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Today Start Recording

1. Course Overview
2. Review of Likelihood AoS Ch 9
3. HW3 from MS I

• January 13 3.15 – 4.15 Ruoqi Yu Zoom Link
“Matching Methods for Observational Studies Derived from
Large Administrative Databases”

• January 18 5.15 – 6.15 “Statistical Learning with Electronic Health Records Data”
Jesse Gronsbell
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Course Overview

STA 2212S: Mathematical Statistics II
Wednesday, 10-12 am; Friday 10-11 am Eastern January 13 – April 12 2021

From the calendar:
This course is a continuation of STA2112H. It is designed for graduate students in

statistics and biostatistics. Topics include: Likelihood inference, Bayesian methods,
Significance testing, Linear and generalized linear models, Goodness-of-fit, Compu-
tational methods
Prerequisite: STA2112H

I will definitely cover the first 3 topics, and the 5th, and we’ll see how time goes
for the others. “Computational methods” was probably meant to be shorthand for
“bootstrap” and “MCMC”, and will be touched on in the other topics.

Course Delivery:
The class will be delivered at the scheduled time (Wednesdays, 10-12 am; Fridays

10-11 am; Toronto time) using Zoom. There is a Zoom link on the Quercus page
for the course. The lectures will be recorded for viewing offline after the scheduled
time. The slides for the lectures will be posted, on good weeks before the scheduled
course time, and on rushed weeks just after.

We will use Piazza for discussion, as it is now integrated with Quercus. You will
find an entry for Piazza in the course menu. If you click it, you will be asked to sign
up. Please see the instructions in the handout, especially the highlighted bits.

Grading:
The course grade will be 60% homework, 40% take home final. There will be

one homework question assigned each Friday, due the following Friday. Each of
these twelve questions will be worth 5% initially, but your two lowest marks will
be dropped and the homework portion of the grade re-calibrated accordingly. The
take-home final will be released April 12, due April 22 (tentative).

Academic Integrity:
Discussion about your work with your classmates is encouraged, but the home-

work solutions you submit must be written, and coded, independently. You may use
code provided by by me without attribution, but you must acknowledge code taken
from any other source using a proper bibliographic reference. To protect yourself
from potential academic integrity offences, do not share your code and written sub-
missions. The University of Toronto’s Code of Behaviour on Academic Matters is
available at http://academicintegrity.utoronto.ca.
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... Course Overview

S STA 2212S: Mathematical Statistics II
Syllabus Spring 2021

Week Date Methods References

1 Jan 13/15 Review of parametric inference AoS Ch 9

2 Jan 20/22 Significance testing AoS Ch 10.1,2,6,7; SM Ch 7.3

3 Jan 27/29 Significance testing

4 Feb 3/5 Goodness of fit testing AoS Ch 10.3,4,5,8

5 Feb 10/12 Multiple testing and FDR AoS Ch 10.7, EH Ch 15.1,2

6 Feb 17/19 Break

7 Feb 24/26 Bayesian Inference AoS Ch 11.1-4; SM Ch 11.1,2; EH
Ch 3, 13

8 Mar 3/5 Bayesian Inference AoS Ch 11.5-9; SM Ch 11.4

9 Mar 10/12 Empirical Bayes EH Ch 6

10 Mar 17/19 Statistical Decision theory AoS Ch 12

11 Mar 24/26 Multivariate Models AoS Ch 14; SM Ch 6.3

12 Mar 31 Causal Inference AoS Ch 16

13 Apr 7 Recap

Comments
This shows the main topics we’d like to cover, but is subject to adjustment as the course evolves.

