j(θ̂), In(θ̂)
• the delta method τ = g(θ)
• profile likelihood see notes p.6
• sufficient statistics
• Newton-Raphson method for computing θ̂
• irregular models U(0, θ)
• Quasi-Newton
• EM Algorithm Friday
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Today Start Recording

1. Pareto MLE; Quasi-Newton Pareto.Rmd

2. Hypothesis testing AoS 10.1

3. Significance testing SM 7.3.1; AoS 10.2

4. Tests based on likelihood AoS 10.6

• January 25 3.00 – 4.00 Aleeza Gerstein Data Science and Applied Research Series

• “Turning qualitative observation to quantitative measurement through statistical
computing” Link
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https://www.statistics.utoronto.ca/events/turning-qualitative-observation-quantitative-measurement-through-statistical-computing


Quasi-Newton Kolter et al.

Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

• Goal: maxθ ℓ(θ; x)
• Solve:
• Iterate:
• Rewrite:
• Quasi-Newton:
•
•

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
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Quasi-Newton Kolter et al.

Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

• Goal: maxθ ℓ(θ; x)
• Solve: ℓ′(θ; x) = 0
• Iterate: θ̂(t+1) = θ̂(t) + {j(θ̂(t))}−1ℓ′(θ̂(t))
• Rewrite: j(θ̂(t))(θ̂(t+1) − θ̂(t)) = ℓ′(θ̂(t)) B∆θ = −∇ℓ(θ)

• Quasi-Newton:
• approximate j(θ̂(t)) with something easy to invert
• use information from j(θ̂(t)) to compute j(θ̂(t+1))

• optimization notes add a step size to the iteration θ̂(t+1) = θ̂(t) + εt{j(θ̂(t))}−1ℓ′(θ̂(t))

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
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https://www.stat.cmu.edu/~ryantibs/convexopt-F18/lectures/quasi-newton.pdf


Formal theory of testing AoS 10.1

• Null and alternative hypothesis

• Rejection region

• Test statistic and critical value

• Type I and Type II error

• Power and Size
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Formal theory of testing AoS 10.1

• Null and alternative hypothesis

• Rejection region

• Test statistic and critical value

• Type I and Type II error

• Power and Size
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Example: logistic regression
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... Example: logistic regression

Boston.glmnull <- glm(crim2 ~ 1, family = binomial, data = Boston)

anova(Boston.glmnull, Boston.glm)

Analysis of Deviance Table

Model 1: crim2 ~ 1

Model 2: crim2 ~ (crim + zn + indus + chas + nox + rm + age + dis + rad +

tax + ptratio + black + lstat + medv) - crim

Resid. Df Resid. Dev Df Deviance

1 505 701.46

2 492 211.93 13 489.54

> pchisq(489.54, 13, lower.tail = F)

[1] 2.435111e-96
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... Example: logistic regression

Boston.glmpart <- glm(crim2 ~ . - crim - indus - chas - rm - lstat,

data = Boston, family = binomial)

anova(Boston.glmpart, Boston.glm)

Analysis of Deviance Table

Model 1: crim2 ~ (crim + zn + indus + chas + nox + rm + age + dis + rad +

tax + ptratio + black + lstat + medv) - crim - indus - chas -

rm - lstat

Model 2: crim2 ~ (crim + zn + indus + chas + nox + rm + age + dis + rad +

tax + ptratio + black + lstat + medv) - crim

Resid. Df Resid. Dev Df Deviance

1 496 216.22

2 492 211.93 4 4.2891

> pchisq(4.2891, 4, lower.tail = F)

[1] 0.368292
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Formal theory of testing AoS 10.1

• Null and alternative hypothesis: H0 : θ ∈ Θ0; H1 : θ ∈ Θ1, Θ0 ∪Θ1 = Θ

• Rejection region: R ⊂ X ; if x ∈ R “reject” H0

• Test statistic and critical value: R = {x ∈ X : t(x) > c} c to be chosen

• Type I and Type II error: Pr{t(X) > c | θ ∈ Θ0}, Pr{t(X) ≤ c | θ ∈ Θ1}

• Power and Size: β(θ) = Prθ(X ∈ R) α = supθ∈Θ0 β(θ)

• Optimal tests: among all level-α tests, find that with the highest power under H1
level-α means size ≤ α
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Example: Two-sample t-test EH §1.2
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... Example 1 AoS Ex.10.8

leukemia_big <- read.csv

("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")

oneline <- leukemia_big[136,]

one <- c(1:20, 35:61) # I had to extract these manually,

two <- c(21:34, 62:72) # couldn’t figure out the data frame

n1 <- length(one); n2 <- length(two)

mean_one <- sum(oneline[1,one])/n1. ##[1] 0.7524794

mean_two <- sum(oneline[1,two])/n2. ##[1] 0.9499731

var_one <- sum((oneline[1,one]-mean_one)^2)/(n1-1)

var_two <- sum((oneline[1,two]-mean_two)^2)/(n2-1)

pooled <- ((n1-1)*var_one + (n2-1)*var_two)/(n1+n2-1)

taos <- (mean_one-mean_two)/sqrt((var_one/n1)+(var_two/n2))

##[1] -3.132304

tbe <- (mean_one-mean_two)/sqrt(pooled*((1/n1)+(1/n2)))

##[1] -3.035455
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Example: Likelihood inference

X1, . . . , Xn i.i.d. f (x; θ); θ̂(Xn) is maximum likelihood estimate. From last week:

(θ̂ − θ)/!se .∼ N(0, 1)

To test H0 : θ = θ0 vs. H1 : θ ∕= θ0 we could use

W = W(Xn) = (θ̂ − θ0)/ "se,

The critical region will be {x : |W(x)| > zα/2}, i.e. “reject” H0 when |W| ≥ zα/2
This test has approximate size α:

Pr(|W| > zα/2)
.
= α.

Power? See Figure 10.1 and Theorem 10.6
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... likelihood inference
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Example: comparing two binomials AoS Ex.107

X ∼ Bin(n1,p1), Y ∼ Bin(n2,p2), δ = p1 − p2, H0 : δ = 0
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Examples: 10.8 and 10.9 AoS

equality of means; equality of medians; Wald test
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p-values AoS §10.2; SM §7.3.1

The formal theory of testing imagines a decision to “reject H0” or not, according as X ∈ R
or X /∈ R, for some defined region R (e.g. Z > 1.96 )

This is useful for deriving the form of optimal tests, but not useful in practice.

Doesn’t distinguish between Z = 1.97 and Z = 19.7, for example.

P-values give more precise information about the null hypothesis

AoS definition: p-value = inf{α : T(Xn) ∈ Rα} Def 10.11

SM definition pobs = PrH0{T(Xn) ≥ tobs}
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Example: exponential SM Ex.7.22

X1, . . . Xn i.i.d. f (x;λ) = λe−λx

H0 : λ = λ0
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Example: logistic regression

−→ Monash talk
Mathematical Statistics II January 20 2021 20



Likelihood ratio tests AoS 10.6

Mathematical Statistics II January 20 2021 21


