STA2212: Asymptotic theory for likelihood

Assume we have a sample Y = (Y1,...,Y,), where the Y; are independent, iden-
tically distributed with density f(y;;0). Refer to the handout of January 13 for
the definitions of the score function, maximum likelihood estimate, observed and
expected Fisher information. Also there we give the first order theory for 6 in the
case that 6 is a vector of length £, as well as the special case £k = 1. The vector
version results are repeated here:
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from which we have the approximations
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A moderately rigorous proof of (2) and (3) follows, for scalar . The vector case

is unchanged, except for tedious notational changes in the Taylor series, although

of course we need the dimension of  fixed as n — oo. See also SM §4.4.2.
For (2), we have
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The term in brackets on the LHS of the last line converges in probability to 1,
by the WLLN, so can be written 1 + 0,(1). The remainder term Z,, converges in
probability to 0, because we assume § - 6, so that 0% 2 6, because |§—6| < [0 —6).
Also Le"(0x) 5 E{¢"(0;Y)} which we assume is finite (p.118 of SM, for example);
similarly —1¢7(0) 5 i1(6), so Z, = 0,(1)O(1) = 0,(1). Then we can move over the
LHS term as
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because 1 + 0,(1) is the same as 1 — 0,(1), and {1+ 0,(1)} 7! =1 —0,(1).
For (3), we have
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where again Z, = 0 as above.

This begs the question of whether the maximum likelihood estimator is the root
of // (é) = 0, and whether the maximum likelihood estimator converges in probability
to 6. Wald’s proof of the consistency of the MLE relies on showing (roughly) that
the likelihood function is maximized at the true value, in the limit, so that the
parameter point that maximizes the likelihood function will converge to that true
value. However the devil is in the details. A discussion is given in SM on p.123
(in my edition there is a missing — at £(6) — £(6y) ~ —nD(fy, fo,) — —o0 with
probability one as n — 00.)

An easier approach is to assume enough about the density to be able to prove that
there are consistent solutions to the score equation; then if the likelihood function
has its maximum in the interior of the parameter space, and the solution to the
score equation is unique, it is the MLE. The encylopedia article by Scholz listed
below is very helpful. A popular modern reference that is very rigorous is van der
Waart (1998).

Many authors avoid all these problems by just assuming that the score equation
gives the MLE, and ’enough regularity’ on the model to ensure consistency. After
that asymptotic normality follows if one has a central limit theorem for the score
function. This can hold much more generally that in the i.i.d. setting.
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