References

AoS: All of Statistics by L. Wasserman (Springer)

SM: Statistical Models by A.C. Davison (Cambridge University Press)

EH: Computer Age Statistical Inference by B. Efron and T. Hastie (Cambridge University Press)
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Review of likelihood AoS §9.3–7

STA2212: Inference and Likelihood

A. Notation
One random variable: Given a model for X which assumes X has a density
f(x; θ), θ ∈ Θ ⊂ Rk, we have the following definitions:

likelihood function L(θ; y) = c(y)f(y; θ)
log-likelihood function ℓ(θ; y) = logL(θ; y) = log f(y; θ) + a(y)
score function u(θ) = ∂ℓ(θ; x)/∂θ s(x; θ)
observed information function j(θ) = −∂2ℓ(θ; x)/∂θ∂θT

expected information (in one observation) i(θ) = Eθ{U(θ)U(θ)T}1 I(θ) (9.11)

Independent observations: When we have Xi independent, identically dis-
tributed from f(xi; θ), then, denoting the observed sample x = (x1, . . . , xn) we
have:

likelihood function L(θ;x) =
!n

i=1 f(xi; θ) Ln(θ)
log-likelihood function ℓ(θ) = ℓ(θ;x) =

"n
i=1 ℓ(θ; xi) ℓn(θ)

maximum likelihood estimate θ̂ = θ̂(x) = arg supθ ℓ(θ) θ̂n
score function U(θ) = ℓ′(θ) =

"
Ui(θ) Σis(Xi; θ)

observed information function j(θ) = −ℓ′′(θ) = −ℓ′′(θ;x)

observed (Fisher) information j(θ̂) lazy notation
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) In(θ) = nI(θ) (Th. 9.17)

Comments:

1. the maximum likelihood estimate θ̂n is usually obtained by solving the score
equation ℓ′(θ;x) = 0.

2. It doesn’t really matter for the definitions above if the observations are in-
dependent and identically distributed (i.i.d.), or only independent, but the
theorems that are proved in Ch. 9 do assume i.i.d. for simplicity.

3. AoS does not have separate notation for the observed Fisher information, which
is the negative second derivative at the maximum. But Theorem 9.17 shows
that Eθ{−ℓ′′(θ;X)} = Eθ{j(θ)} = I(θ), in models for which we can inter-
change differentiation and integration in

#
f(x; θ)dx = 1.

4. There are important distinctions to be careful about in the notation for like-
lihood and its quantities:

(a) Are we working with a single observation or n observations?

(b) Is the variable x, or the vector x = (x1, . . . , xn), random (X) or fixed
(x)?

(c) Do we want to find the distribution of something (X is random) or cal-
culate data summaries (x is fixed)?

1U(θ) = u(θ;X)
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Notes A Notation
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Notes B Asymptotics, scalar
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Notes B Asymptotics, vector
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Notes B Asymptotics, vector
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Notes B Asymptotics, vector
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Notes B Asymptotics, vector
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Your friend the delta-method Th.9.24, 9.28; p.137

maximum likelihood estimators are asymptotically normally distributed

maximum likelihood estimators are “equivariant”

Mathematical Statistics II January 13 2020 8

F e gig then E egcoycio.FI
diffblegpi1pcvoQi'coli B E

f E mek



More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18

• among all consistent estimators, maximum likelihood estimators have the
smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient
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More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18

• among all consistent estimators, maximum likelihood estimators have the
smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient
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More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18

• among all consistent estimators, maximum likelihood estimators have the
smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient

Mathematical Statistics II January 13 2020 9

R when I got
O Ii 4o

d Nco 1

E pf need to O

consistency

th i i i



More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18

• among all consistent estimators, maximum likelihood estimators have the
smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient
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More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18

• among all consistent estimators, maximum likelihood estimators have the
smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient
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More about likelihood

• maximum likelihood estimators are consistent Th. 9.13

• maximum likelihood estimators are asymptotically normally distributed Th. 9.18
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smallest asymptotic variance Th. 9.23

• i.e., maximum likelihood estimators are asymptotically e)cient
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... more about likelihood AoS 9.13.2

• likelihood functions depend on the data only through the su)cient statistic1

• su)cient statistics have all the information about the parameters in the model
• algebraically

f (x; θ) ∝ f (t; θ) f (a | t),

where (t,a) ↔ x is a one-to-one transformation of x = (x1, . . . , xn)
• examples Poisson, normal, gamma, logistic regression

1In fact AoS de&nes su'ciency this way
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... more about likelihood AoS 9.13.2
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Exponential families have su!cient statistics AoS §9.13.13
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Exponential families are ‘smooth’
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Not all families are smooth
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Calculating maximum likelihood estimators AoS 9.13.14

Newton-Raphson

EM-algorithm
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MS I HW 3

ah�h kRRk, >QK2rQ`F j

h?2 ?QK2rQ`F Bb rQ`i? ey TibX S`Q#H2K k+ �M/ S`Q#H2K 9 �`2 QTiBQM�H �M/ rQ`i? mT iQ R8
TQBMib Q7 2ti`� +`2/BiX

Problem 1

amTTQb2 i?�i i?2 MmK#2` Q7 �++B/2Mib T2` r22F �i �M BMi2`b2+iBQM 7QHHQrb � SQBbbQM /Bbi`B#m@
iBQM rBi? T�`�K2i2` µX Pp2` i?2 T�bi 8k r22Fb- i?2`2 r2`2 y �++B/2Mib BM jy r22Fb �M/ QM2
Q` KQ`2 �++B/2Mib BM kk r22FbX �bbmK2 i?�i i?2 8k r22Fb �`2 BM/2T2M/2MiX

(a) 10 pts

:Bp2M i?Bb /�i�- }M/ i?2 K2i?Q/ Q7 KQK2Mib 2biBK�iQ` Q7 µX E22T BM KBM/ i?�i r2 QMHv
FMQr B7 i?2`2 r2`2 y Q` = y �++B/2Mib 7Q` �Mv r22FX

(b) 10 pts

q`Bi2 Qmi i?2 HBF2HB?QQ/ 7Q` i?Bb b2i Q7 Q#b2`p�iBQMbX .2i2`KBM2 i?2 2biBK�iQ` Q7 µ i?�i
K�tBKBx2b i?Bb HBF2HB?QQ/- �M/ �HbQ /2i2`KBM2 �M �TT`QT`B�i2 bi�M/�`/ 2``Q` 2biBK�i2X E22T
BM KBM/ i?�i r2 QMHv FMQr B7 i?2`2 r2`2 y Q` = y �++B/2Mib 7Q` �Mv r22FX

Problem 2

amTTQb2 i?�i X1, . . . , Xn ∼iid SQBbbQM(µ)X

(a) 10 pts

6BM/ i?2 JG1 7Q` µX

(b) 10 pts

6BM/ i?2 �bvKTiQiB+ p�`B�M+2 Q7 i?2 JG1 mbBM; UBV i?2 +2Mi`�H HBKBi i?2Q`2K �M/fQ` UBBV `2bmHib
7`QK JG1 i?2Q`vX A7 vQm +�M /Q #Qi?- TH2�b2 /Q bQX 6BM�HHv- +QMbi`m+i �M �TT`QtBK�i2 N8W
+QM}/2M+2 BMi2`p�H 7Q` µX

(c) EXTRA CREDIT (5 pts)

amTTQb2 i?�i n = 50 �M/ i?2 bmK Q7 i?2 8y SQBbbQM Q#b2`p�iBQMb Bb j8yX �Hi?Qm;? i?2 JG1
+�M #2 +�H+mH�i2/ BM +HQb2/ 7Q`K ?2`2- BKTH2K2Mi irQ Bi2`�iBQMb Q7 i?2 L2riQM@_�T?bQM
�H;Q`Bi?K UT; R9j BM q�bb2`K�MV BM R iQ +QKTmi2 i?2 JG1 bi�`iBM; �i �M BMBiB�H 2biBK�i2 Q7
µ = 10X >Qr +HQb2 /Q vQm ;2i iQ i?2 i`m2 JG1 rBi? i?2b2 irQ Bi2`�iBQMb\ q?�i ?�TT2Mb B7
vQm bi�`i rBi? �M BMBiB�H 2biBK�i2 Q7 µ 2[m�H iQ d\

1
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Pro#le likelihood

f (xi;α,β) =
1

Γ(α)βα
xα−1i e−x/β
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